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Abstract

The class of shuffle ideals is a fundamental sub-family of regular languages. The
shuffle ideal generated by a string set U is the collection of all strings containing
some string u ∈ U as a (not necessarily contiguous) subsequence. In spite of
its apparent simplicity, the problem of learning a shuffle ideal from given data is
known to be computationally intractable. In this paper, we study the PAC learn-
ability of shuffle ideals and present positive results on this learning problem under
element-wise independent and identical distributions and Markovian distributions
in the statistical query model. A constrained generalization to learning shuffle
ideals under product distributions is also provided. In the empirical direction, we
propose a heuristic algorithm for learning shuffle ideals from given labeled strings
under general unrestricted distributions. Experiments demonstrate the advantage
for both efficiency and accuracy of our algorithm.

1 Introduction

The learnablity of regular languages is a classic topic in computational learning theory. The ap-
plications of this learning problem include natural language processing (speech recognition, mor-
phological analysis), computational linguistics, robotics and control systems, computational biology
(phylogeny, structural pattern recognition), data mining, time series and music ([7, 16, 18, 19, 20,
21, 23, 25]). Exploring the learnability of the family of formal languages is significant to both theo-
retical and applied realms. In the classic PAC learning model defined by Valiant [26], unfortunately,
the class of regular languages, or equivalently the concept class of deterministic finite automata
(DFA), is known to be inherently unpredictable ([1, 9, 22]). In a modified version of Valiant’s model
which allows the learner to make membership queries, Angluin [2] has shown that the concept class
of regular languages is PAC learnable.

Throughout this paper we study the PAC learnability of a fundamental subclass of regular languages,
the class of (extended) shuffle ideals. The shuffle ideal generated by an augmented string U is the
collection of all strings containing some u ∈ U as a (not necessarily contiguous) subsequence,
where an augmented string is a finite concatenation of symbol sets (see Figure 1 for an illustration).
The special class of shuffle ideals generated by a single string is called the principal shuffle ideals.
In spite of its simplicity, the class of shuffle ideals plays a prominent role in formal language theory.
The boolean closure of shuffle ideals is the important language family known as piecewise-testable
languages ([24]). The rich structure of this language family has made it an object of intensive study
in complexity theory and group theory ([12, 17]). In the applied direction, Kontorovich et al. [15]
show the shuffle ideals capture some rudimentary phenomena in human language morphology.

Unfortunately, even such a simple class is not PAC learnable, unless RP=NP ([3]). However, in
most application scenarios, the strings are drawn from some particular distribution we are interested
in. Angluin et al. [3] prove under the uniform string distribution, principal shuffle ideals are PAC
learnable. Nevertheless, the requirement of complete knowledge of the distribution, the dependence
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Figure 1: The DFA accepting precisely the shuffle ideal of U = (a|b|d)a(b|c) over Σ = {a, b, c, d}.

on the symmetry of the uniform distribution and the restriction of principal shuffle ideals lead to the
lack of generality of the algorithm. Our main contribution in this paper is to present positive results
on learning the class of shuffle ideals under element-wise independent and identical distributions
and Markovian distributions. Extensions of our main results include a constrained generalization
to learning shuffle ideals under product distributions and a heuristic method for learning principal
shuffle ideals under general unrestricted distributions.

After introducing the preliminaries in Section 2, we present our main result in Section 3: the ex-
tended class of shuffle ideals is PAC learnable from element-wise i.i.d. strings. That is, the dis-
tributions of the symbols in a string are identical and independent of each other. A constrained
generalization to learning shuffle ideals under product distributions is also provided. In Section 4,
we further show the PAC learnability of principal shuffle ideals when the example strings drawn
from Σ≤n are generated by a Markov chain with some lower bound assumptions on the transition
matrix. In Section 5, we propose a greedy algorithm for learning principal shuffle ideals under
general unrestricted distributions. Experiments demonstrate the advantage for both efficiency and
accuracy of our heuristic algorithm.

2 Preliminaries

We consider strings over a fixed finite alphabet Σ. The empty string is λ. Let Σ∗ be the Kleene
star of Σ and Σ∪ be the collection of all subsets of Σ. As strings are concatenations of symbols, we
similarly define augmented strings as concatenations of unions of symbols.

Definition 1 (Alphabet, simple string and augmented string) Let Σ be a non-empty finite set of
symbols, called the alphabet. A simple string over Σ is any finite sequence of symbols from Σ, and
Σ∗ is the collection of all simple strings. An augmented string over Σ is any finite concatenation of
symbol sets from Σ∪, and (Σ∪)

∗ is the collection of all augmented strings.

Denote by s the cardinality of Σ. Because an augmented string only contains strings of the same
length, the length of an augmented string U , denoted by |U |, is the length of any u ∈ U . We use
exponential notation for repeated concatenation of a string with itself, that is, vk is the concatenation
of k copies of string v. Starting from index 1, we denote by vi the i-th symbol in string v and use
notation v[i, j] = vi . . . vj for 1 ≤ i ≤ j ≤ |v|. Define the binary relation v on 〈(Σ∪)

∗
,Σ∗〉 as

follows. For a simple string w, w v v holds if and only if there is a witness~i = (i1 < i2 < . . . <
i|w|) such that vij = wj for all integers 1 ≤ j ≤ |w|. For an augmented stringW ,W v v if and only
if there exists some w ∈W such that w v v. When there are several witnesses for W v v, we may
order them coordinate-wise, referring to the unique minimal element as the leftmost embedding. We
will write IWvv to denote the position of the last symbol of W in its leftmost embedding in v (if the
latter exists; otherwise, IWvv =∞).

Definition 2 (Extended/Principal Shuffle Ideal) The (extended) shuffle ideal of an augmented
string U ∈ (Σ∪)

L is a regular language defined as X(U) = {v ∈ Σ∗ | ∃u ∈ U, u v v} =
Σ∗U1Σ∗U2Σ∗ . . .Σ∗ULΣ∗. A shuffle ideal is principal if it is generated by a simple string.

Shuffle ideal is an order ideal on monoid 〈Σ∗, ·, λ〉 and was originally defined for lattices. Denote
by the class of principal shuffle ideals and by X the class of extended shuffle ideals. Unless
otherwise stated, in this paper shuffle ideal refers to the extended ideal. An example is given in
Figure 1. The feasibility of determining whether a string is in the class X(U) is obvious.

Lemma 1 Evaluating relation U v x and meanwhile determining IUvx is feasible in time O(|x|).
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In a computational learning model, an algorithm is usually given access to an oracle providing
information about the sample. In Valiant’s work [26], the example oracle EX(c,D) was defined,
where c is the target concept andD is a distribution over the instance space. On each call, EX(c,D)
draws an input x independently at random from the instance space I under the distribution D, and
returns the labeled example 〈x, c(x)〉.

Definition 3 (PAC Learnability: [26]) Let C be a concept class over the instance space I. We
say C is probably approximately correctly (PAC) learnable if there exists an algorithm A with the
following property: for every concept c ∈ C, for every distribution D on I, and for all 0 < ε < 1/2
and 0 < δ < 1/2, if A is given access to EX(c,D) on I and inputs ε and δ, then with probability
at least 1− δ, A outputs a hypothesis h ∈ H satisfying Prx∈D[c(x) 6= h(x)] ≤ ε. If A runs in time
polynomial in 1/ε, 1/δ and the representation size of c, we say that C is efficiently PAC learnable.

We refer to ε as the error parameter and δ as the confidence parameter. If the error parameter
is set to 0, the learning is exact ([6]). Kearns [11] extended Valiant’s model and introduced the
statistical query oracle STAT(c,D). Kearns’ oracle takes as input a statistical query of the form
(χ, τ). Here χ is any mapping of a labeled example to {0, 1} and τ ∈ [0, 1] is called the noise
tolerance. STAT(c,D) returns an estimate for the expectation IEχ, that is, the probability that χ = 1
when the labeled example is drawn according to D. A statistical query can have a condition so IEχ
can be a conditional probability. This estimate is accurate within additive error τ .

Definition 4 (Legitimacy and Feasibility: [11]) A statistical query χ is legimate and feasible if
and only if with respect to 1/ε, 1/τ and representation size of c:

1. Query χ maps a labeled example 〈x, c(x)〉 to {0, 1};

2. Query χ can be efficiently evaluated in polynomial time;

3. The condition of χ, if any, can be efficiently evaluated in polynomial time;

4. The probability of the condition of χ, if any, should be at least polynomially large.

Throughout this paper, the learnability of shuffle ideals is studied in the statistical query model.
Kearns [11] proves that oracle STAT(c,D) is weaker than oracle EX(c,D). In words, if a concept
class is PAC learnable from STAT(c,D), then it is PAC learnable fromEX(c,D), but not necessarily
vice versa.

3 Learning shuffle ideals from element-wise i.i.d. strings

Although learning the class of shuffle ideals has been proved hard, in most scenarios the string
distribution is restricted or even known. A very usual situation in practice is that we have some prior
knowledge of the unknown distribution. One common example is the string distributions where each
symbol in a string is generated independently and identically from an unknown distribution. It is
element-wise i.i.d. because we view a string as a vector of symbols. This case is general enough to
cover some popular distributions in applications such as the uniform distribution and the multinomial
distribution. In this section, we present as our main result a statistical query algorithm for learning
the concept class of extended shuffle ideals from element-wise i.i.d. strings and provide theoretical
guarantees of its computational efficiency and accuracy in the statistical query model. The instance
space is Σn. Denote by U the augmented pattern string that generates the target shuffle ideal and by
L = |U | the length of U .

3.1 Statistical query algorithm

Before presenting the algorithm, we define function θV,a(·) and query χV,a(·, ·) for any augmented
string V ∈ (Σ∪)

≤n and any symbol a ∈ Σ as as follows.

θV,a(x) =

{
a if V 6v x[1, n− 1]
xIVvx+1 if V v x[1, n− 1]

χV,a(x, y) =
1

2
(y + 1) given θV,a(x) = a
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where y = c(x) is the label of example string x. More precisely, y = +1 if x ∈X(U) and y = −1

otherwise. Our learning algorithm uses statistical queries to recover string U ∈ (Σ∪)
L one element

at a time. It starts with the empty string V = λ. Having recovered V = U [1, `] where 0 ≤ ` < L,
we infer U`+1 as follows. For each a ∈ Σ, the statistical query oracle is called with the query χV,a
at the error tolerance τ claimed in Theorem 1. Our key technical observation is that the value of
IEχV,a effectively selects U`+1. The query results of χV,a will form two separate clusters such that
the maximum difference (variance) inside one cluster is smaller than the minimum difference (gap)
between the two clusters, making them distinguishable. The set of symbols in the cluster with larger
query results is proved to be U`+1. Notice that this statistical query only works for 0 ≤ ` < L. To
complete the algorithm, we address the trivial case ` = L with query Pr[y = +1 | V v x] and the
algorithm halts if the query answer is close to 1.

3.2 PAC learnability of ideal X

We show the algorithm described above learns the class of shuffle ideals from element-wise i.i.d.
strings in the statistical query learning model.

Theorem 1 Under element-wise independent and identical distributions over instance space I =
Σn, concept class X is approximately identifiable with O(sn) conditional statistical queries from
STAT(X,D) at tolerance

τ =
ε2

40sn2 + 4ε

or with O(sn) statistical queries from STAT(X,D) at tolerance

τ̄ =

(
1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

We provide the main idea of the proofs in this section and defer the details and algebra to Appendix
A. The proof starts from the legitimacy and feasibility of the algorithm. Since χV,a computes a
binary mapping from labeled examples to {0, 1}, the legitimacy is trivial. But χV,a is not feasible
for symbols in Σ of small occurrence probabilities. We avoid the problematic cases by reducing the
original learning problem to the same problem with a polynomial lower bound assumption Pr[xi =
a] ≥ ε/(2sn)− ε2/(20sn2 + 2ε) for any a ∈ Σ and achieve feasibility.

The correctness of the algorithm is based on the intuition that the query result IEχV,a+ of a symbol
a+ ∈ U`+1 should be greater than that of a symbol a− 6∈ U`+1 and the difference is large enough
to tolerate the noise from the oracle. To prove this, we first consider the exact learning case. Define
an infinite string U ′ = U [1, `]U [`+ 2, L]U∞`+1 and let x′ = xΣ∞ be the extension of x obtained by
padding it on the right with an infinite string generated from the same distribution as x. Let Q(j, i)
be the probability that the largest g such that U ′[1, g] v x′[1, i] is j, or formally

Q(j, i) = Pr[U ′[1, j] v x′[1, i] ∧ U ′[1, j + 1] 6v x′[1, i]]

By taking the difference between IEχV,a+ and IEχV,a− in terms ofQ(j, i), we get the query tolerance
for exact learning.

Lemma 2 Under element-wise independent and identical distributions over instance space I =
Σn, concept class X is exactly identifiable with O(sn) conditional statistical queries from
STAT(X,D) at tolerance

τ ′ =
1

5
Q(L− 1, n− 1)

Lemma 2 indicates bounding the quantity Q(L − 1, n − 1) is the key to the tolerance for PAC
learning. Unfortunately, the distribution {Q(j, i)} doesn’t seem to have any strong properties we
know of providing a polynomial lower bound. Instead we introduce new quantity

R(j, i) = Pr[U ′[1, j] v x′[1, i] ∧ U ′[1, j] 6v x′[1, i− 1]]

being the probability that the smallest g such that U ′[1, j] v x′[1, g] is i. An important property of
distribution {R(j, i)} is its strong unimodality as defined below.
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Definition 5 (Unimodality: [8]) A distribution {P (i)} with all support on the lattice of integers is
unimodal if and only if there exists at least one integer K such that P (i) ≥ P (i− 1) for all i ≤ K
and P (i+ 1) ≤ P (i) for all i ≥ K. We say K is a mode of distribution {P (i)}.

Throughout this paper, when referring to the mode of a distribution, we mean the one with the largest
index, if the distribution has multiple modes with equal probabilities.

Definition 6 (Strong Unimodality: [10]) A distribution {H(i)} is strongly unimodal if and only if
the convolution of {H(i)} with any unimodal distribution {P (i)} is unimodal.

Since a distribution with all mass at zero is unimodal, a strongly unimodal distribution is also uni-
modal. In this paper, we only consider distributions with all support on the lattice of integers. So the
convolution of {H(i)} and {P (i)} is

{H ∗ P}(i) =

∞∑
j=−∞

H(j)P (i− j) =

∞∑
j=−∞

H(i− j)P (j)

We prove the strong unimodality of {R(j, i)} with respect to i via showing it is the convolution of
two log-concave distributions by induction. We do an initial statistical query to estimate Pr[y = +1]
to handle two marginal cases Pr[y = +1] ≤ ε/2 and Pr[y = +1] ≥ 1−ε/2. After that an additional
query Pr[y = +1 | V v x] is made to tell whether ` = L. If the algorithm doesn’t halt, it means
` < L and both Pr[y = +1] and Pr[y = −1] are at least ε/2− 2τ . By upper bounding Pr[y = +1]
and Pr[y = −1] using linear sums of R(j, i), the strong unimodality of {R(j, i)} gives a lower
bound for R(L, n), which further implies one for Q(L− 1, n− 1) and completes the proof.

3.3 A generalization to instance space Σ≤n

We have proved the extended class of shuffle ideals is PAC learnable from element-wise i.i.d. fixed-
length strings. Nevertheless, in many real-world applications such as natural language processing
and computational linguistics, it is more natural to have strings of varying lengths. Let n be the
maximum length of the sample strings and as a consequence the instance space for learning is Σ≤n.
Here we show how to generalize the statistical query algorithm in Section 3.1 to the more general
instance space Σ≤n.

Let Ai be the algorithm in Section 3.1 for learning shuffle ideals from element-wise i.i.d. strings of
fixed length i. Because instance space Σ≤n =

⋃
i≤n Σi, we divide the sample S into n subsets {Si}

where Si = {x | |x| = i}. An initial statistical query then is made to estimate probability Pr[|x| = i]
for each i ≤ n at tolerance ε/(8n). We discard all subsets Si with query answer ≤ 3ε/(8n) in the
learning procedure, because we know Pr[|x| = i] ≤ ε/(2n). As there are at most (n − 1) such
Si of low occurrence probabilities. The total probability that an instance comes from one of these
negligible sets is at most ε/2. Otherwise, Pr[|x| = i] ≥ ε/(4n) and we apply algorithm Ai on each
Si with query answer ≥ 3ε/(8n) with error parameter ε/2. Because the probability of the condition
is polynomially large, the algorithm is feasible. Finally, the total error over the whole instance space
will be bounded by ε and concept class X is PAC learnable from element-wise i.i.d. strings over
instance space Σ≤n.

Corollary 1 Under element-wise independent and identical distributions over instance space I =
Σ≤n, concept class X is approximately identifiable withO(sn2) conditional statistical queries from
STAT(X,D) at tolerance

τ =
ε2

160sn2 + 8ε

or with O(sn2) statistical queries from STAT(X,D) at tolerance

τ̄ =

(
1− ε

40sn2 + 2ε

)
ε5

512sn2(20sn2 + ε)
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3.4 A constrained generalization to product distributions

A direct generalization from element-wise independent and identical distributions is product dis-
tributions. A random string, or a random vector of symbols under a product distribution has
element-wise independence between its elements. That is, Pr[X = x] =

∏|x|
i=1 Pr[Xi = xi]. Al-

though strings under product distributions share many independence properties with element-wise
i.i.d. strings, the algorithm in Section 3.1 is not directly applicable to this case as the distribution
{R(j, i)} defined above is not unimodal with respect to i in general. However, the intuition that
given IVvx = h, the strings with xh+1 ∈ U`+1 have higher probability of positivity than that of the
strings with xh+1 6∈ U`+1 is still true under product distributions. Thus we generalize query χV,a
and define for any V ∈ (Σ∪)

≤n, a ∈ Σ and h ∈ [0, n− 1],

χ̃V,a,h(x, y) =
1

2
(y + 1) given IVvx = h and xh+1 = a

where y = c(x) is the label of example string x. To ensure the legitimacy and feasibility of the
algorithm, we have to attach a lower bound assumption that Pr[xi = a] ≥ t > 0, for ∀1 ≤ i ≤ n and
∀a ∈ Σ. Appendix C provides a constrained algorithm based on this intuition. Let P (+|a, h) denote
IEχ̃V,a,h. If the difference P (+|a+, h)−P (+|a−, h) is large enough for some h with nonnegligible
Pr[IVvx = h], then we are able to learn the next element in U . Otherwise, the difference is very
small and we will show that there is an interval starting from index (h + 1) which we can skip
with little risk. The algorithm is able to classify any string whose classification process skips O(1)
intervals. Details of this constrained generalization are deferred to Appendix C.

4 Learning principal shuffle ideals from Markovian strings

Markovian strings are widely studied in natural language processing and biological sequence mod-
eling. Formally, a random string x is Markovian if the distribution of xi+1 only depends on the
value of xi: Pr[xi+1 | x1 . . . xi] = Pr[xi+1 | xi] for any i ≥ 1. If we denote by π0 the distribution
of x1 and define s × s stochastic matrix M by M(a1, a2) = Pr[xi+1 = a1 | xi = a2], then a
random string can be viewed as a Markov chain with initial distribution π0 and transition matrix
M . We choose Σ≤n as the instance space in this section and assume independence between the
string length and the symbols in the string. We assume Pr[|x| = k] ≥ t for all 1 ≤ k ≤ n and
min{M(·, ·), π0(·)} ≥ c for some positive t and c. We will prove the PAC learnability of class
under this lower bound assumption. Denote by u be the target pattern string and let L = |u|.

4.1 Statistical query algorithm

Starting with empty string v = λ, the pattern string u is recovered one symbol at a time. Having
recovered v = u[1, `], we infer u`+1 by Ψv,a =

∑n
k=h+1 IEχv,a,k, where

χv,a,k(x, y) =
1

2
(y + 1) given Ivvx = h, xh+1 = a and |x| = k

0 ≤ ` < L and h is chosen from [0, n − 1] such that the probability Pr[Ivvx = h] is polynomially
large. The statistical queries χv,a,k are made at tolerance τ claimed in Theorem 2 and the symbol
with the largest query result of Ψv,a is proved to be u`+1. Again, the case where ` = L is addressed
by query Pr[y = +1 | v v x]. The learning procedure is completed if the query result is close to 1.

4.2 PAC learnability of principal ideal

With query Ψv,a, we are able to recover the pattern string u approximately from STAT( (u),D) at
proper tolerance as stated in Theorem 2:

Theorem 2 Under Markovian string distributions over instance space I = Σ≤n, given Pr[|x| =
k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, concept class is approximately
identifiable with O(sn2) conditional statistical queries from STAT( ,D) at tolerance

τ =
ε

3n2 + 2n+ 2
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or with O(sn2) statistical queries from STAT( ,D) at tolerance

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2

Please refer to Appendix B for a complete proof of Theorem 2. Due to the probability lower bound
assumptions, the legitimacy and feasibility are obvious. To calculate the tolerance for PAC learning,
we first consider the exact learning tolerance. Let x′ be an infinite string generated by the Markov
chain defined above. For any 0 ≤ ` ≤ L− j, we define quantity R`(j, i) by

R`(j, i) = Pr[u[`+1, `+ j] v x′[m+1,m+ i]∧u[`+1, `+ j] 6v x′[m+1,m+ i−1] | x′m = u`]

Intuitively, R`(j, i) is the probability that the smallest g such that u[`+ 1, `+ j] v x′[m+ 1,m+ g]
is i, given x′m = u`. We have the following conclusion on the exact learning tolerance.

Lemma 3 Under Markovian string distributions over instance space I = Σ≤n, given Pr[|x| =
k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, the concept class is exactly
identifiable with O(sn2) conditional statistical queries from STAT( ,D) at tolerance

τ ′ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}

The algorithm first deals with the marginal case where Pr[y = +1] ≤ ε through query Pr[y = +1].
If it doesn’t halt, we know Pr[y = +1] is at least (3n2 + 2n)ε/(3n2 + 2n + 2). We then make a
statistical query χ′h(x, y) = 1

2 (y + 1) · 1{Ivvx=h} for each h from ` to n− 1. It can be shown that
at least one h will give an answer ≥ (3n + 1)ε/(3n2 + 2n + 2). This implies lower bounds for
Pr[Ivvx = h] and Pr[y = +1 | Ivvx = h]. The former guarantees the feasibility while the latter
can serve as a lower bound for the sum in Lemma 3 after some algebra and completes the proof.

The assumption on M and π0 can be weakened to M(u`+1, u`) = Pr[x2 = u`+1 | x1 = u`] ≥ c
and π0(u1) ≥ c for all 1 ≤ ` ≤ L − 1. We first make a statistical query to estimate M(a, u`)
for ` ≥ 1 or π0(a) for ` = 0 for each symbol a ∈ Σ at tolerance c/3. If the result is ≤ 2c/3
then M(a, u`) ≤ c or π0(a) ≤ c and we won’t consider symbol a at this position. Otherwise,
M(a, u`) ≥ c/3 or π0(a) ≥ c/3 and the queries in the algorithm are feasible.

Corollary 2 Under Markovian string distributions over instance space I = Σ≤n, given Pr[|x| =
k] ≥ t > 0 for ∀1 ≤ k ≤ n, π0(u1) ≥ c and M(u`+1, u`) ≥ c > 0 for ∀1 ≤ ` ≤ L − 1, concept
class is approximately identifiable with O(sn2) conditional statistical queries from STAT( ,D)
at tolerance

τ = min

{
ε

3n2 + 2n+ 2
,
c

3

}
or with O(sn2) statistical queries from STAT( ,D) at tolerance

τ̄ = min

{
ctnε2

(3n2 + 2n+ 2)2
,

tnεc2

3(3n2 + 2n+ 2)

}
5 Learning shuffle ideals under general distributions

Although the string distribution is restricted or even known in most application scenarios, one might
be interested in learning shuffle ideals under general unrestricted and unknown distributions without
any prior knowledge. Unfortunately, under standard complexity assumptions, the answer is negative.
Angluin et al. [3] have shown that a polynomial time PAC learning algorithm for principal shuffle
ideals would imply the existence of polynomial time algorithms to break the RSA cryptosystem,
factor Blum integers, and test quadratic residuosity.

Theorem 3 ([3]) For any alphabet of size at least 2, given two disjoint sets of strings S, T ⊂ Σ≤n,
the problem of determining whether there exists a string u such that u v x for each x ∈ S and
u 6v x for each x ∈ T is NP-complete.
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As ideal is a subclass of ideal X, we know learning ideal X is only harder. Is the problem easier
over instance space Σn? The answer is again no.

Lemma 4 Under general unrestricted string distributions, a concept class is PAC learnable over
instance space Σ≤n if and only if it is PAC learnable over instance space Σn.

The proof of Lemma 4 is presented in Appendix D using the same idea as our generalization in
Section 3.3. Note that Lemma 4 holds under general string distributions. It is not necessarily true
when we have assumptions on the marginal distribution of string length.

Despite the infeasibility of PAC learning a shuffle ideal in theory, it is worth exploring the possi-
bilities to do the classification problem without theoretical guarantees, since most applications care
more about the empirical performance than about theoretical results. For this purpose we propose a
heuristic greedy algorithm for learning principal shuffle ideals based on reward strategy as follows.
Upon having recovered v = û[1, `], for a symbol a ∈ Σ and a string x of length n, we say a con-
sumes k elements in x if min{Ivavx, n+ 1} − Ivvx = k. The reward strategy depends on the ratio
r+/r−: the algorithm receives r− reward from each element it consumes in a negative example or
r+ penalty from each symbol it consumes in a positive string. A symbol is chosen as û`+1 if it
brings us most reward. The algorithm will halt once û exhausts any positive example and makes a
false negative error, which means we have gone too far. Finally the ideal (û[1, `− 1]) is returned
as the hypothesis. The performance of this greedy algorithm depends a great deal on the selection of
parameter r+/r−. A clever choice is r+/r− = #(−)/#(+), where #(+) is the number of positive
examples x such that û v x and #(−) is the number of negative examples x such that û v x.
A more recommended but more complex strategy to determine the parameter r+/r− in practice is
cross validation.

A better studied approach to learning regular languages, especially the piecewise-testable ones, in
recent works is kernel machines ([13, 14]). An obvious advantage of kernel machines over our
greedy method is its broad applicability to general classification learning problems. Nevertheless,
the time complexity of the kernel machine is O(N3 + n2N2) on a training sample set of size N
([5]), while our greedy method only takes O(snN) time due to its great simplicity. Because N
is usually huge for the demand of accuracy, kernel machines suffer from low efficiency and long
running time in practice. To make a comparison between the greedy method and kernel machines
for empirical performance, we conducted a series of experiments on a real world dataset [4] with
string length n as a variable. The experiment results demonstrate the empirical advantage on both
efficiency and accuracy of the greedy algorithm over the kernel method, in spite of its simplicity.
As this is a theoretical paper, we defer the details on the experiments to Appendix D, including the
experiment setup and figures of detailed experiment results.

6 Discussion

We have shown positive results for learning shuffle ideals in the statistical query model under
element-wise independent and identical distributions and Markovian distributions, as well as a con-
strained generalization to product distributions. It is still open to explore the possibilities of learning
shuffle ideals under less restricted distributions with weaker assumptions. Also a lot more work
needs to be done on approximately learning shuffle ideals in applications with pragmatic approaches.
In the negative direction, even a family of regular languages as simple as the shuffle ideals is not
efficiently properly PAC learnable under general unrestricted distributions unless RP=NP. Thus, the
search for a nontrivial properly PAC learnable family of regular languages continues. Another the-
oretical question that remains is how hard the problem of learning shuffle ideals is, or whether PAC
learning a shuffle ideal is as hard as PAC learning a deterministic finite automaton.
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Appendix A Proof of Theorem 1

We start our proof from showing the legitimacy and feasibility of the algorithm at the tolerance
claimed in the theorem. We first provide a quick proof of Lemma 1.

Lemma 1 (in the main paper) Evaluating relation U v x and meanwhile determining IUvx is
feasible in time O(|x|).

Proof The evalution can be done recursively. The base case is U = λ , where U v x holds and
IUvx = 0. If U = U1U

′ where U1 ∈ Σ∪, we search for the leftmost occurrence of U1 in x. If there
is no such occurrence, then U 6v x and IUvx = ∞. Otherwise, x = yU1x

′, where U1 6v y. Then
U v x if and only if U ′ v x′ and IUvx = IU1vx + IU ′vx′ . We continue recursively with U ′ and
x′. The total running time of this procedure is O(|x|). �

Lemma 5 Under element-wise independent and identical distributions over instance space I =
Σn, the conditional statistical query χV,a is legitimate and feasible at tolerance

τ =
ε2

40sn2 + 4ε

Proof First of all, the function χV,a computes a binary mapping from labeled examples (x, y) to
{0, 1} and satisfies the definition of a statistical query. Given θV,a(x) = a, that is, given V 6v
x[1, n − 1] or xIVvx+1 = a if V v x[1, n − 1], the query χV,a(x, y) returns 0 if x is a negative
example (y = −1) or returns 1 if x is a positive example (y = +1).

From Lemma 1, evaluating the relation V v x and meanwhile determining IVvx is feasible in time
O(n). Thus, θV,a(x) and then χV,a(x, y) can be efficiently evaluated.

For
Pr[θV,a(x) = a] = Pr[V 6v x[1, n− 1]]+

Pr[V v x[1, n− 1]] · Pr[xIVvx+1 = a | V v x[1, n− 1]]

in order to prove Pr[θV,a(x) = a] not too small, we only need to show one of the two items in the
sum is at least polynomially large.

We make an initial statistical query with tolerance τ = ε2/(40sn2 + 4ε) to estimate Pr[y = +1]. If
the answer is≤ ε−τ , then Pr[y = +1] ≤ ε and the algorithm outputs a hypothesis that all examples
are negative. Otherwise, Pr[y = +1] is at least ε − 2τ , and the statistical query χV,a is used. As
V v x[1, n− 1] = U [1, `] v x[1, n− 1] is a necessary condition of y = +1, we have

Pr[V v x[1, n− 1]] ≥ Pr[y = +1] ≥ ε− ε2

20sn2 + 2ε

Since xIVvx+1 and x[1, IVvx] are independent,

Pr[xIVvx+1 = a | V v x[1, n− 1]] = Pr[xIVvx+1 = a]

Because we don’t have any knowledge of the distribution, we can’t guarantee Pr[xIVvx+1 = a] is
large enough for every a ∈ Σ. However, we notice that there is no need to consider symbols with
small probabilities of occurrence. Now we show why and how. For each a ∈ Σ, execute a statistical
query

χ′a(x, y) = 1{xi=a} (1)
at tolerance τ , where 1{π} represents the 0-1 truth value of the predicate π. Since the strings are
element-wise i.i.d., the index i can be any integer between 1 and n. If the answer from oracle STAT
is ≤ ε/(2sn) − τ , then Pr[xi = a] ≤ ε/(2sn). For such an a, the probability that it shows up in
a string is at most ε/(2s). Because there are at most s − 1 such symbols in Σ, the probability that
any of them shows up in a string is at most ε/2. Otherwise, Pr[xi = a] ≥ ε/(2sn) − 2τ . Thus we
only need to consider the symbols a ∈ Σ such that Pr[xi = a] ≥ ε/(2sn) − 2τ and learn the ideal
with error parameter ε/2 so that the total error will be bounded within ε. For algebra succinctness,
we use a concise lower bound for Pr[xi = a]:

Pr[xi = a] ≥ ε

2sn
− 2τ =

ε

2sn
− ε2

20sn2 + 2ε
≥ ε

4sn
(2)
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Eventually we have

Pr[θV,a(x) = a] ≥Pr[V v x[1, n− 1]] · Pr[xIVvx+1 = a | V v x[1, n− 1]]

≥
(

1− ε

20sn2 + 2ε

)
ε2

4sn

(3)

is polynomially large. Query χV,a is legitimate and feasible. �

The correctness of the algorithm is based on the intuition that the query result IEχV,a+ of a+ ∈ U`+1

should be greater than that of a− 6∈ U`+1 and the difference is large enough to tolerate the noise
from the oracle. To prove this, we first consider the exact learning case. Define an infinite string
U ′ = U [1, `]U [` + 2, L]U∞`+1 and let x′ = xΣ∞ be the extension of x obtained by padding it
on the right with an infinite string generated from the same distribution as x. Let Q(j, i) be the
probability that the largest g such that U ′[1, g] v x′[1, i] is j, or formally, Q(j, i) = Pr[U ′[1, j] v
x′[1, i] ∧ U ′[1, j + 1] 6v x′[1, i]].
Lemma 2 (in the main paper) Under element-wise independent and identical distributions over
instance space I = Σn, concept class X is exactly identifiable with O(sn) conditional statistical
queries from STAT(X,D) at tolerance

τ ′ =
1

5
Q(L− 1, n− 1)

Proof If the algorithm doesn’t halt, U has not been completely recovered and ` < L. By assump-
tion, V = U [1, `]. If V 6v x[1, n− 1] then x must be a negative example and χV,a(x, y) = 0. Hence
χV,a(x, y) = 1 if and only if V v x[1, n− 1] and y = +1.

Let random variable J be the largest value for which U ′[1, J ] is a subsequence of x[1, n − 1].
Consequently, Pr[J = j] = Q(j, n− 1).

If a ∈ U`+1, then y = +1 if and only if J ≥ L− 1. Thus we have

IEχV,a =

n−1∑
j=L−1

Q(j, n− 1)

If a 6∈ U`+1, then y = +1 if and only if U v x[1, IVvx]x[IVvx + 2, n]. Since elements in a
string are i.i.d., Pr[U v x[1, IVvx]x[IVvx + 2, n]] = Pr[U ′[1, L] v x[1, n − 1]], which is exactly
Pr[J ≥ L]. Thus we have

IEχV,a =

n−1∑
j=L

Q(j, n− 1)

The difference between these two values is Q(L− 1, n− 1). In order to distinguish the target U`+1

from other symbols, the query tolerance can be set to one fifth of the difference. The alphabet Σ will
be separated into two clusters by the results of IEχV,a: U`+1 and the other symbols. The maximum
difference (variance) inside a cluster is smaller than the minimum difference (gap) between the two
clusters, making them distinguishable. As a consequence s statistical queries for each prefix of U
suffice to learn U exactly. �

Lemma 2 indicates bounding the quantity Q(L − 1, n − 1) is the key to the tolerance for PAC
learning. Unfortunately, the distribution {Q(j, i)} doesn’t seem of any strong properties we know
of providing a polynomial lower bound. Instead we introduce new quantity R(j, i) = Pr[U ′[1, j] v
x′[1, i]∧U ′[1, j] 6v x′[1, i−1]] being the probability that the smallest g such that U ′[1, j] v x′[1, g]
is i. Now we show the strong unimodality of distribution {R(j, i)}. Denote pj = Pr[xi ∈ U ′j ].

Lemma 6 The convolution of two strongly unimodal discrete distributions is strongly unimodal.

Proof The proof is obvious from the definition of strong unimodality and the associativity of con-
volution. Let H3 = H2 ∗H1 be the convolution of two strongly unimodal distributions H1 and H2.
For any unimodal distribution P1, let P2 = H1 ∗ P1 be the convolution of H1 and P1. Because of
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the strong unimodality of distribution H1, P2 is a unimodal distribution. Also because of the strong
unimodality of distribution H2, the convolution of H3 and P1, H3 ∗ P1 = H2 ∗H1 ∗ P1 = H2 ∗ P2

is a unimodal distribution. Since P1 can be an arbitrary unimodal distribution, H3 is strongly
unimodal according to the definition of strong unimodality. �

Previous work [10] provided a useful equivalent statement on strong unimodality of a distribution.

Lemma 7 ([10]) Distribution {H(i)} is strongly unimodal if and only if H(i) is log-concave. That
is,

H(i)2 ≥ H(i+ 1) ·H(i− 1)

for all i.

Since a distribution with all mass at zero is unimodal, an immediate consequence is

Corollary 3 A strongly unimodal distribution is unimodal.

We now prove the strong unimodality of distribution {R(j, i)}.

Lemma 8 For any fixed j, distribution {R(j, i)} is strongly unimodal with respect to i.

Proof This proof can be done by induction on j as follows.

Basis: For j = 1, it is obvious that {R(1, i)} = {(1− p1)i−1p1} is a geometric distribution, which
is strongly unimodal. According to Lemma 7, this is due to R2(1, i) = R(1, i− 1) ·R(1, i+ 1) for
all i > 1.

Inductive step: For j > 1, assume by induction {R(j − 1, i)} is strongly unimodal. Based on the
definition of R(j, i), we have

R(j, i) =

i−1∑
k=j−1

(
R(j − 1, k) · (1− pj)i−k−1pj

)
(4)

Thus R(j, i) is the convolution of distribution {R(j − 1, i)} and distribution {(1 − pj)
i−1pj}, a

geometric distribution just proved to be strongly unimodal. By assumption, {R(j−1, i)} is strongly
unimodal. From Lemma 6, distribution {R(j, i)} is also strongly unimodal.

Conclusion: For any fixed j, distribution {R(j, i)} is strongly unimodal with respect to i. �

Combining Lemma 8 with Corollary 3, we have

Corollary 4 For any fixed j, distribution {R(j, i)} is unimodal with respect to i.

Lemma 9 Denote by N(j) the mode of {R(j, i)}, then N(j) is strictly increasing with respect to j.
That is, for any j > 1, N(j) > N(j − 1).

Proof According to Equation 4, R(j, i) is the convolution of distribution {R(j − 1, i)} and distri-
bution {(1− pj)i−1pj} so

R(j, i) =

i−1∑
k=j−1

(
R(j − 1, k) · (1− pj)i−k−1pj

)
and

R(j, i+ 1) =

i∑
k=j−1

(
R(j − 1, k) · (1− pj)i−kpj

)
Hence, we get

R(j, i+ 1) = pjR(j − 1, i) + (1− pj)R(j, i) (5)

Denote by ∆R(j, i) the difference R(j, i)−R(j, i− 1). From Equation 5, we have

∆R(j, i+ 1) = pj∆R(j − 1, i) + (1− pj)∆R(j, i) (6)
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For any j ≥ 1, we have R(j, 1) ≥ R(j, 0) = 0 or ∆R(j, 1) ≥ 0. From the definition of N(j), N(j)
must be at least j and for any i ≤ N(j − 1), the difference ∆R(j − 1, i) is non-negative. Hence, if
∆R(j, i) is non-negative, then ∆R(j, i+ 1) is non-negative for Equation 6. So inductively, for any
i ≤ N(j − 1) + 1, we always have ∆R(j, i) ≥ 0. Recall that we define the mode of a distribution
with multiple modes as the one with the largest index, thus N(j) > N(j − 1). �

With the strong unimodality of distribution {R(j, i)}, we are able to present the PAC learnability of
concept class X in the statistical query model.

Theorem 1 (in the main paper) Under element-wise independent and identical distributions over
instance space I = Σn, concept class X is approximately identifiable with O(sn) conditional
statistical queries from STAT(X,D) at tolerance

τ =
ε2

40sn2 + 4ε

or with O(sn) statistical queries from STAT(X,D) at tolerance

τ̄ =

(
1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

Proof From Lemma 5, statistical query χV,a is legitimate and feasible at tolerance τ = ε2/(40sn2+
4ε) and our error parameter must be set to ε/2 in order to have Inequality 2.

We modify the statistical query algorithm to make an initial statistical query with tolerance τ =
ε2/(40sn2 + 4ε) to estimate Pr[y = +1]. If the answer is ≤ ε/2 − τ , then Pr[y = +1] ≤ ε/2 and
the algorithm outputs a hypothesis that all examples are negative. If the answer is ≥ 1 − ε/2 + τ ,
then Pr[y = +1] ≥ 1− ε/2 and the algorithm outputs a hypothesis that all examples are positive.

Otherwise, Pr[y = +1] and Pr[y = −1] are both at least ε/2 − 2τ . We then do another statistical
query at tolerance τ to estimate Pr[y = +1 | V v x]. Since V v x is a necessary condition of
positivity, Pr[V v x] must be at least Pr[y = +1] ≥ ε/2− 2τ and this statistical query is legitimate
and feasible. If the answer is ≥ 1 − ε/2 + τ , then Pr[y = +1 | V v x] ≥ 1 − ε/2. The algorithm
outputs a hypothesis that all strings x such that V v x are positive and all strings x such that V 6v x
are negative because Pr[y = −1 | V 6v x] = 1. If ` = L, Pr[y = +1 | V v x] must be 1 and the
algorithm halts. Otherwise, ` < L and the first statistical query algorithm is used. We now show
that Q(L− 1, n− 1) ≥ 5τ , establishing the bound on the query tolerance.

Let random variable I be the smallest value for which U ′[1, L] is a subsequence of x′[1, I]. Based
on the definition of R(j, i), we have Pr[I = i] = R(L, i). String x is a positive example if and only
if U ′[1, L] v x′[1, n], which is exactly I ≤ n. As a consequence,

Pr[y = +1] =

n∑
i=L

R(L, i) (7)

From Corollary 4, distribution {R(L, i)} is unimodal and assume its mode is N(L). If n ≤ N(L)
then R(L, n) is at least as large as every term in the sum Pr[y = +1] =

∑n
i=LR(L, i). Hence we

get

R(L, n) ≥ ε− 4τ

2(n− L+ 1)
≥ ε− 4τ

2n
≥ 5ε2

40sn2 + 4ε
= 5τ

If n > N(L), according to Lemma 9, for any j ≤ L we have n > N(j). That is, for any j ≤ L, we
have R(j, n) ≥ R(j, n+ 1).

From Equation 5,
R(j, n+ 1) = pjR(j − 1, n) + (1− pj)R(j, n)

so
pjR(j − 1, n) + (1− pj)R(j, n) ≤R(j, n)

=pjR(j, n) + (1− pj)R(j, n)

We then have
R(j − 1, n) ≤ R(j, n)
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This holds for any j ≤ L soR(j, n) is non-decreasing with respect to j when n > N(L). Inductively
we get R(L, n) ≥ R(j, n) for any j ≤ L.

Because U ′[1, L] 6v x[1, n− 1] is a necessary condition of y = −1 and

Pr[U ′[1, L] 6v x[1, n− 1]] =

L−1∑
j=0

Q(j, n− 1)

we get
L−1∑
j=0

Q(j, n− 1) ≥ Pr[y = −1] ≥ ε− 4τ

2

Note that R(j, n) = pjQ(j − 1, n− 1), then

L∑
j=1

R(j, n)

pj
≥ ε− 4τ

2

Since

Pr[y = +1] ≥ ε− 4τ

2
> 0

from Inequality 2, we must have pj ≥ ε/(4sn) for all j. Then we have

4sn

ε

L∑
j=1

R(j, n) ≥
L∑
j=1

R(j, n)

pj
≥ ε− 4τ

2

Because R(L, n) ≥ R(j, n) for any j ≤ L, we get

4sn

ε
LR(L, n) ≥ ε− 4τ

2

and

R(L, n) ≥ (ε− 4τ)ε

8sn2
=

5ε2

40sn2 + 4ε
= 5τ

Finally, we have

Q(L, n) = (1− pL+1)Q(L, n− 1) + pLQ(L− 1, n− 1)

≥ pLQ(L− 1, n− 1) = R(L, n) ≥ 5ε2

40sn2 + 4ε

That is, Q(L− 1, n− 1) ≥ 5τ . For Lemma 2, we have τ = ε2/(40sn2 + 4ε). Inferring τ̄ from τ is
trivial. Define general statistical query

χ̄V,a(x, y) =

{
(y + 1)/2 if θV,a(x) = a
0 if θV,a(x) 6= a

(8)

Then for any a, the expected query result

IEχ̄V,a = Pr[θV,a(x) = a] · IEχV,a + 0

and the difference between IEχ̄V,a | a ∈ U`+1 and IEχ̄V,a | a 6∈ U`+1 is 5τ · Pr[θV,a(x) = a].
Hence, from Inequality 3,

τ̄ =

(
1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

This completes the proof. �
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Appendix B Proof of Theorem 2

To calculate the tolerance for PAC learning, we first consider the exact learning tolerance. Let x′ be
an infinite string generated by the Markov chain defined in Section 4. For any 0 ≤ ` ≤ L, we define
quantity R`(j, i) by

R`(j, i) = Pr[u[`+1, `+ j] v x′[m+1,m+ i]∧u[`+1, `+ j] 6v x′[m+1,m+ i−1] | x′m = u`]

Intuitively, R`(j, i) is the probability that the smallest g such that u[`+ 1, `+ j] v x′[m+ 1,m+ g]
is i, given x′m = u`. We have the following conclusion on the exact learning tolerance.

Lemma 3 (in the main paper) Under Markovian string distributions over instance space I = Σ≤n,
given Pr[|x| = k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, the concept class
is exactly identifiable with O(sn2) conditional statistical queries from STAT( ,D) at tolerance

τ ′ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}
Proof If the algorithm doesn’t halt, u has not been completely recovered and ` < L. Again, we
calculate the difference of Ψv,a between the cases a+ = u`+1 and a− 6= u`+1.

For a− 6= u`+1, let pj denote the probability that the first passage time from a− to u`+1 is equal to
j. Notice that

IEχv,a−,k =

k−h−1∑
j=1

(
pj

k−h−1−j∑
i=0

R`+1(L− `− 1, i)

)

≤
k−h−1∑
j=1

(
pj

k−h−2∑
i=0

R`+1(L− `− 1, i)

)
We get

IEχv,a−,k ≤
k−h−2∑
i=0

R`+1(L− `− 1, i)

For a+ = u`+1, we have

IEχv,a+,k =

k−h−1∑
i=0

R`+1(L− `− 1, i)

Summing up all the items, we can get the difference

Ψv,a+ −Ψv,a− =

n∑
k=h+1

(
IEχv,a+,k − IEχv,a−,k

)
≥

n∑
k=h+1

(
k−h−1∑
i=0

R`+1(L− `− 1, i)−
k−h−2∑
i=0

R`+1(L− `− 1, i)

)

=

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

In order to distinguish the target u`+1 from other symbols, the query tolerance can be set to one
third of the difference so that the symbol with largest query result must be u`+1. Thus the overall
tolerance for Ψv,a is

∑n
k=h+1R`+1(L− `− 1, k − h− 1)/3. Since Ψv,a is the expectation sum of

(n−h) statistical queries, we can evenly distribute the overall tolerance on each χv,a,k. So the final
tolerance on each statistical query is

τ ′ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}
Taking minimum over 0 ≤ ` < L is because h depends on ` and the tolerance needs to be
independent of h. As a consequence sn statistical queries for each prefix of U suffice to learn U
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exactly. �

We then show how to choose a proper h from [0, n− 1].

Lemma 10 Under Markovian string distributions over instance space I = Σ≤n, given Pr[|x| =
k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, the conditional statistical query
χv,a,k is legitimate and feasible at tolerance

τ =
ε

3n2 + 2n+ 2

Proof First of all, the function χv,a,k computes a binary mapping from labeled examples (x, y) to
{0, 1} and satisfies the definition of a statistical query. Under the given conditions, χv,a,k returns 0
if x is a negative example (y = −1) or returns 1 if x is a positive example (y = +1).

From Lemma 1, evaluating the relation v v x and meanwhile determining Ivvx is feasible in time
O(n). Since |x| ≤ n, determining |x| also takes O(n) time. Thus, χv,a,k(x, y) and then Ψv,a can
be efficiently evaluated.

According to the Markov property and the independence between string length and symbols in a
string, we have

Pr[Ivvx = h, xh+1 = a and |x| = k]

= Pr[Ivvx = h] · Pr[xh+1 = a | Ivvx = h] · Pr[|x| = k]

≥Pr[Ivvx = h] · c · t
The only problem left is to make sure Pr[Ivvx = h] is polynomially large. Obviously this can’t be
guaranteed for all h between ` and n − 1 so h must be chosen carefully. We now show there must
be such an h.

We make an initial statistical query with tolerance ε/(3n2 + 2n+ 2) to estimate Pr[y = +1]. If the
answer is ≤ (3n2 + 2n + 1)ε/(3n2 + 2n + 2), then Pr[y = +1] ≤ ε and the algorithm outputs a
hypothesis that all examples are negative. Otherwise, Pr[y = +1] is at least (3n2 + 2n)ε/(3n2 +
2n+ 2), and the statistical queries {χv,a,k} are used. Since

Pr[y = +1] =

n−1∑
h=`

Pr[y = +1 ∧ Ivvx = h] (9)

There must be at least one h so that

Pr[y = +1 ∧ Ivvx = h] ≥ 1

n− h
Pr[y = +1]

≥ 1

n
Pr[y = +1]

≥ 1

n
· (3n2 + 2n)ε

3n2 + 2n+ 2

=
(3n+ 2)ε

3n2 + 2n+ 2

As
Pr[y = +1 ∧ Ivvx = h] = Pr[y = +1 | Ivvx = h] · Pr[Ivvx = h]

both Pr[y = +1 | Ivvx = h] and Pr[Ivvx = h] must be at least (3n + 2)ε/(3n2 + 2n + 2). This
means there must be some h making our statistical queries legitimate.

We now show how to determine a proper value of h. We can do a statistical query

χ′h(x, y) =
1

2
(y + 1) · 1{Ivvx=h} (10)

for each h from ` to n − 1, where 1{π} represents the 0-1 truth value of the predicate π. It is easy
to see IEχ′h = Pr[y = +1 ∧ Ivvx = h]. According to our analysis above and due to the noise of the
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statistical query, there must be at least one h such that the answer is ≥ (3n + 1)ε/(3n2 + 2n + 2).
If we choose such an h, it is guaranteed to have

Pr[y = +1 ∧ Ivvx = h] ≥ 3nε

3n2 + 2n+ 2

so that

Pr[Ivvx = h] ≥ 3nε

3n2 + 2n+ 2

and

Pr[y = +1 | Ivvx = h] ≥ 3nε

3n2 + 2n+ 2
(11)

After at most n statistical queries {χ′h}, we can determine the value of h in query χv,a,k. Thus
statistical queries {χv,a,k} and Ψv,a are legitimate and feasible. �

Below is the proof of Theorem 2.

Theorem 2 (in the main paper) Under Markovian string distributions over instance space I =
Σ≤n, given Pr[|x| = k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, concept
class is approximately identifiable with O(sn2) conditional statistical queries from STAT( ,D)
at tolerance

τ =
ε

3n2 + 2n+ 2

or with O(sn2) statistical queries from STAT( ,D) at tolerance

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2

Proof From Lemma 10, statistical queries {χv,a,k} and Ψv,a are legitimate and feasible at tolerance
ε/(3n2 + 2n+ 2).

We modify the statistical query algorithm to make an initial statistical query with tolerance ε/(3n2 +
2n + 2) to estimate Pr[y = +1]. If the answer is ≤ (3n2 + 2n + 1)ε/(3n2 + 2n + 2), then
Pr[y = +1] ≤ ε and the algorithm outputs a hypothesis that all examples are negative. Otherwise,
Pr[y = +1] is at least (3n2 + 2n)ε/(3n2 + 2n+ 2).

We then do another statistical query with tolerance ε/(3n2+2n+2) to estimate Pr[y = +1 | v v x].
Since v v x is a necessary condition of positivity, Pr[v v x] must be at least Pr[y = +1] ≥
(3n2 + 2n)ε/(3n2 + 2n + 2) and this statistical query is legitimate and feasible. If the answer is
≥ 1 − (3n2 + 2n)ε/(3n2 + 2n + 2), then Pr[y = +1 | v v x] ≥ 1 − ε. The algorithm outputs
a hypothesis that all strings x such that v v x are positive and all strings x such that v 6v x are
negative because Pr[y = −1 | v 6v x] = 1. If ` = L, Pr[y = +1 | v v x] must be 1 and the
algorithm halts. Otherwise, ` < L and the first statistical query algorithm is used.

From the proof for Lemma 10, we then use O(n) statistical queries

χ′h(x, y) =
1

2
(y + 1) · 1{Ivvx=h}

to find an h such that Inequality 11 holds:

Pr[y = +1 | Ivvx = h] ≥ 3nε

3n2 + 2n+ 2

Similarly, let qj denote the probability that the first passage time from u` to u`+1 is equal to j.
Notice that

Pr[y = +1 | Ivvx = h] ≤
n−h∑
j=1

(
qj

n−h−j∑
i=0

R`+1(L− `− 1, i)

)
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We have

3nε

3n2 + 2n+ 2
≤Pr[y = +1 | Ivvx = h]

≤
n−h∑
j=1

(
qj

n−h−j∑
i=0

R`+1(L− `− 1, i)

)

≤
n−h∑
j=1

(
qj

n−h−1∑
i=0

R`+1(L− `− 1, i)

)

≤
n−h−1∑
i=0

R`+1(L− `− 1, i)

=

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

From Lemma 3, the conditional tolerance is

τ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}
≥ ε

3n2 + 2n+ 2

Similar to the proof of Theorem 1, define general statistical query

χ̄v,a,k(x, y) =

{
(y + 1)/2 if Ivvx = h, xh+1 = a and |x| = k
0 otherwise (12)

and

Ψ̄v,a =

n∑
k=h+1

IEχ̄v,a,k (13)

Then the general tolerance τ̄ can be easily inferred from the conditional tolerance τ :

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2

Considering we have used n statistical queries to determine h, (s + 1)n statistical queries for each
prefix of u suffice to PAC learn u. This completes the proof. �

Appendix C A constrained generalization to learning shuffle ideals under
product distributions

In this section we generalize the idea in Section 3 to learning the extended class of shuffle ide-
als when example strings are drawn from a product distribution. For any augmented string
V ∈ (Σ∪)

≤n, any symbol a ∈ Σ and any integer h ∈ [0, n− 1], define

χ̃V,a,h(x, y) =
1

2
(y + 1) given IVvx = h and xh+1 = a

where y = c(x) is the label of x. Again the algorithm uses query Pr[y = +1 | V v x] to tell
whether it is time to halt. As before, let V be the partial pattern we have learned and the algorithm
starts with V = λ. For 1 ≤ i ≤ n and 1 ≤ j ≤ L, define probability Q̃(j, i) as below.

Q̃(j, i) =

{
Pr[U [L− j + 1, L] v x[n− i+ 1, n] ∧ U [L− j, L] 6v x[n− i+ 1, n]] if 1 ≤ j < L
Pr[U v x[n− i+ 1, n]] if j = L
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Lemma 11 Under product distributions over instance space I = Σn, given Pr[xi = a] ≥ t > 0 for
∀1 ≤ i ≤ n and ∀a ∈ Σ, concept class X is exactly identifiable with O(sn) conditional statistical
queries from STAT(X,D) at tolerance

τ ′ =
1

5
min

{
Q̃(L− 1, n− 1), min

1≤`≤L
max

`≤h≤n−1
Q̃(L− `− 1, n− h− 1)

}

Proof If the algorithm doesn’t halt, U has not been completely recovered and ` < L. As before, we
calculate the difference of IEχ̃V,a,h between the cases a+ ∈ U`+1 and a− 6∈ U`+1.

When ` = 0 and V = λ, the value of IVvx must be 0 so h is fixed to be 0 in the query. For symbol
a+ ∈ U1, we have

IEχ̃λ,a+,0 = Q̃(L− 1, n− 1) + Q̃(L, n− 1)

and for symbol a− 6∈ U1,
IEχ̃λ,a−,0 = Q̃(L, n− 1)

Taking one fifth of the difference gives the tolerance Q̃(L− 1, n− 1)/5 for ` = 0.

When 1 ≤ ` < L and V = U [1, `], we have for symbol a+ ∈ U`+1,

IEχ̃V,a+,h =

L∑
j=L−`−1

Q̃(j, n− h− 1)

and for symbol a− 6∈ U`+1,

IEχ̃V,a−,h =

L∑
j=L−`

Q̃(j, n− h− 1)

Again taking one fifth of the difference gives the tolerance Q̃(L− `− 1, n− h− 1)/5. For a fixed
1 ≤ ` < L, tolerance max`≤h≤n−1 Q̃(L − ` − 1, n − h − 1)/5 is enough to learn U`+1 exactly.
Taking the minimum tolerance among all 0 ≤ ` < L gives the overall tolerance in the statement.
As a consequence s statistical queries for each prefix of U suffice to learn U exactly. �

A more complicated algorithm is needed to PAC learn shuffle ideals under product distributions. We
first define two additional simple queries:

χ′V,a,h,i(x, y) = 1{xh+i=a} given IVvx = h

χ+
V,a,h,i(x, y) = 1{xh+i=a} given IVvx = h and y = +1

whose expectations serve as empirical estimators for the distributions of the symbol at the next i-th
position over all strings (χ′V,a,i) and over all positive strings (χ+

V,a,i), both conditioned on IVvx = h.
Below is how the algorithm works, with ε̄g+1 and ε′ to be decided later in the proof.

First an initial query to estimate probability Pr[y = +1 | V v x] is made. The algorithm will
classify all strings such that V v x negative if the answer is close to 0, or positive if the answer is
close to 1. To ensure the legitimacy and feasibility of the algorithm, we make another initial query to
estimate the probability Pr[IVvx = h] for each h. The algorithm then excludes the low-probability
cases such that any of the excluded ones happens with probability lower than ε/2. Thus we only
need to consider the cases with polynomially large Pr[IVvx = h] and learn the target ideal within
error ε/2. Otherwise, let P (+|a, h) denote IEχ̃V,a,h and we make a statistical query to estimate
P (+|a, h) for each a ∈ Σ. If the difference P (+|a+, h) − P (+|a−, h), where a+ is in the next
element of U and a− is not, is large enough for some h, then the results of queries for P (+|a, h)
will form two distinguishable clusters, where the maximum difference inside one cluster is smaller
than the minimum gap between them, so that we are able to learn the next element in U .

Otherwise, for all h with nonnegligible Pr[IVvx = h], the difference P (+|a+, h)− P (+|a−, h) is
very small and we will show that there is an interval starting from index h+1 which we can skip with
little risk for each case when IVvx = h. Problematic cases leading to misclassification will happen
with very small probability within this interval. We are safe to skip the whole interval and move on.
The remaining problem is to identify the length of this interval, that is, to estimate the probability
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1. Estimate probability Pr[y = +1 | V v x] at tolerance ε′/3. If the answer is ≤ 2ε′/3,
classify all strings x such that V v x as negative and backtrack on the classification
tree. If the answer is ≥ 1 − 2ε′/3, classify all strings x such that V v x as positive and
backtrack. If the number of intervals skipped on the current path exceeds C, classify all
strings x such that V v x as positive and backtrack. Otherwise go to Step 2

2. For each h with nonnegligible Pr[IVvx = h], estimate IEχV,a,h at tolerance τ1 =
ε̄2g+1/384 for each a ∈ Σ. Go to Step 3.

3. If the results for some h produce two distinguishable clusters, where the maximum differ-
ence inside one cluster is ≤ 4τ1 while the minimum gap between two clusters is > 4τ1,
then the set of all the symbols that belong to the cluster with larger query results is the
next element in U . Update V and go to Step 1. Otherwise, branch the classification tree.
For each h, let k ← 1 and T ← 1. Go to Step 4.

4. For each a ∈ Σ, estimate IEχ′V,a,h,k and IEχ+
V,a,h,k at tolerance τ2 = ε̄g+1/(8sn) so that

we will have estimators D̂k(h) and D̂+
k (h). Go to Step 5.

5. T ← (1− ‖D̂k(h)− D̂+
k (h)‖TV ) · T . If 1− T ≤ 3ε̄g+1/4, k ← k + 1 and go to Step 4.

Otherwise, skip the interval from xh+1 to xh+k−1. Update V and go to Step 1.

Figure 2: Approximately learning X under product distributions

that an error happens if we skip an interval. LetD1:k(h) be the distribution of x[h+1, h+k] over all
strings given IVvx = h andD+

1:k(h) be the corresponding distribution over all positive strings given
IVvx = h. The probability that an error happens due to skipping the next k elements is the total
variation distance between D1:k(h) and D+

1:k(h). Thanks to the independence between the elements
in a string, it can be proved that ‖D1:k(h) − D+

1:k(h)‖TV can be estimated within polynomially
bounded error.

Because the lengths of skipped intervals in cases with different IVvx could be different, the algo-
rithm branches the classification tree to determine the skipped interval according to the value of
IVvx. The algorithm runs the procedure above recursively on each branch. Figure 2 demonstrates
this skipping strategy of the algorithm, where parameter C is the maximum allowed number of
skipped intervals on each path. Notice that the algorithm might not recover the complete pattern
string U . Instead the hypothesis pattern string returned by the algorithm for one classification path
is a subsequence of U with skipped intervals. We provide a toy example to explain the skipping
logic. Let n = 4, Σ ={a, b, c} and U = ‘ab’. Strings are drawn from a product distribution such
that x1, x2 and x4 are uniformly distributed over Σ but x2 is almost surely ‘a’. The algorithm first
estimates Pr[y = +1 | x1 = a] for each a ∈ Σ and finds the value of x1 matters little to the pos-
itivity. It then estimates the distance between the distribution of x1x2 over all positive strings and
that over all strings and finds the two distributions are close. However, when it moves on to estimate
the distance between the distribution of x1x2x3 over all positive strings and that over all strings, it
gets a nonnegligible total variation distance. Therefore, the skipped interval is x1x2. The algorithm
finally outputs the hypothesis pattern string ‘ΣΣb’ which means skipping the first two symbols and
matching symbol ‘b’ in the rest of the string.

Theorem 4 Under product distributions over instance space I = Σn, given Pr[xi = a] ≥ t > 0
for ∀1 ≤ i ≤ n and ∀a ∈ Σ, the algorithm PAC classifies any string that skips C = O(1) intervals
during the classification procedure withO(snC+2) conditional statistical queries from STAT(X,D)
at tolerance

τ = min

{
ε̄21

384
,
ε̄1

8sn

}
or with O(snC+2) statistical queries from STAT(X,D) at tolerance

τ̄ = (ε′ − 2τ) ·min

{
tε̄21
384

,
ε̄1

8sn

}
where ε̄1 = (ε′/3C+2)2C

and ε′ = ε/(2nC).
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Proof For the sake of the legitimacy and feasibility of the algorithm, we make an initial query to
estimate the probability Pr[IVvx = h] for each h at tolerance τ . Denote ε′ = ε/(2nC). If the
answer is ≤ ε′− τ , then Pr[IVvx = h] ≤ ε′ is negligible and we won’t consider such cases because
any of them happens with probability ≤ ε/2. Otherwise we have Pr[IVvx = h] ≥ ε′ − 2τ . With
the lower bound assumption that Pr[xi = a] ≥ t > 0 for ∀1 ≤ i ≤ n and ∀a ∈ Σ, the legitimacy
and feasibility are assured. Thus bounding the classification error in the nonnegligible cases within
ε/2 establishes a total error bound ε. Because there are at most nC nonnegligible cases, the problem
reduces to bounding the classification error for each within ε′.

In the learning procedure, the algorithm skips an interval x[i1, i2] given IVvx = h based on the
assumption that the interval x[i1, i2] matches some segment next to V in the pattern string U . Let ιg
be the indicator for the event that the assumption is false in the first g skipped intervals and denote
probability εg = IEιg . Let ε0 = 0. Note that εg serves as an upper bound for the probability of
misclassification due to skipping the first g intervals, because there are some lucky cases where the
assumption doesn’t hold but the algorithm still makes correct classifications. To ensure the accuracy
of the algorithm, it suffices to prove εg is small. Let ε̄g+1 = 8

√
3εg for g ≥ 1 and ε̄1 as defined

in the theorem. We will prove εg+1 ≤ ε̄g+1 so that by induction and taking the minimum tolerance
among all g ≤ C we then have the overall tolerances τ and τ̄ as claimed in the statement.

Let a+, a
′
+ be two (not necessarily distinct) symbols in the next element ofU and a−, a′− be two (not

necessarily distinct) symbols not in the next element of U . We have |P (+|a+, h)− P (+|a′+, h)| ≤
εg and likewise |P (+|a−, h)− P (+|a′−, h)| ≤ εg . Let Pi(+|a, h) = P (+|a, h, ιg = i) and denote
∆ = P (+|a+, h) − P (+|a−, h) and ∆i = Pi(+|a+, h) − Pi(+|a−, h) for i ∈ {0, 1}. As a
consequence, ∆ = εg∆1 + (1 − εg)∆0 and ∆0 =

∆−εg∆1

1−εg ≥ ∆−εg
1−εg . Therefore, ∆ > εg implies

∆0 > 0. In the other direction, ∆0 =
∆−εg∆1

1−εg ≤ 2(∆ + εg).

For each h we make a statistical query to estimate P (+|a, h) for each a ∈ Σ at tolerance τ1 =
ε̄2g+1/384. If the minimum ∆ among all pairs of (a+, a−), denoted by ∆min, is > 6τ1, the results of
queries for P (+|a, h) must form two distinguishable clusters, where the maximum difference inside
one cluster is ≤ 4τ1 while the minimum gap between two clusters is > 4τ1. According to Lemma
11, the set of symbols with larger query answers is the next element in U because ∆ > εg holds for
all pairs of (a+, a−).

Otherwise, the difference ∆0 ≤ 2(∆min + 2εg + εg) ≤ ε̄2g+1/16 for all h. Let x′ = xz where
z is an infinite string under the uniform distribution. Let Eh(1, i) be the event that matching the
next element in U consumes exactly i symbols in string x′ given IVvx′ = h and ιg = 0. Define
probability Rh(1, i) = Pr[Eh(1, i)]. Let conditional probability P0(+|Eh(1, i)) be the probability
of positivity conditioned on event Eh(1, i). For example, P0(+|a+, h) is indeed P0(+|Eh(1, 1)).

Denote by P0(+|h) = Pr[y = +1 | IVvx = h ∧ ιg = 0]. Because P0(+|h) ≥ P0(+|a−, h), we
have

P0(+|a+, h)− P0(+|h) ≤ P0(+|a+, h)− P0(+|a−, h) <
ε̄2g+1

16
while

P0(+|a+, h)− P0(+|h) =

+∞∑
i=1

Rh(1, i) · (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

Notice that probability P0(+|Eh(1, i)) is monotonically non-increasing with respect to i. Then there
must exist an integer k ∈ [1,+∞] such that P0(+|Eh(1, 1))−P0(+|Eh(1, i)) ≤ ε̄g+1/4 for ∀i ≤ k
and P0(+|Eh(1, 1))− P0(+|Eh(1, i)) ≥ ε̄g+1/4 for ∀i > k. This implies∑
i≤k

Rh(1, i) (P0(+|Eh(1, 1))− P0(+|Eh(1, i))) +
∑
i>k

Rh(1, i) (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

<
ε̄2g+1

16

and
ε̄g+1

4

∑
i>k

Rh(1, i) <
ε̄2g+1

16

20



Then we have
∑
i>k Rh(1, i) < ε̄g+1/4. This means the next element in U almost surely shows up

in this k-length interval. In addition, the difference P0(+|Eh(1, 1))−P0(+|Eh(1, i)) ≤ ε̄g+1/4 for
∀i ≤ k means whether the next element in U first shows up at xh+1 or xh+k has little effect on the
probability of positivity. There are two cases where an error happens due to skipping the interval.
The first case is that the next element in U doesn’t occur within the interval, whose probability is∑
i>k Rh(1, i). The second case is that after matching the next element in U at xh+i for some

1 ≤ i < k, the value of x[h+ i+1, h+k] flips the class of the string. This happens with probability
≤ P0(+|Eh(1, 1)) − P0(+|Eh(1, k)). By union bound, the probability of the errors because of
skipping the interval x[h+ 1, h+ k] is at most ε̄g+1/2.

It is worth pointing out that k is an integer from 1 to +∞ because when i = 1 the difference
P0(+|Eh(1, 1)) − P0(+|Eh(1, i)) is 0 ≤ ε̄g+1/4 and surely k ≥ 1. This means this interval is
not empty and ensures the existence of the interval we want. On the other hand, the value k can
be positive infinity but this makes no difference because the algorithm will skip everything until the
end of a string.

After showing the existence of such an interval, we need to determine k and locate the interval.
Let Dk(h) be the distribution of xh+k and D1:k(h) be the distribution of the x[h + 1, h + k] over
all strings, both conditioned on IVvx = h. Also, let D+

k (h) and D+
1:k(h) be the corresponding

distributions over all positive strings. We use ·̂ as estimators for probabilities or distributions. The
probability that an error happens due to skipping the next k letters is the total variation distance
between D1:k(h) and D+

1:k(h). Recall that the total variation distance between two distributions µ1

and µ2 is

‖µ1 − µ2‖TV =
1

2
‖µ1 − µ2‖1 = min

(Y,Z)
Pr[Y 6= Z]

where Y ∼ µ1 and Z ∼ µ2 are random variables over µ1 and µ2 respectively. The minimum is
taken over all joint distributions (Y,Z) such that the marginal distributions are still µ1 and µ2, i.e.,
Y ∼ µ1 and Z ∼ µ2.

Now let Y ∼ D1:k(h) and Z ∼ D+
1:k(h) be random strings over D1:k(h) and D+

1:k(h) respectively.
Then

‖D1:k(h)−D+
1:k(h)‖TV = min

(Y,Z)
Pr[Y 6= Z]

=1− max
(Y,Z)

Pr[Y = Z]

=1− max
(Y,Z)

k∏
i=1

Pr[Yi = Zi]

=1−
k∏
i=1

max
(Y,Z)

Pr[Yi = Zi]

=1−
k∏
i=1

(
1− min

(Y,Z)
Pr[Yi 6= Zi]

)

=1−
k∏
i=1

(
1− ‖Di(h)−D+

i (h)‖TV
)

because of the independence between the symbols in a string and the fact that all minimums and
maximums are taken over all joint distributions (Y,Z) such that the marginal distributions are still
product distributions.

Thus we could estimate the global total variation distance ‖D1:k(h)−D+
1:k(h)‖TV through estimat-

ing the local variation distance ‖Di(h) − D+
i (h)‖TV for each 1 ≤ i ≤ k. Assume p̂1 and p̂2 are

estimates of two probabilities p1 and p2 from a statistical query at some tolerance τ0. We have

|p1p2 − p̂1p̂2| = |p1p2 − p1p̂2 + p1p̂2 − p̂1p̂2|
= |p1(p2 − p̂2) + (p1 − p̂1)p̂2|
≤ p1|p2 − p̂2|+ |p1 − p̂1|p̂2

≤ (p1 + p̂2)τ0 ≤ 2τ0
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By induction it can be proved that
∣∣∣∏k

i=1 pi −
∏k
i=1 p̂i

∣∣∣ ≤ kτ0, which is a polynomial bound. For a
probability q, let qi be the corresponding probability conditioned on ιg = i for i ∈ {0, 1}. We have
q = εgq1 + (1− εg)q0 and

q0 =
q − εgq1

1− εg
≥ q − εgq1 ≥ q − εg

In the other direction,

q0 =
q − εgq1

1− εg
=
q + εg − ε2g − εgq − εg + ε2g + εgq − εgq1

1− εg

=
(q + εg)(1− εg)− εg(1 + q1 − εg − q)

1− εg
≤ q + εg

Note that here without loss of generality, we assume ε ≤ min{(n− 1)t, 24/(sn)} so that 1 + q1 −
εg − q ≥ (n − 1)t − εg + q1 > 0 and εg ≤ ε̄2g+1/192 < ε̄g+1/(8sn). In PAC learning model a
polynomial upper bound for error parameter ε is trivial. Because if a learning algorithm works with a
small error bound, it automatically guarantees larger error bounds. As a consequence, |q− q0| ≤ εg .
In addition, using the definition of ‖ · ‖TV ,

| ‖Di(h)−D+
i (h)‖TV − ‖D̂i(h)− D̂+

i (h)‖TV |

=
1

2
| ‖Di(h)−D+

i (h)‖1 − ‖D̂i(h)− D̂+
i (h)‖1 |

≤1

2
| ‖Di(h)−D+

i (h)− D̂i(h) + D̂+
i (h)‖1 |

≤1

2

(
‖Di(h)− D̂i(h)‖1 + ‖D+

i (h)− D̂+
i (h)‖1

)
≤s

2

(
‖Di(h)− D̂i(h)‖∞ + ‖D+

i (h)− D̂+
i (h)‖∞

)
Hence, if we make statistical queries χ′V,a,h,i and χ+

V,a,h,i at tolerance τ2 = ε̄g+1/(8sn) and be-
cause ε̄g+1/(8sn)+ εg < ε̄g+1/(4sn), the noise on ‖Di(h)−D+

i (h)‖TV will be at most ε̄g+1/(4n)
and we will be able to estimate ‖D1:k(h) − D+

1:k(h)‖TV within error kε̄g+1/(4n) ≤ ε̄g+1/4.
If ‖D̂1:k(h) − D̂+

1:k(h)‖TV ≥ 3ε̄g+1/4, then ‖D1:k(h) − D+
1:k(h)‖TV ≥ ε̄g+1/2. Otherwise,

‖D1:k(h)−D+
1:k(h)‖TV < ε̄g+1 and we are still safe to increase k.

The algorithm does O(snC+2) queries χV,a,h at tolerance τ1 = ε̄2g+1/384, plus O(snC+2) queries
χ′V,a,h,i and χ+

V,a,h,i at tolerance τ2 = ε̄g+1/(8sn). Thus by induction and taking the minimum
tolerance among all g ≤ C we have the overall tolerances τ and τ̄ as claimed in the statement. �

Appendix D Proof and details from Section 5

D.1 Proof of Lemma 4

Here we provide omitted proof and discussion of Lemma 4.

Lemma 4 (in the main paper) Under general unrestricted string distributions, a concept class is
PAC learnable over instance space Σ≤n if and only if it is PAC learnable over instance space Σn.

Proof If direction. Assume concept class C is PAC learnable from fixed-length strings with al-
gorithm A under unrestricted general distributions. Because instance space Σ≤n =

⋃
i≤n Σi, we

divide the sample S into n subsets {Si} where Si = {x | |x| = i}. We make an initial statistical
query to estimate probability Pr[|x| = i] for each i ≤ n at tolerance ε/(8n). We discard all Si with
query answer ≤ 3ε/(8n), because we know Pr[|x| = i] ≤ ε/(2n). There are at most (n − 1) such
Si of low occurrence probabilities. The total probability that an instance comes from one of these
ignored sets is at most ε/2. Otherwise, Pr[|x| = i] ≥ ε/(4n) and we apply algorithm A on each Si
with query answer ≥ 3ε/(8n) with error parameter ε/2. Because the probability of the condition is
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Input: N labeled strings 〈xi, yi〉, string length n, alphabet Σ
Output: pattern string û
1. û← λ
2. for `← 0 to n
3. reward← 1× |Σ| all 0 vector
4. for each a ∈ Σ
5. for i← 1 to N
6. if û v xi
7. if yi = +1
8. reward[a]← reward[a]+
9. (I

ûvxi −min{I
ûavxi , n+ 1})r+

10. else
11. reward[a]← reward[a]+
12. (min{I

ûavxi , n+ 1} − I
ûvxi)r−

13. endif
14. else
15. if yi = +1
16. return û[1, `− 1]
17. endif
18. endif
19. endfor
20. endforeach
21. û`+1 ← argmaxa∈Σ{reward[a]}
22. û← ûû`+1

23. endfor
24. return û

Figure 3: A greedy algorithm for learning ideal from example oracle EX( ,D)

polynomially large, the algorithm is feasible. Finally, the error over the whole instance space will
be bounded by ε and concept class C is PAC learnable over instance space Σ≤n.

Only-if direction. This is an immediate consequence of the fact Σn ⊆ Σ≤n. �

Notice that Lemma 4 requires algorithm A to be applicable to any Si | i ≤ n. But this requirement
can be weakened. There might not exist such a general algorithm A. Instead we could have an
algorithm Ai applicable to each subspace Si with non-negligible occurrence probability Pr[|x| =
i] ≥ ε/(4n), then it is easy to see that Lemma 4 still holds in this case. Moreover, Lemma 4 makes
no assumption on the string distribution. In the cases under restricted string distributions, here
are two conditions that suffice to keep Lemma 4 hold: First, there is no assumption on the string
length distribution; Second, we have an algorithm Ai applicable to instance space Si over marginal
distribution D|x|=i for each 1 ≤ i ≤ n such that Pr[|x| = i] is polynomially large.

D.2 A heuristic greedy method

Figure 3 provides detailed pseudocode of the greedy method discussed in Section 5.

D.3 Experiment settings and results

To make a comparison between the greedy method and kernel machines for empirical perfor-
mance, we conducted a series of experiments in MATLAB on a workstation built with Intel i5-2500
3.30GHz CPU and 8GB memory. As discussed in Section 5, the running time of the kernel machine
will be intolerable in practice when the sample size N and the string length n are large. Also, a
pattern string u of improper length will lead to a degenerate sample set which contains only posi-
tive or only negative example strings. To prevent this less interesting case from happening, we set
|u| = dns−1e. Intuitively, the sample set will be evenly partitioned into two classes in expectation
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Figure 4: Experiment results with NSF abstracts data set (training 1993; testing 1992)

under the uniform distribution. However, in this case n not being large demands the alphabet size s
not being large either.

Combining all these constraints together, the experiment settings are: alphabet size s = 8, size
of training set = size of testing set = 1024. We vary the string length n from 16 to 56 and let
|u| = dns−1e. The pattern string u is generated uniformly at random from Σ|u|. Our tests are run on
the NSF Research Award Abstracts data set [4]. We use the abstracts of year 1993 as the training set
and those of year 1992 as the testing set. The tests are case-insensitive and all the characters except
the subset from ‘a(A)’ to ‘h(H)’ are removed from the texts. The result texts are then partitioned into
a set of strings of length n, which serve as the example strings. To be more robust against fluctuation
from randomness, each test with a particular value of n is run for 10 times and the medians of error
rates and running times are taken as the final performance scores. Both lines climb as n increases.

The experiment results are shown in Figure 4, with accuracy presented as line plot and efficiency
demonstrated as bar chart. The overwhelming advantage of the greedy algorithm on efficiency is
obvious. The kernel machine ran for hours in high dimensional cases, while the greedy method
achieved even better accuracy within only milliseconds. The error rate of the greedy algorithm is
always lower than that of the kernel machine as well.

It is worth noting that MATLAB started reporting no-convergence error of the kernel method when
the string length n reaches 56. Only successful runs of the kernel method were taken into account.
Therefore, the performance of the kernel method when n = 56 is very unstable over some datasets.
Figure 5 is an example where kernel method became unpredictable when no-convergence error
happened. In this plot when n = 56 the kernel machine seems to have better accuracy than the
greedy method, but considering that all the failed runs of the kernel machine were ruled out and only
successful ones were taken into account, the apparent accuracy of the kernel method is shaky.
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