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Learning regular languages has long been a fundamental topic in computational

learning theory. In this thesis, we present our contributions to exploring the learnabil-

ity of regular languages and their representation class, deterministic finite automata

(DFAs).

To study the learnability of regular languages in the context of machine learning,

we first need to understand how humans learn and acquire a language. We consider

a society which consists of n people (or agents), where pairs of individuals are drawn

uniformly at random to interact. Each individual has a confidence level for a grammar

and a more confident person supports the grammar with higher probability. A person

increases her confidence level when interacting with another person supporting the

grammar, and decreases her confidence level otherwise. We prove that with high

probability the three-state binary signaling process reaches consensus after Θ(n log n)

interactions in the worst case, regardless of the initial configuration. In the general

case, the continuous-time binary signaling process in the limit will converge within

O(r log nr) time (corresponding to O(nr log nr) interactions in expectation) if the

initial configuration is monotone, where r is the number of confidence levels. In

the other direction, we also show a convergence lower bound Ω(nr + n log n) on the

number of interactions when r is large.

The class of shuffle ideals is an important sub-family of regular languages. The



2

shuffle ideal generated by a string set U is the collection of all strings containing

some string u ∈ U as a (not necessarily contiguous) subsequence. We study the PAC

learnability of shuffle ideals and present positive results on this learning problem

under element-wise independent and identical distributions and Markovian distribu-

tions in the statistical query model. A constrained generalization to learning shuffle

ideals under product distributions is also provided. In the empirical direction, we

propose a heuristic algorithm for learning shuffle ideals from given labeled strings

under general unrestricted distributions.

As a representation class of regular languages, DFAs are one of the most ele-

mentary computational models in the study of computer science. We study the

learnability of a random DFA and propose a computationally efficient algorithm for

learning and recovering a random DFA from uniform input strings and state infor-

mation in the statistical query model. A random DFA is uniformly generated: for

each state-symbol pair (q ∈ Q, σ ∈ Σ), we choose a state q′ ∈ Q with replacement

uniformly and independently at random and let ϕ(q, σ) = q′, where Q is the state

space, Σ is the alphabet and ϕ is the transition function. The given data are string-

state pairs (x, q) where x is a string drawn uniformly at random and q is the state of

the DFA reached on input x starting from the start state q0. A theoretical guarantee

on the absolute error of the algorithm in the statistical query model is presented.

Given that automaton graphs are out-regular, we generalize our DFA learning

algorithm to learning random regular graphs in the statistical query model from ran-

dom paths. In a standard label-guided graph exploration setting, the edges incident

from a node in the graph have distinct local labels. The input data to the statistical

query oracle are path-vertex pairs (x, v) where x is a random uniform path (a ran-

dom sequence of edge labels) and v is the vertex of the graph reached on the path x

starting from a particular start vertex v0.
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Chapter 1

Introduction

This thesis presents our contributions to learning regular languages and automaton

graphs. To study the learnability of regular languages in the context of machine

learning, we first need to understand how humans learn and acquire a language.

This thesis starts from a binary signaling model in Chapter 2 for the language emer-

gence process in a human society. In Chapter 3, we study the PAC learnability of

shuffle ideals, which are a fundamental sub-class of regular languages. In Chapter

4, we propose a computationally efficient algorithm for learning and recovering a

random deterministic finite automaton (DFA) from uniform input strings and state

information. Chapter 5 generalizes our results in Chapter 4 and applies the DFA

learning algorithm to learning random regular graphs from uniform paths.

1.1 Language emergence process and population

protocols

“A basic task of science is to build models — simplified and abstracted descrip-

tions — of natural phenomena” [BM96, p. 432]. A central goal of modern linguistic
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theory is to explain how people learn and acquire a language, and how languages

emerge from communication among people. For decades, language scientists have

spent lots of effort on capturing and modeling the language emergence process in hu-

man society. Linguists’ intuitions about language emergence can be interpreted by

dynamical system models, often with strong subjectivity and randomness, from the

dynamics of human interactions and the nature of language acquisition. The works

of Galantucci [Gal05] and Galantucci et al. [GFR03] develop experimental semiotics,

which conduct controlled studies in conventionalization of form-meaning mappings

among interacting agents where human develop novel languages, in an experimental

way. The works of Coppola and Senghas [CS10] and Meir et al. [MSPA10] study the

spontaneous emergence of gestural communication systems in deaf individuals not

exposed to spoken or signed language and of natural languages in deaf communities,

which offer unique opportunities to study the process of human language emergence.

Language scientists have long been occupied with describing phonological, syntactic,

and semantic change, often appealing to a relation between language change and

evolution, but rarely going beyond analogy. The overall goal of Chapter 2 is to move

from this analogy to formal modeling.

Chomsky proposed a model of universal grammar — those aspects of linguis-

tic structure that are presumed innate and thus present in every linguistic system

[Cho81, Cho93]. A language is defined by a series of parameters and the learning

process for a learner of a language consists of constantly adjusting or fixing a num-

ber of parameters. Under this framework, Gibson and Wexler [GW94] formalized the

Triggering Learning Model to focus our investigation of parameter learning. Initially,

the process starts at some random point in the (finite) space of possible parameter

settings, specifying a single hypothesized grammar with its resulting extension as

a language. The learner keeps receiving a positive example sentences at each time

2



stamp from a uniform distribution on the language. If the current grammar doesn’t

parse the received sentence, the learner selects a single parameter uniformly at ran-

dom, to flip from its current setting, and changes it if and only if that change allows

the current sentence to be analyzed.

In the work of Richie et al. [RYC14], interactions happen randomly between peo-

ple in the society and each agent updates its state according to the information it

receives each time, which an instance of reinforcement learning. Each agent j has

probability parameter pj for a targeted grammar. Following the standard Linear-

Reward-Penalty scheme in reinforcement learning [WVO12, p. 453], upon each com-

munication, the listener agent j adjusts pj to match the speaker agent i’s choices:

if j receives a message positive to the grammar from i, then pj = pj + γ(1 − pj);

if j receives a negative message, then pj = (1 − γ)pj, where the learning rate γ is

typically a small real number. Kirby et al. [KDG07] use a simple Bayesian method

to understand the evolution of language. In this approach, the degree to which a

learner should believe in a particular hypothesis (i.e., support or object to a new

grammar) is a direct combination of their innate biases and the extent to which the

data are consistent with that hypothesis. The agents can then choose their opinions

about the grammar based on their degrees of belief. An agent might simply em-

ploy the hypothesis that has higher posterior probability, sample from the posterior

distribution, or do anything in between.

However, the above language emergence models have very little theoretical anal-

ysis and no guarantee on convergence. In fact, the Triggering Learning Model never

halts in the usual sense, so does everything built upon it. In Chapter 2, we present

a novel and simple model for language emergence process with a neat mathematical

framework and formal results on the convergence rate. Lightfoot [Lig91, p. 163] talks

about language evolution in this way: “Some general properties of language change

3



are shared by other dynamic systems in the world”. Chapter 2 is good evidence

of this statement. Our language emergence model shares some similarities with the

population protocols in distributed computing theory. To the best of our knowledge,

this is the first work that builds the connection between evolutionary linguistics and

population protocols.

A population protocol [AAD+06] is where agents may interact in pairs and each

individual agent is extremely limited (in fact, being equipped only with a finite

number of possible states). Then the complex behavior of the system emerges from

the rules governing the possible pairwise interactions of the agents. The agents in a

population protocol are anonymous, i.e., there is only one transition function which

is common to all agents and the output of the transition function only depends on

the states of the two involved agents, regardless of their identities. Nor does each

agent have any knowledge of its identity. Usually it is assumed that interactions

between agents happen under some kind of a fairness condition.

Angluin et al. [AAE07] introduced a simple population protocol for majority com-

putation. This protocol assigns only three possible states to every agent, including

two opposite states and one intermediate state, and initially every agent starts from

one of the two opposite states. There is a 3× 3 transition table capturing all possi-

ble interactions and the interactions between agents are dictated by a probabilistic

scheduler. The essential idea of this protocol is that when two agents with different

preferences meet, one drops its preference and enters the intermediate state; an agent

at the intermediate state adopts the preference of any biased agent it meet. Nothing

happens when two unbiased agents meet. The protocol converges at the point where

all the agents have the same preference with no unbiased agents left. They show

that with high probability this protocol reaches convergence within O(n log n) inter-

actions with a complete interaction graph of n vertices, if the process starts from a

4



biased initial configuration. In addition, if the difference between the initial majority

and the initial minority is ω(
√
n log n), their protocol converges to the correct initial

majority with high probability.

Becchetti et al. [BCN+15] is the most recent result we know of that generalizes

Angluin et al.’s three-state population protocol to computing plurality consensus in

the gossip model. Instead of two opposite preferences, an agent could have one of

many preferences (or “colors” in the paper). The update rule is the same: when two

agents with different preferences meet, one shifts to the intermediate state (blank);

a blank agent will be colored by a colored agent with its color. Another major differ-

ence concerns timing. They analyze the synchronous version of population protocol

in the gossip model, where at each round every agent updates its state simultane-

ously. Perron et al. [PVV09] analyzed the continuous-time process of Angluin et al.’s

three-state population protocol in the limit by studying the corresponding system of

differential equations modeling the expected change of the protocol. An additional

continuous-time three-state protocol is defined where instead of being passive, a

blank agent acts as in the two opposite states uniformly at random in an interaction.

The authors gave an elegant upper bound on the time to convergence of a differential

equation approximation that converges to the behavior of the discrete process for any

fixed time in the limit by Kurtz’s theorem [Kur81]. They claim the stronger result

that this approximation converges for time Θ(log n). While this claim may in fact

be true, applying Kurtz’s theorem in this case requires an unjustified interchange

of limits that gives incorrect results in many cases. To avoid this issue, we employ

a potential-function approach similar to that used by Angluin et al. [AAE07]. For

more related works and theoretical background about population protocols we refer

to the survey of Aspnes and Ruppert [AR09].

Binary signaling consensus in the context of population protocols is where two in-
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teracting agents communicate with only one binary bit, without knowing each other’s

state or identity. The population protocol reaches consensus if all the agents have

the same preference and the process stays put forever. For example, the protocol in

[AAE07] is not a binary signaling one since the communication between two inter-

acting agents depend on their states, which are ternary, while the second protocol in

[PVV09] is, even though the state space of an agent is also ternary. Modeling the hu-

man language emergence process in evolutionary linguistics is one scenario of binary

signaling consensus. Given the connection between population protocols and biolog-

ical systems [CCN12], more potential applications of binary signaling consensus may

be found in biology and related fields.

1.2 Learning shuffle ideals

The learnablity of regular languages is a classic topic in computational learning

theory. The applications of this learning problem include natural language process-

ing (speech recognition, morphological analysis), computational linguistics, robotics

and control systems, computational biology (phylogeny, structural pattern recogni-

tion), data mining, time series and music [Kos83, DLH05, Moh96, MPR02, Moh97,

MMW10, RBB+02, SGSC96]. Exploring the learnability of the family of formal

languages is significant to both theoretical and applied realms. In the classic PAC

learning model defined by Valiant [Val84], unfortunately, the class of regular lan-

guages, or the concept class of deterministic finite automata (DFA), is known to

be inherently unpredictable [Ang78, Gol78, PW93, KV94]. In a modified version

of Valiant’s model which allows the learner to make membership queries, Angluin

[Ang87] has shown that the concept class of regular languages is PAC learnable.

Subsequent efforts have searched for nontrivial properly PAC learnable subfamilies
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of regular languages [AAEK13, Che14, RG96].

Throughout Chapter 3 we study the PAC learnability of a fundamental subclass

of regular languages, the class of (extended) shuffle ideals. The shuffle ideal generated

by an augmented string U is the collection of all strings containing some u ∈ U as

a (not necessarily contiguous) subsequence, where an augmented string is a finite

concatenation of symbol sets (see Figure 3.1 for an illustration). The special class

of shuffle ideals generated by a single string is called the principal shuffle ideals. In

spite of its simplicity, the class of shuffle ideals plays a prominent role in formal

language theory. The boolean closure of shuffle ideals is the important language

family known as piecewise-testable languages [Sim75]. The rich structure of this

language family has made it an object of intensive study in complexity theory and

group theory [Lot83, KP08]. In the applied direction, Kontorovich et al. [KRS03]

show that shuffle ideals capture some rudimentary phenomena in human language

morphology.

Unfortunately, even such a simple class is not PAC learnable, unless RP=NP

[AAEK13]. However, in most application scenarios, the strings are drawn from some

particular distribution we are interested in. Angluin et al. [AAEK13] prove under the

uniform string distribution, principal shuffle ideals are PAC learnable. Nevertheless,

the requirement of complete knowledge of the distribution, the dependence on the

symmetry of the uniform distribution and the restriction to principal shuffle ideals

lead to the lack of generality of the algorithm. Our main contribution in Chapter 3

is to present positive results on learning the class of shuffle ideals under element-wise

independent and identical distributions and Markovian distributions. Extensions of

our main results include a constrained generalization to learning shuffle ideals under

product distributions and a heuristic method for learning principal shuffle ideals

under general unrestricted distributions.
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1.3 Learning a random DFA

Deterministic finite automata are one of the most elementary computational models

in the study of theoretical computer science. The important role of DFAs leads

to the classic problem in computational learning theory, the learnability of DFA.

Unfortunately, the concept class of DFAs is long known to be not efficiently learnable

in the classic PAC learning model define by Valiant [Val84].

Since learning all DFAs is computationally intractable, it is natural to ask whether

we can pursue positive results for “almost all” DFAs. This is addressed by studying

high-probability properties of uniformly generated random DFAs. The same ap-

proach has been used for learning random decision trees and random DNFs from

uniform strings [JLSW08, JS05, Sel08, Sel09]. However, the learnability of random

DFAs has long been an open problem. Few formal results about random walks on

random DFAs are known. Grusho [Gru73] was the first work establishing an in-

teresting fact about this problem. Since then, very little progress was made until

a recent subsequent work by Balle [Bal13]. Our work connects these two problems

and contributes an algorithm for efficiently learning random DFAs, in addition to

positive theoretical results on random walks on random DFAs.

Trakhtenbrot and Barzdin [TB73] first introduced two random DFA models with

different sources of randomness: one with a random automaton graph, one with

random output labeling. In Chapter 4 we study the former model. A random DFA

is uniformly generated: for each state-symbol pair (q ∈ Q, σ ∈ Σ), we choose a state

q′ ∈ Q with replacement uniformly and independently at random and let ϕ(q, σ) = q′,

where Q is the state space, Σ is the alphabet and ϕ is the transition function. Given

data are of form (x, q) where x is a string drawn uniformly at random and q is the

state of the DFA reached on input x starting from the start state q0.
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Previous work by Freund et al. [FKR+97] has studied a different model under

different settings. First, the DFAs are generated with arbitrary transition graphs

and random output labeling, which is the latter model in [TB73]. Second, in their

work, the learner predicts and observes the exact label sequence of the states along

each walk. Such sequential data are crucial to the learner walking on the graph. In

Chapter 4, the learner is given noisy statistical data on the ending state, with no

information about any intermediate states along the walk.

Like most spectral methods, the theoretical error bound of our algorithm contains

a spectral parameter (‖|P †A|‖∞ in Section 4.3.1), which reflects the asymmetry of the

underlying graph. This leads to a potential future work of eliminating this parameter

using random matrix theory techniques. Another direction of subsequent works is

to consider the more general case where the learner only observes the accept/reject

bits of the final states reached, which under arbitrary distributions has been proved

to be hard in the statistical query model by Angluin et al. [AEKR10] but remains

open under the uniform distribution [Bal13]. Our contribution narrows this gap and

pushes forward the study of the learnability of random DFAs.

1.4 Learning random regular graphs

The realm of random graph study was first established by Erdös and Rényi [ER59,

ER60, ER61b] after Erdös [Erd47, Erd59, Erd60] had discovered that probabilistic

methods that introduce randomness were often useful in tackling extremal prob-

lems in graph theory. There were subsequently several works on the study of graph

properties of the Erdös-Rényi model such as connectivity [ER64], chromatic number

[LW86, Bol88] and cliques [BE76]. These had not at that time gathered much at-

tention until the introduction at the end of the twentieth century of the small world
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model [WS98] and the preferential attachment model [BA99] led to an explosion of

research.

Random walks on graphs serve as an important tool in the study of Markov

chains and graph models. Major previous contributions for random walks on graphs

are in the cover time and hitting time [Ald89, Fei95b, Fei95a], mixing rate [LS90]

and spectrum [Chu97]. However, the volume of literature studying random walks

on random graphs [Jon98, CF08] is much smaller. See Lovász’s paper [Lov93] for

a survey of random walks on undirected graphs and Cooper’s paper [CF09] for an

overview of random walks on undirected random graphs.

The study of random regular graphs started with the works of Bender [Ben74],

Bollobás [Bol80] and Wormald [Wor81]. Their applications in computer science soon

led to a large volume of subsequent works in this area (see the survey by Wormald

[Wor99]). Most of these contributions are on the topics of asymptotic enumeration,

chromatic number and Hamilton cycles. Nevertheless, research on random walks on

random regular graphs is very limited in the literature. Hildebrand [Hil94] showed

the fast convergence of random walks on a RG(s) with the constraint s = Θ(logC n)

for some constant C > 2 and Cooper and Frieze [CF05] studied the cover time with

fixed constant s = O(1) but no convergence result was presented. In the context of

DFA learning, Angluin and Chen [AC15] first proved the fast convergence of random

walks on a RMG+(s) for s ≥ 2. In Chapter 5, we aim to fill this gap and prove

positive convergence results of random walks on a series of random regular graphs.

These fast convergence properties together with our results in Chapter 4 inspire us

to study the problem of learning random regular graphs in the setting of label-guided

graph exploration.

The first known algorithm designed for graph exploration was introduced by

Shannon [Sha51]. Since then, many subsequent works have studied the feasibility
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of graph exploration in the port numbering setting. Rollik [Rol79] gave a complete

proof of that no robot with a finite number of pebbles can explore all graphs. The

result holds even when restricted to planar 3-regular graphs. Without pebbles, it

was proved [FIP+04] that a robot needs Θ(Diam · log s0) bits of memory to explore

all graphs of diameter Diam and maximum degree s0.

In Chapter 4 we proposed a random-walk based algorithm for learning random

DFAs. Observing the connection between DFA learning and label-guided graph

exploration, along with the fast convergence results we prove in Chapter 5, we gen-

eralize our algorithm in Chapter 4 to learning random regular graphs of fixed out-

degree s. The learning model we use is Kearns’ statistical query model [Kea98],

which is a variant of Valiant’s PAC model [Val84] and implies stronger learnabil-

ity. Learning graphs from exploration is a long studied theoretical learning problem

[BS94, BFR+98], where the graphs are usually assumed out-regular. We follow Ben-

der and Slonim’s settings but in the passive learning scenario where blind agents

passively explore the graph on random paths with no memory of visited vertices. In

a regular graph of out-degree s, the s edges incident from a node are associated to

s distinct port numbers in {1, 2, . . . , s} in a one-to-one manner, which is a standard

label-guided graph exploration setting [FIP+04, Rei05, BS94]. Each edge of a node

is labeled with its local port number. The input data to the statistical query oracle

are of the form (x, v) where x is a random uniform path (a sequence of edge labels)

of a fixed length and v is the vertex of the graph reached on the path x starting from

a particular start vertex v0.
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Chapter 2

A Binary Signaling Model for

Language Emergence

How do people learn and acquire a language? How do languages emerge in human

society? It has become one of the major challenges of modern linguistic theory to

understand the language emergence process in human society. In this chapter, we

establish the connection between the language emergence process and the study of

population protocols, and propose a novel and simple binary signaling consensus

model for the language emergence process. We consider a society which consists of

n people (or agents), where pairs of individuals are drawn uniformly at random to

interact. Each individual has a confidence level for a grammar and a more confi-

dent person supports the grammar with higher probability. A person increases her

confidence level when interacting with another person supporting the grammar, and

decreases her confidence level otherwise. In Section 2.1 we formalize our binary sig-

naling consensus model for human language emergence. A comprehensive analysis

of fast convergence for three-state binary signaling consensus then follows in Section

2.2. We show that with high probability, the three-state binary signaling process
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converges after Θ(n log n) interactions in the worst case, regardless of the initial con-

figuration. In Section 2.3, we study the general binary signaling consensus model

with large resistance r. We prove that the continuous-time binary signaling process

with large r in the limit will reach consensus within O(r log nr) time (corresponding

to O(nr log nr) interactions in expectation) if the initial configuration is monotone.

We also provide a convergence lower bound of Ω(nr + n log n) on the number of

interactions in the general case. Experimental results are presented in Section 2.4 to

support our theoretical results and to provide evidence for some conjectures.

The content of this chapter appears in [AAC16].

2.1 Binary Signaling Consensus Model

We consider a society of population n. Define an interaction graph G = (V,E) over

this society to be a directed graph with |V | = n whose edges indicate the possible

interactions that may take place. Each agent i ∈ V in the society has a confidence

level cl(i) for a grammar, which is an integer between 0 and r. We say r is the

resistance (or the recalcitrance). At each step, an edge (i, j) is chosen uniformly at

random from E. The “source” agent i is the initiator (or the speaker), and the “sink”

agent j is the responder (or the listener). The two agents communicate in a way that

the initiator sends a binary bit to the responder. With probability cl(i)/r agent i

sends a positive bit to agent j and the latter does the update cl(j) = min(cl(j)+1, r).

Otherwise the initiator sends a negative bit to the responder who updates cl(j) =

max(cl(j)− 1, 0). Starting from an initial configuration, the communication process

keeps going until convergence, where either all agents are of confidence level r (when

the whole society accepts the grammar, i.e., positive convergence) or all agents are

of confidence level 0 (when the grammar is discarded, i.e., negative convergence).
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We inherit the terminology “binary signaling” used by [PVV09] and call this

model a binary signaling consensus model for the language emergence process, in the

sense that the signaling between the agents is binary, although the state of an agent

is (r + 1)-ary. In this chapter, we study the cases where the interaction graph G

is a complete graph. For algebraic convenience we assume self-loops are allowed in

the interaction graph, while all our results can be easily applied to the setting of no

self-loops as n goes to infinity.

The parameter r is called the resistance or the recalcitrance as the larger r is, the

more difficult to persuade a person of the opposite opinion. A more general model

could allow different people to have different resistances, and this is true in real life.

In this setting, the range of the confidence level of agent i is from 0 to r(i). Everything

remains the same except that the initiator i has probability cl(i)/r(i) of sending a

positive bit and the responder updates cl(j) = min(cl(j) + 1, r(j)). Although this

general setting simulates better the real-world situation, it complicates the model

and violates the anonymity condition in population protocols, where the output of

the transition function should be independent of the identities of the two involved

agents. Hence, in this chapter we assume all agents are of the same resistance r.

Here we model a grammar as a single binary bit in the communication process.

It would be more realistic to model a grammar as a binary vector or a set of binary

bits which are usually not independent of each other, to model the complexity of a

human grammar in linguistics. However, this again complicates the setting and is

not theoretically very tractable. This vector-grammar model could be an interesting

generalization of our work.

Note that in our setting we consider one particular preference and all agents

eventually either accept the preference or reject it. Some readers might prefer an

equivalent setting where we consider two opposite preferences (corresponding to being
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supportive and being opposed in our setting) and the population eventually agrees

with one of them. However, this would make the concrete meaning of confidence

level confusing in some contexts. Thus in this chapter we employ the setting we have

described above.

To the best of our knowledge, this is the first model that establishes a connection

between evolutionary linguistics and population protocols. Unlike the population

protocol model proposed in previous works, the convergence of our model is guar-

anteed with any initial configuration. In addition, our model is a better simulation

of real-world language emergence process, as languages and grammars develop grad-

ually from interactions among the society with randomness. In another direction,

our model has advantages over the heuristic models in cognitive science (see related

works in Section 1.1) that it converges much faster and has a neat mathematical

framework and theoretical analysis provided in this chapter.

2.2 Three-State Binary Signaling Consensus

When simulating language emergence in a society, it is common to assume the pop-

ulation n is very large with constant value of resistance r. Since the r = 0 case is

trivial and the r = 1 model doesn’t involve probabilistic interactions, the three-state

case with r = 2 is a reasonable start for us to study this model. In this section,

we will prove that starting from any initial configuration, a grammar will eventually

survive or be discarded within Θ(n log n) interactions with high probability.

2.2.1 The main theorem

Let τ∗ be the number of interactions until the three-state binary signaling model

reaches consensus. The main result of this section is the following theorem. Note
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that the stated convergence bound is a worst-case bound. A best-case bound is

trivially τ∗ = 0, starting from consensus.

Theorem 2.1 With probability 1 − o(1), τ∗ = Θ(n log n) in the worst case. In

addition, for any constant c > 0 we have

P (τ∗ ≥ 96930(c+ 1)n log n) ≤ max

(
9n−c,

c log n
3
√
n

)

The convergence lower bound τ∗ = Ω(n log n) can be easily obtained from the well-

known coupon collector bound. When the initial configuration is cl(i) being 1 for

all i ∈ V , in order to achieve consensus, every agent must participate in at least one

interaction, leading to the coupon collector lower bound.

Lemma 2.1 With probability 1− o(1), τ∗ = Ω(n log n) in the worst case.

However, the upper bound τ∗ = O(n log n) requires a substantial amount of work.

It may be surprising that fast convergence of such a simple consensus process needs

such a lengthy proof. Part of the reason is that we want to obtain exact asymptotic

bounds with explicit constants that work for arbitrary configurations.

The core of our proof is to construct a supermartingale for each region in the

configuration space. This technique is inspired by the proof used by Angluin et

al. [AAE07]. Recall that a supermartingale is a discrete stochastic process {Mt}

where Mt satisfies E(|Mt|) < +∞ and E(Mt | M0, . . . ,Mt−1) ≤ Mt−1. The expected

value of each Mt is bounded by the initial value EMt ≤ EM0. Supermartingales are

commonly studied with a stopping time. A stopping time with respect to a stochastic

process {Mt} is an almost surely finite random variable τ with positive integer values

and the property that the event τ = t depends only on the values of M0,M1, . . . ,Mt.

A supermatingale with a stopping time is still a supermartingale. In this section,
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Indicator Counter

Ig−t : g decreases by 1 Sg−t =
∑t
i=1 I

g−
i

Ig+t : g increases by 1 Sg+t =
∑t
i=1 I

g+
i

Isct : the configuration is changed Ssct =
∑t
i=1 I

sc
i

Ict : max(b̃, g̃, w̃) < 3/4 Sct =
∑t
i=1 I

c
i

Ibt : b̃ ≥ 3/4 Sbt =
∑t
i=1 I

b
i

Igt : g̃ ≥ 3/4 Sgt =
∑t
i=1 I

g
i

Iwt : w̃ ≥ 3/4 Swt =
∑t
i=1 I

w
i

Table 2.1: Indicators and Counters

we let τ = min(τ∗, dn log n) for some fixed constant d. Thus τ is a stopping time.

This truncation guarantees that τ and quantities defined in terms of it are finite and

well-defined, despite the logical possibility that convergence is not achieved and τ∗

is ill-defined.

Now that r = 2 and an agent has only three possible states, we denote by w

(white), g (gray) and b (black) the states with confidence levels 0 (negative), 1

(neutral) and 2 (positive) respectively. For notational convenience we also overload

b, g, y to denote the number of each token in a configuration. Meanwhile, let b̃ = b/n,

g̃ = g/n and w̃ = w/n be the corresponding proportions. Obviously we always have

b̃+g̃+w̃ = 1. Denote u = b−w and v = b+w. Note that −n ≤ u ≤ n and 0 ≤ v ≤ n.

The point when |u| = n is equivalent to convergence. The change of basis to u and

v allows us to take advantage of the symmetry between b and w tokens. Auxiliary

0-1 indicators and counters for the proof are defined in Table 2.1.

The key to constructing a supermartingale in a region is to design a proper po-

tential function that drops smoothly inside this region and doesn’t increase too much

elsewhere. Because the behavior of the consensus process is qualitatively different in

different regions, we choose a specific potential function for each region of the con-

figuration space. In our proof, we divide the configuration space into four regions:
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1. The corner region where at least 3n/4 agents are of confidence level 0 and

Iw = 1;

2. The corner region where at least 3n/4 agents are of confidence level 1 and

Ig = 1;

3. The corner region where at least 3n/4 agents are of confidence level 2 and

Ib = 1;

4. The central region left where the tokens are more evenly balanced and Ic = 1.

More concretely, given that the potential function f decreases consistently by

−Θ(n−1) in expectation when I1
t = 1 and increases by a relatively smaller amount in

expectation when I2
t = 1, we are able to construct a stochastic process of the form

{Mt = exp((c1S
1
t − c2S

2
t )/n) ·f} which is a supermartingale, where I1

t and I2
t are two

different binary indicators, S1
t =

∑t
i=1 I

1
t and S2

t =
∑t
i=1 I

2
t are their counters, and

c1 and c2 are two carefully chosen positive constants. The supermartingale property

EMτ ≤ EM0 together with Markov’s inequality then gives us the desired O(n log n)

upper bound for S1
τ (depending on S2

τ ). Here we assume either S2
τ is already well

bounded (Lemma 2.8, Lemma 2.9, Lemma 2.10 and Lemma 2.11), or there exists

some auxiliary inequality relationship between S1
τ and S2

τ (Lemma 2.4 and Lemma

2.6). A formal statement of this proof technique is presented in Lemma 2.3.

The proof of the upper bound consists of four components. Notice that t =

Sct + Sbt + Sgt + Swt for any time t. Thus upper bounds for Scτ , S
b
τ , S

g
τ and Swτ imply

one for τ . We will later find that these four quantities can be bounded using an

upper bound on the number of state-changing interactions Sscτ . Therefore, the proof

starts with an O(n log n) upper bound for Sscτ .

In three-state binary signaling consensus, every state-changing interaction must

increase or decrease the value of g by 1. Hence, we have Sscτ = Sg+τ + Sg−τ . The

proof of bounding Sscτ = O(n log n) (Lemma 2.2) is done case by case. First we
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show that if the process starts from some point in the region {g ≤ min(b, w)/4},

then within O(n log n) state-changing interactions, it will either converge or leave

the region (Lemma 2.4). If the former happens then we are happy. Otherwise, we

have g > min(b, w)/4 and we prove that within the next O(n log n) state-changing

interactions, either the process will never enter the region {g < min(b, w)/10} again,

or it will enter the region {min(b, w) = O(log n)
∧
g = O(log n)} (Lemma 2.5 and

Corollary 2.1). In the first case, we show the population protocol will converge within

the next O(n log n) state-changing interactions (Lemma 2.6). In the latter case, we

show the protocol will converge within the next O(n) state-changing interactions

(Lemma 2.7).

Based on the upper bound on state-changing interactions, we are able to construct

a family of supermartingales for different regions in the configuration space. To

bound the number of interactions Scτ in the central region, we prove the stochastic

process Ct = exp((Sct − 9Ssct )/n) to be a supermartingale. The key observation is

that in the central region where max(b̃, g̃, w̃) < 3/4, we should have either b̃ and

w̃ are both ≥ 1/8, or g̃ ≥ 1/8. We then show that in both cases we have Ct

dropping in expectation, which implies an O(n log n) upper bound for Scτ . For the

corner region where g̃ ≥ 3/4, we choose the potential function to be f = 1/(2v + 1).

We show that this potential function drops consistently by Θ(−1/n) of its current

value in expectation in the large-g region, while its rise when Igt = 0 can be upper-

bounded by O(Ig+t /n). With this we then construct a supermartingale in the form

M = exp(aS/n)f(b, w) as described above and achieve the bound Sgτ = O(n log n).

For the corner region where b ≥ 3n/4, the potential function we use is f = 3w +

g + 1. Similar to the idea of bounding Sgτ , we bound Sbτ by showing the value

of the potential function decreases by a factor of exp(−Θ(1/n)) when b is large,

and increases otherwise by an amount we can bound using the previous O(n log n)
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bounds on Sg+t and Sg−t . Thus the number of interactions Sbτ that happen in the

large-b region is also O(n log n). The number of interactions Swτ that happen in

the large-w region can be bounded in a symmetric way using the potential function

f = 3b + g + 1. Finally, for τ = Scτ + Sbτ + Sgτ + Swτ , summing the bounds for all

the four regions we will obtain a bound on the total number of interactions. Given

a convergence upper bound O(n log n) with an explicit constant c, we then choose a

slighter larger constant d > c to truncate the process and let τ = min(τ∗, dn log n)

to make τ a well defined stopping time. Some readers might think this truncation at

Θ(n log n) interactions already assumes the correctness of the target statement, but

we have proved that the total number of interactions is smaller than dn log n with

high probability so we have the convergence upper bound τ∗ = O(n log n) as stated

in Theorem 2.1.

2.2.2 Bounding Sscτ = O(n log n)

In this section we show the number of state-changing interactions Sscτ is at most

O(n log n) with high probability. In the three-state model, every state-changing

interaction must increase or decrease the value of g by 1. Hence, we have Sscτ =

Sg+τ + Sg−τ with the following upper bounds.

Lemma 2.2 With probability 1 − o(1), Sscτ = O(n log n). In addition, for any con-

stant c > 0 we have

P (Sscτ ≥ 372.72(c+ 1)n log n) ≤ max

(
5n−c,

c log n
3
√
n

)

P
(
Sg+τ ≥ 186.36(c+ 1)n log n

)
≤ max

(
4n−c,

c log n
3
√
n

)
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and

P
(
Sg−τ ≥ 186.36(c+ 1)n log n

)
≤ max

(
4n−c,

c log n
3
√
n

)

The essential idea of our proof is to construct a family of supermartingales for

different regions in the configuration space by carefully selecting a series of corre-

sponding potential functions. The following lemma is a general statement of this

proof technique.

Lemma 2.3 Let f be a potential function and A be a region in the configuration

space. If in region A, E(∆f/f | I1) ≤ −k1/n and E(∆f/f | I2) ≤ k2/n where

k1 and k2 are two constants such that k1 > k2 > 0, and I1 and I2 are two binary

indicators such that I1
t · I2

t ≡ 0 at any number of interactions t, then the stochastic

process {Mt} given by

Mt = exp

(
c1S

1
t − c2S

2
t

n

)
· ft

is a supermartingale in region A, where S1
t =

∑t
i=1 I

1
t and S2

t =
∑t
i=1 I

2
t , and c1, c2

are two constants such that k1 > c1 > c2 > k2 > 0.

In addition, given f0/ft ≤ nc3 for some positive constant c3 > 0 at any number

of interactions t, if the process never leaves region A, we have

P
(
c1S

1
τ ≥ c2S

2
τ + (c3 + c4)n log n

)
≤ n−c4

for any positive constant c4 > 0.

Proof Given

E
(

∆f

f
| I1

)
= E

(
ft+1 − ft

ft
| I1

t+1

)
≤ −k1

n

and

E
(

∆f

f
| I2

)
= E

(
ft+1 − ft

ft
| I2

t+1

)
≤ k2

n
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we have

E
(
ft+1 | I1

t+1

)
≤
(

1− k1

n

)
· ft ≤ exp

{
−c1

n

}
· ft

and

E
(
ft+1 | I2

t+1

)
≤
(

1 +
k2

n

)
· ft ≤ exp

{
c2

n

}
· ft

Boosting the constants from −k1 to −c1 and from k2 to c2 is to absorb the second-

order and higher terms in the Taylor series expansion of the exponential.

The expected value of Mt+1 in each case is as follows.

E
(
Mt+1 | I1

t+1 + I2
t+1 = 0

)
= Mt

E
(
Mt+1 | I1

t+1

)
=E

(
exp

(
c1(S1

t + 1)− c2S
2
t

n

)
· ft+1 | I1

t+1

)

=E
(
Mt · ft+1 · exp(c1/n)

ft
| I1

t+1

)

= exp
{
c1

n

}
· E

(
ft+1 | I1

t+1

)
· Mt

ft

≤Mt

E
(
Mt+1 | I2

t+1

)
=E

(
exp

(
c1S

1
t − c2(S2

t + 1)

n

)
· ft+1 | I2

t+1

)

=E
(
Mt · ft+1 · exp(−c2/n)

ft
| I2

t+1

)

= exp
{
−c2

n

}
· E

(
ft+1 | I2

t+1

)
· Mt

ft

≤Mt

In any case we always have E (Mt+1) ≤ Mt so the stochastic process {Mt} is a

supermartingale in region A. If the process never leaves region A, we have E(Mτ ) ≤
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M0 = f0. Given f0/ft ≤ nc3 at any number of interactions t (including the stopping

time t = τ), we have

E(Mτ ) = E
(

exp

(
c1S

1
τ − c2S

2
τ

n

)
· fτ

)
≤M0 = f0

and

E
(

exp

(
c1S

1
τ − c2S

2
τ

n

))
≤ nc3

From Markov’s inequality,

P
(

exp

(
c1S

1
τ − c2S

2
τ

n

)
≥ nc3+c4

)
≤ n−c4

for any positive constant c4 > 0 and then

P
(
c1S

1
τ − c2S

2
τ ≥ (c3 + c4)n log n

)
≤ n−c4

which completes the proof. �

Lemma 2.3 presents the proof technique we use throughout this section. When

using this technique, we have either S2
τ is already well bounded (Lemma 2.8, Lemma

2.9, Lemma 2.10 and Lemma 2.11), or there exists some auxiliary inequality rela-

tionship between S1
τ and S2

τ (Lemma 2.4 and Lemma 2.6).

Lemma 2.4 If the binary signaling consensus process starts with g ≤ min(b, w)/4,

then for any constant c > 0, with probability 1− n−c one of the following two events

will happen within Oc(n log n) state-changing interactions:

1. g > min(b, w)/4.
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2. The process converges and

P
(
Sg−τ ≥

1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

392

7
n
)
≤ n−c

and

P
(
Sg+τ ≥

1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

399

7
n
)
≤ n−c

Proof We can prove this fact by showing that if event 1 doesn’t happen, then event

2 will surely happen. That is, if we always have g ≤ min(b, w)/4 and never have

g > min(b, w)/4, then with probability 1−o(1) the process converges after O(n log n)

state-changing interactions. For notational convenience, let value f = u2 + 5n/2 so

the potential function is 1/f . We have

∆f =(u+ ∆u)2 + 5n/2− u2 − 5n/2

=u2 + 2u∆u+ (∆u)2 − u2

=2u(∆u) + (∆u)2

Because |∆u| ≤ 1 and |∆f | ≤ 2|u| + 1, we have |∆f/f | ≤ (2|u| + 1)/(u2 +

5n/2) = O(min(1/|u|, 2|u|/5n)), which is maximized at u = Θ(
√
n) so that |∆f/f | =

O(1/
√
n).

Let Ibw be the indicator of the event that neither of the two agents in a state-

changing interaction is in state gray. Let Igv be the indicator of the event that the

speaker in a state-changing interaction is in gray and the listener is in black or white.

Denote by p = b̃ + g̃/2 and by M = 2bw + 1
2
gv. The expected change of value f
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conditioned on each case of state-changing interactions is as follows.

E
(
∆f | Ig−

)
=p(2u+ 1) + (1− p)(−2u+ 1)

=1 + (2p− 1) · 2u

=1 + 2u · 2b+ g − n
n

=1 +
2u2

n

E
(
∆f | Ibw

)
=

1

2
(2u+ 1) +

1

2
(−2u+ 1) = 1

E (∆f | Igv) =(2u+ 1)
w

v
+ (−2u+ 1)

b

v

=1 + 2u · w − b
v

=1− 2u2

v

E
(
∆f | Ig+

)
=

2bw

M
+

gv

2M

(
1− 2u2

v

)
= 1− gu2

M

E
(
(∆f)2 | Ig−

)
=p(2u+ 1)2 + (1− p)(−2u+ 1)2

=p(4u2 + 4u+ 1) + (1− p)(4u2 − 4u+ 1)

=4u2 + 1 + (2p− 1) · 4u

=4u2 + 1 + 4u · 2b+ g − n
n

=4u2 + 1 +
4u2

n
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E
(
(∆f)2 | Ibw

)
=

1

2
(2u+ 1)2 +

1

2
(−2u+ 1)2 = 4u2 + 1

E
(
(∆f)2 | Igv

)
=
w

v
(2u+ 1)2 +

b

v
(−2u+ 1)2

=
w

v
(4u2 + 4u+ 1) +

b

v
(4u2 − 4u+ 1)

=4u2 + 1 +
w − b
v
· 4u

=4u2 + 1− 4u2

v

E
(
(∆f)2 | Ig+

)
=

2bw

M
(4u2 + 1) +

gv

2M

(
4u2 + 1− 4u2

v

)

=4u2 + 1− 2gu2

M

When g ≤ min(b, w)/4, we have

M =2bw +
1

2
gv

=2 min(b, w) ·max(b, w) +
1

2
g · (min(b, w) + max(b, w))

≥g ·
(

17

2
max(b, w) +

1

2
min(b, w)

)

As 4g = 4(n−min(b, w)−max(b, w)) ≤ min(b, w) ≤ max(b, w), we know

4

5
(n−max(b, w)) ≤ min(b, w) ≤ max(b, w)
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Note that function 17
2
x + 1

2
y given 4

5
(1 − x) ≤ y ≤ x and y ≥ 0 and x ≤ 1 is at

least 4. Thus we have M ≥ 4gn. Let z = u2/n.

E
(

∆(1/f)

1/f
| Ig−

)

=E

−∆f

f
+

(
∆f

f

)2

+O(n−3/2) | Ig−


=− 1 + 2u2/n

u2 + 5n/2
+

4u2 + 1 + 4u2/n

(u2 + 5n/2)2
+O(n−3/2)

=
(
u2 + 5n/2

)−2
·
(
−(1 + 2u2/n)(u2 + 5n/2) + 4u2 + 1 + 4u2/n

)
+O(n−3/2)

=
(
u2 +

5n

2

)−2
(
−u2 − 5n

2
− 2u2

n

(
u2 +

5n

2

)
+ 4u2 + 1 +

4u2

n

)
+O(n−3/2)

=
(
u2 +

5n

2

)−2
(

3u2 − 5n

2
+ 1 +

(
−u2 − 5n

2
+ 2

)
· 2u2

n

)
+O(n−3/2)

=n−2(z + 5/2)−2(3zn− 5n/2 + 1 + 2z(−zn− 5n/2 + 2)) +O(n−3/2)

=n−2(z + 5/2)−2((3z − 5/2)n+ 1− 2z(z + 5/2)n+ 4z) +O(n−3/2)

=
1

n
· −2z2 + (3− 5)z − 5/2

(z + 5/2)2
+

1

n2
· 1 + 4z

(z + 5/2)2
+O(n−3/2)

where the first equality is due to ∆(1/f)
1/f

=
∑+∞
i=1 (−∆f/f)i for |∆f/f | < 1. Note that

function −2x2−2x−5/2
(x+5/2)2 given x ≥ 0 is at most −2/5 and function 1+4x

(x+5/2)2 given x ≥ 0

is at most 4/9. Thus we have

E
(

∆(1/f)

1/f
| Ig−

)
≤ −2

5
n−1 +

4

9
n−2 +O(n−3/2) = −2

5
n−1 +O(n−3/2)
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In the other case when Ig+ = 1, we have

E
(

∆(1/f)

1/f
| Ig+

)

=E

−∆f

f
+

(
∆f

f

)2

+O(n−3/2) | Ig+


=− 1− gu2/M

u2 + 5n/2
+

4u2 + 1− 2gu2/M

(u2 + 5n/2)2
+O(n−3/2)

=
(
u2 + 5n/2

)−2
·
(
−(1− gu2/M)(u2 + 5n/2) + 4u2 + 1− 2gu2/M

)
+O(n−3/2)

=
(
u2 +

5n

2

)−2
(
−u2 − 5n

2
+
gu2

M

(
u2 +

5n

2

)
+ 4u2 + 1− 2gu2

M

)
+O(n−3/2)

=
(
u2 +

5n

2

)−2
(

3u2 − 5n

2
+ 1 +

(
u2 +

5n

2
− 2

)
· gu

2

M

)
+O(n−3/2)

≤
(
u2 +

5n

2

)−2
(

3u2 − 5n

2
+ 1 +

(
u2 +

5n

2
− 2

)
· u

2

4n

)
+O(n−3/2)

=n−2(z + 5/2)−2(3zn− 5n/2 + 1 + z(zn+ 5n/2− 2)/4) +O(n−3/2)

=n−2(z + 5/2)−2((3z − 5/2)n+ 1 + z(z + 5/2)n/4− z/2) +O(n−3/2)

=
1

n
· z

2/4 + (3 + 5/8)z − 5/2

(z + 5/2)2
+

1

n2
· 1− z/2

(z + 5/2)2
+O(n−3/2)

Note that function x2/4+29x/8−5/2
(x+5/2)2 given x ≥ 0 is at most 1001/2560 and function

1−x/2
(x+5/2)2 given x ≥ 0 is at most 4/25. Thus we have

E
(

∆(1/f)

1/f
| Ig+

)
≤ 1001

2560
n−1 +

4

25
n−2 +O(n−3/2) =

1001

2560
n−1 +O(n−3/2)

According to Lemma 2.3, we can see the stochastic process {Lt} given by

Lt =
exp

(
(0.399Sg−t − 0.392Sg+t )/n

)
u2
t + 5n/2
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is a supermartingale if we always have g ≤ min(b, w)/4. Because u2 + 5n/2 ≤

n2 + 5n/2,

E
(

exp

(
0.399Sg−τ − 0.392Sg+τ

n

))
≤ 2(n2 + 5n/2)

5n
=

2n

5
+ 1

and then

P
(
0.399Sg−τ − 0.392Sg+τ ≥ n log(2n/5 + 1) + cn log n

)
≤ n−c

Because at any number of interactions t, the number of gray tokens the process has

produced can’t be more than the number of gray tokens the process has consumed

plus n, we have Sg+τ ≤ Sg−τ + n, giving the bound

P
(
0.399Sg−τ − 0.392(Sg−τ + n) ≥ n log(2n/5 + 1) + cn log n

)
≤ n−c

and

P
(
Sg−τ ≥

1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

392

7
n
)
≤ n−c

which implies

P
(
Sg+τ ≥

1000

7

(
n log

(
2

5
n+ 1

)
+ cn log n

)
+

399

7
n
)
≤ n−c

which completes the proof. �

Now we have shown that if the population starts from the region {g ≤ min(b, w)/4},

within O(n log n) state-changing steps, it will either reach consensus or leave the

region with high probability. While once the process leaves the region and has

g > min(b, w)/4, we prove that within the next O(n log n) state-changing interac-
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interaction b w g g − w
(b,+, w) −1 +1 +2

(w,−, b) −1 +1 +1

(b,+, g) +1 −1 −1

(w,−, g) +1 −1 −2

(g,+, g) +1 −1 −1

(g,−, g) +1 −1 −2

(g,+, w) −1 +1 +2

(g,−, b) −1 +1 +1

Table 2.2: Changes in (g − w) by state-changing interactions

tions, either the population will never enter the region {g < min(b, w)/10}, or it will

enter the region {min(b, w) = O(log n)
∧
g = O(log n)} (Lemma 2.5 and Corollary

2.1).

Lemma 2.5 If the process starts with g > min(b, w)/4, then with probability 1 −

n−ω(1), for any polynomial T = poly(n), we have either gt ≥ min(bt, wt)/10 holds for

all 1 ≤ t ≤ T or at some stage 1 ≤ t ≤ T , the process reaches min(b, w) = O(log n),

g = O(log n) and max(b, w) = n−O(log n).

Proof Again we can show this fact by showing that if latter event doesn’t happen,

former event will happen. Let’s consider how the value of (g−min(b, w)) changes in

different state-changing interactions. Without loss of generality, assume that at the

current time step max(b, w) = b and min(b, w) = w. Let N = ng+ 2bw+ 1
2
gv. Table

2.2 lists all the cases.

Thus

P(∆(g − w) = +1 | Isc) =
(
bw +

1

2
gb
)
/N =

n2

N
(1− g̃ − w̃)

(
w̃ +

1

2
g̃
)
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P(∆(g − w) = −1 | Isc) =
(
bg +

1

2
g2
)
/N

=
n2

N

(
(1− w̃ − g̃)g̃ +

1

2
g̃2
)

=
n2

N

(
(1− w̃)g̃ − 1

2
g̃2
)

P(∆(g − w) = +2 | Isc) =
(
bw +

1

2
gw
)
/N

=
n2

N

(
w̃
(

1− g̃ − w̃ +
1

2
g̃
))

=
n2

N

(
w̃
(

1− w̃ − 1

2
g̃
))

P(∆(g − w) = −2 | Isc) =
n2

N

(
w̃g̃ +

1

2
g̃2
)

Note that if the process enters the region {g < min(b, w)/10} from the initial

region {g > min(b, w)/4}, it must pass through the region {min(b, w)/10 ≤ g ≤

min(b, w)/4}. We show that even passing through this intermediate region already

requires strictly more than a polynomial number of state-changing interactions, let

alone the whole fleeing path.

Note that function (1−x−y)(x+y/2)
(1−x)y−y2/2

conditioned on 0 ≤ x ≤ (1 − y)/2 and x/10 ≤

y ≤ x/4 is always ≥ 4. Also, function x(1−x−y/2)
xy+y2/2

conditioned on 0 ≤ x ≤ (1 − y)/2

and x/10 ≤ y ≤ x/4 is always ≥ 4. Thus when w/10 ≤ g ≤ w/4, we always have

P(∆(g − w) = +1 | Isc)
P(∆(g − w) = −1 | Isc)

≥ 4 and
P(∆(g − w) = +2 | Isc)
P(∆(g − w) = −2 | Isc)

≥ 4

The value of (g − w) never stays put with Isc = 1.

When min(b, w) = ω(log n), the length of this gap min(b, w)/4−min(b, w)/10 =

3 min(b, w)/20 is also ω(log n). Let length ` = ω(log n). Consider the following

one-dimensional random walk on integers from 0 to `. State 0 is a reflecting barrier
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always pushing the walk back to state 1. At any state 1 ≤ i ≤ ` − 1, the forward

probability is 1/5 and the backward probability is 4/5. The walk starts at state 1

and we are interested in the first hitting time of state `.

The number of steps until this random walk first hits state ` provides an upper

bound on the number of interactions needed by the process to flee from the region

{g > min(b, w)/4} and enter the region {g < min(b, w)/10}, conditioned on the event

that min(b, w) = ω(log n) always holds. Now we show it needs strictly more than a

polynomial number of steps with high probability.

Note that every time that the walk hits state 0, the reflecting barrier “resets” it to

state 1. Everything the walk does between two consecutive “resets” can be viewed as

a Bernoulli trial. And we shall show with probability 1− o(1), this Bernoulli process

needs strictly more than polynomially many trials to succeed. Here for each trial,

hitting 0 before hitting ` is a failure and otherwise it succeeds.

Denote by βi = P(hitting state 0 before hitting state ` | starting at state i).

Then β0 = 1 and β` = 0. The probability of failure is β1.

For any 1 ≤ i ≤ `− 1, βi = βi+1/5 + 4βi−1/5. Define

∆βi =βi − βi+1

=βi −
1

5
βi+2 −

4

5
βi

=
1

5
(βi − βi+2)

=
1

5
(βi − βi+1 + βi+1 − βi+2)

=
1

5
∆βi +

1

5
∆βi+1

which implies 4
5
∆βi = 1

5
∆βi+1 or ∆βi+1 = 4∆βi. Thus ∆βi = 4i∆β0 = 4i(1− β1).
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Note that

`−1∑
i=0

∆βi = β0 − β1 + β1 − β2 + . . .+ β`−1 − β` = β0 − β` = 1

Then
`−1∑
i=0

∆βi = (1− β1)
`−1∑
i=0

4i = (1− β1) · 4` − 1

3
= 1

Therefore, (1− β1)(4` − 1) = 3 and β1 = 1− 3/(4` − 1).

Let c be any arbitrarily large constant. The probability that all the first nc trials

fail is

βn
c

1 =
(

1− 3

4` − 1

)nc

=
(

1− 1

nω(1)

)nc

= exp
(
−nc−ω(1)

)
∼ 1− nc−ω(1)

The probability goes to 1 in order nω(1)−c. Thus with probability 1− O(n−ω(1)) the

random walk won’t hit state ` within a polynomial number of steps.

Therefore, we can have g < min(b, w)/10 only when min(b, w) = O(log n) hap-

pens. In this case g < min(b, w)/10 = O(log n) too so the other event happens. �

Because in this problem we are only interested in the next O(n log n) state-

changing interactions, we have

Corollary 2.1 If the process starts with g > min(b, w)/4, then with probability 1−

n−ω(1), for any T = O(n log n), we have either gt ≥ min(bt, wt)/10 holds for all

1 ≤ t ≤ T or at some stage 1 ≤ t ≤ T , the process reaches min(b, w) = O(log n),

g = O(log n) and max(b, w) = n−O(log n).

Next we will show the process also converges fast within the region {g ≥ min(b, w)·

1/10}.
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Lemma 2.6 If g ≥ min(b, w)/10 holds for a polynomial number of state-changing

interactions, then for any constant c > 0, with probability 1− n−c, after Oc(n log n)

state-changing interactions, the process will converge and we have

P
(
Sscτ ≥ 87n log

(
1

64
n+ 1

)
+ 87cn log n

)
≤ n−c

P
(
Sg+τ ≥

87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n
)
≤ n−c

and

P
(
Sg−τ ≥

87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n
)
≤ n−c

Proof In this proof we use the potential function 1/(u2 + 64n) and denote by f =

u2 + 64n. Similarly we have ∆f = 2u(∆u) + (∆u)2 and |∆f/f | = O(1/
√
n). Recall

that N = ng + 2bw + 1
2
gv. We have

E (∆f | Isc) =
ng

N

(
1 +

2u2

n

)
+

2bw

N
+
gv

2N

(
1− 2u2

v

)

=1 + 2u2 ·
(
ng

N
· 1

n
− gv

2N
· 1

v

)
=1 +

gu2

N

E
(
(∆f)2 | Isc

)
=
ng

N

(
4u2 + 1 +

4u2

n

)
+

2bw

N
(4u2 + 1) +

gv

2N

(
4u2 + 1− 4u2

v

)

=4u2 + 1 + 4u2
(
ng

N
· 1

n
− gv

2N
· 1

v

)
=4u2 + 1 +

2gu2

N

When g ≥ min(b, w)/10, we have bw = min(b, w) ·max(b, w) ≤ min(b, w) · n ≤ 10bn

and N = ng + 2bw + gv/2 ≤ gn + 20gn + gn/2 = 43gn/2. Again let z = u2/n. We
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have

E
(

∆(1/f)

1/f
| Isc

)

=E

−∆f

f
+

(
∆f

f

)2

+O(n−3/2) | Isc


=− 1 + gu2/N

u2 + 64n
+

4u2 + 1 + 2gu2/N

(u2 + 64n)2
+O(n−3/2)

=
(
u2 + 64n

)−2
·
(
−(1 + gu2/N)(u2 + 64n) + 4u2 + 1 + 2gu2/N

)
+O(n−3/2)

=
(
u2 + 64n

)−2
(
−u2 − 64n− gu2

N

(
u2 + 64n

)
+ 4u2 + 1 +

2gu2

N

)
+O(n−3/2)

=
(
u2 + 64n

)−2
(

3u2 − 64n+ 1 +
(
−u2 − 64n+ 2

)
· gu

2

N

)
+O(n−3/2)

≤
(
u2 + 64n

)−2
(

3u2 − 64n+ 1 +
(
−u2 − 64n+ 2

)
· 2u2

43n

)
+O(n−3/2)

=n−2(z + 64)−2(3zn− 64n+ 1 + 2z(−zn− 64n+ 2)/43) +O(n−3/2)

=n−2(z + 64)−2((3z − 64)n+ 1− 2z(z + 64)n/43 + 4z/43) +O(n−3/2)

=
1

n
· −2z2/43 + (3− 128/43)z − 64

(z + 64)2
+

1

n2
· 1 + 4z/43

(z + 64)2
+O(n−3/2)

Note that function −2x2/43+x/43−64
(x+64)2 given x ≥ 0 is at most −22015/1893376 <

−1/87 and function 1+4x/43
(x+64)2 given x ≥ 0 is at most 4/9159. Thus from Lemma 2.3

we have the stochastic process {Kt} given by

Kt =
exp(Ssct /(87n))

u2
t + 64n

is a supermartingale if we always have g ≥ min(b, w)/10. This gives us

E (exp(Sscτ /(87n))) ≤ (n2 + 64n)/(64n) = n/64 + 1
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For Markov’s inequality

P (exp(Sscτ /(87n)) ≥ nc(n/64 + 1)) ≤ n−c

and

P (Sscτ /87 ≥ n log(n/64 + 1) + cn log n) ≤ n−c

P
(
Sscτ ≥ 87n log

(
1

64
n+ 1

)
+ 87cn log n

)
≤ n−c

Since Sscτ = Sg+τ + Sg−τ , Sg+τ ≤ Sg−τ + n and Sg−τ ≤ Sg+τ + n, we have

P
(
Sg+τ ≥

87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n
)
≤ n−c

and

P
(
Sg−τ ≥

87

2
n log

(
1

64
n+ 1

)
+

87

2
cn log n+

1

2
n
)
≤ n−c

which completes the proof. �

The only case left is when the protocol enters the region {min(b, w) = O(log n)
∧

g = O(log n)}. Recall that p = b̃ + g̃/2. Once it enters this region, we will have

p = O(log n/n) or 1− p = O(log n/n).

Lemma 2.7 If the process starts with p = O(log n/n) or 1 − p = O(log n/n), then

with probability 1 − O
(

logn
3√n

)
the population will reach consensus within O(n) state-

changing interactions.

Proof The proof is completed by worst-case analyses. Without loss of generality,

assume 1 − p = O(log n/n) and we will show with high probability p will converge
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to 1 within O(n) state-changing interactions. In this case, we have

P
(
pt+1 = pt +

1

2n
| Isc

)
=

pt(1− x̃t)
pt(1− x̃t) + (1− pt)(1− ỹt)

and

P
(
pt+1 = pt −

1

2n
| Isc

)
=

(1− pt)(1− ỹt)
pt(1− x̃t) + (1− pt)(1− ỹt)

Note that xt ≤ pt. We have

P (pt+1 = pt + 1/2n | Isc)
P (pt+1 = pt − 1/2n | Isc)

≥ pt(1− pt)
1− pt

= pt

To provide an upper bound on the moves of p in the region {1−2 3
√
n/(2n) ≤ p ≤

1}, consider the following one-dimensional random walk on integers from 0 to 2 3
√
n.

(Obviously each state i corresponds to the configuration p = 1 − (2 3
√
n − i)/(2n).)

State 0 is a reflecting barrier always pushing the walk back to state 1. At any state

1 ≤ i ≤ 2 3
√
n − 1, the forward probability is p/(p + 1) = 1−(2 3√n−i)/(2n)

2−(2 3√n−i)/(2n)
and the

backward probability is 1/(p + 1) = 1
2−(2 3√n−i)/(2n)

. The walk starts at some state

k = 2 3
√
n − O(log n). Denote by ti the number of steps needed to first hit state

2 3
√
n, starting at state i. And let hi be the number times hitting state 0 before

reaching state 2 3
√
n, starting at state i. Then the total number of state-changing

interactions for the process starting from this region to entirely converge is at most

hk ·O(n log n) + tk.

Though this walk is already simple, we can further simplify it to the same walk

with fixed forward probability q+ = 1−n−2/3

2−n−2/3 and backward probability q− = 1
2−n−2/3 ,

which also provides an upper bound, because in the region {1− 2 3
√
n/(2n) ≤ p ≤ 1}

we always have p ≥ 1 − n−2/3. We overload the notation ti and hi for this simpler

walk. Denote by t̄i = Eti and let ∆t̄i be the expected number of steps the walk takes
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from state i− 1 to state i. Then ∆t̄1 = 1 due to the reflecting barrier at state 0. For

i ≥ 2, we have

∆t̄i =1 + q+ · 0 + q− · E(number of steps from state i− 2 to state i)

=1 + q−(∆t̄i−1 + ∆t̄i)

which implies

∆t̄i =
1

q+

+
q−
q+

∆t̄i−1

=
1

q+

+
q−
q+

(
1

q+

+
q−
q+

∆t̄i−2

)

=
1

q+

+
q−
q+

(
1

q+

+
q−
q+

(
1

q+

+
q−
q+

∆t̄i−3

))

= . . .

=
1

q+

+
q−
q2

+

+
q2
−
q3

+

+ . . .+
qi−2
−

qi−1
+

+
qi−1
−

qi−1
+

=
1

q+

(
1 +

q−
q+

+ . . .+
qi−2
−

qi−2
+

)
+

(
q−
q+

)i−1

Note that for any 0 ≤ i ≤ 2 3
√
n, we have

(
1− n−

2
3

)i
≥
(
1− n−

2
3

)2 3√n
=

((
1− n−

2
3

)n 2
3

)2n−
1
3

= exp
(
−2/ 3
√
n
)
→ 1

Thus all
(
q−
q+

)i
→ 1 for large n. Then we have ∆t̄i = 2(i − 1) + 1 = 2i − 1. Hence,

t̄k =
∑ 3√n
i=k+1 ∆t̄i = Θ( 3

√
n log n). Markov’s inequality gives

P(tk ≥ n) ≤ t̄k
n

= Θ

(
log n

n2/3

)
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Now if we can show with high probability hk = O(1) then we are done. But in

fact we can do much better: with high probability hk = 0. Denote by γi = P(hi = 0).

Then for 1 ≤ i ≤ 2 3
√
n− 1, γi = q+γi+1 + q−γi−1. Define

∆γi =γi+1 − γi

=q+γi+2 + q−γi − γi

=q+(γi+2 − γi)

=q+(γi+2 − γi+1 + γi+1 − γi)

=q+∆γi+1 + q+∆γi

which implies ∆γi+1 = q−
q+

∆γi and ∆γi =
(
q−
q+

)i
∆γ0. Note that γ2 3√n = 1 and γ0 = 0.

2 3√n−1∑
i=0

∆γi = γ1 − γ0 + γ2 − γ1 + . . .+ γ2 3√n − γ2 3√n−1 = γ2 3√n − γ0 = 1

Then
∑2 3√n−1
i=0 ∆γi = 2 3

√
n∆γ0 = 1 so ∆γ0 = 1/(2 3

√
n). And we have

γk =
k−1∑
i=0

∆γi =
k

2 3
√
n

=
2 3
√
n−O(log n)

2 3
√
n

= 1−O
(

log n
3
√
n

)

Thus with probability 1−O
(

logn
3√n

)
, we have hk = 0, which means with high prob-

ability, a population starting from region {min(b, w) = O(log n)
∧
g = O(log n)} will

reach consensus after O(n) state-changing interactions without leaving this region. �

Combining all the lemmas we have so far yields Lemma 2.2. Note that the error

bounds in these lemmas are all at most n−c except in Lemma 2.7 where the error

bound is O
(

logn
3√n

)
, which dominates the other error terms (with a tiny increase in

the constant) when c is large. Also note that the constants in the O’s in Lemma
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2.5 (“min(b, w) = O(log n) and g = O(log n)”) and Lemma 2.7 (“min(p, 1 − p) =

O(log n/n)” ) can be chosen arbitrarily. We simply make them consistent, and choose

a proper value to have the error bound c logn
3√n as claimed in Lemma 2.2. Eventually,

we have Lemma 2.2. �

2.2.3 Bounding Scτ = O(n log n)

In this section we bound the number of interactions Scτ in the central region where

max(b̃, g̃, w̃) < 3/4, using the total number of state-changing interactions Sscτ .

Lemma 2.8 With probability 1−o(1), Scτ = O(n log n). In addition, for any constant

c > 0, we have

P(Scτ ≥ 9Sscτ + cn log n) ≤ n−c

Proof We show that the stochastic process {Ct} given by

Ct = exp((Sct − 9Ssct )/n)

is a supermartingale. When Ict = 0, the value of Ct cannot increase so obviously

E(Ct | Ft−1
∧
Ict = 0) ≤ Ct−1. When Ict = 1, i.e., max(b̃, g̃, w̃) < 3/4, at least two of

w̃, b̃ and g̃ must be at least 1/8:

• If b̃ and w̃ are both ≥ 1/8, then P(Ig+ = 1) = (2bw+ gv/2)/n2 ≥ 1/8, because

function 2xy + (x + y)(1 − x − y)/2 given 1/8 ≤ x, y ≤ 3/4 and x + y ≤ 1

is at least 1/8. Then the probability of the event that the current interaction

increases Sct but not Sg−t or Sg+t and multiplies Ct by exp(1/n) is at most 7/8.

The probability of the event that the current interaction increases both Sct and

Sg+t but not Sg−t and multiplies Ct by exp(−8/n) is at least 1/8.
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• If g̃ ≥ 1/8, we have P(Ig− = 1) = ng/n2 ≥ 1/8. Then the probability of

the event that the current interaction increases Sct but not Sg−t or Sg+t and

multiplies Ct by exp(1/n) is at most 7/8. The probability of the event that the

current interaction increases both Sct and Sg−t but not Sg+t and multiplies Ct

by exp(−8/n) is at least 1/8.

This gives the bound

E(Ct | Ft−1

∧
Ict ) ≤Ct−1

(
7

8
exp

(
1

n

)
+

1

8
exp

(
− 8

n

))
=
(

7

8

(
1 +

1

n

)
+

1

8

(
1− 8

n

)
+O(n−2)

)
=Ct−1

(
1− 1

8
n−1 +O(n−2)

)
<Ct−1

where the first equality is due to the Taylor expansion of the exponential function.

Thus from Lemma 2.3 {Ct} is a supermartingale and

P(Scτ ≥ 9Sscτ + cn log n) ≤ n−c

which completes the proof. �

2.2.4 Bounding Sgτ = O(n log n)

In this section we bound the number of interactions Sgτ in the corner region where

g̃ ≥ 3/4, using the total number of g-decreasing interactions Sg−τ .

Lemma 2.9 With probability 1 − o(1), Sgτ = O(n log n). In addition, for any con-

41



stant c > 0, we have

P
(
Sgτ ≥ 26Sg−τ + 6cn log n+ 6n log(2n+ 1) +

45

2
n
)
≤ n−c

Proof In the large-g region, we choose the potential function 1/(2v + 1) and let

f = 2v+ 1. When v = 0, the whole population is at state g and the next interaction

is surely (g, g). Then

∆(1/f)

1/f
= 1 ·

(
1

2× 1 + 1
− 1

2× 0 + 1

)
= −2

3
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When v ≥ 1, we have expectation

E
(

∆(1/f)

1/f

)

=E
(

(2v + 1)
(
Ig−

(
1

2v + 3
− 1

2v + 1

)
+ Ig+

(
1

2v − 1
− 1

2v + 1

)))
=E

(
− 2Ig−

2v + 3
+

2Ig+

2v − 1

)

=n−2

(
− 2ng

2v + 3
+

2(2bw + gv/2)

2v − 1

)

=(n2(2v + 3)(2v − 1))−1 · (−2ng(2v − 1) + (4bw + gv)(2v + 3))

=(n2(4v2 + 4v − 3))−1 · (−4ngv + 2ng + 8bwv + 12bw + 2gv2 + 3gv)

≤(n2(4v2 + 4v − 3))−1 · (−4ngv + 2ng + 8v · v2/4 + 12v2/4 + 2gv2 + 3gv)

=(n2(4v2 + 4v − 3))−1 · (−4ngv + 2ng + 2v3 + 3v2 + 2gv2 + 3gv)

=
−4n(n− v)v + 2n(n− v) + 2v3 + 3v2 + 2(n− v)v2 + 3(n− v)v

n2(4v2 + 4v − 3)

=
−4n2v + 4nv2 + 2n2 − 2nv + 2v3 + 3v2 + 2nv2 − 2v3 + 3nv − 3v2

n2(4v2 + 4v − 3)

=
−4n2v + 6nv2 + 2n2 + nv

n2(4v2 + 4v − 3)

=
−4nv + 6v2 + 2n+ v

n(4v2 + 4v − 3)

=
(2− 4v)n+ 6v2 + v

n(4v2 + 4v − 3)

When v ≥ 1, we have 2− 4v < 0. Since v = n− g ≤ n/4, we have n ≥ 4v and

E
(

∆(1/f)

1/f

)
≤ (2− 4v) · 4v + 6v2 + v

n(4v2 + 4v − 3)
≤ −1

5
n−1

This is because function (−10x2 + 9x)/(4x2 + 4x− 3) given x ≥ 1 is at most −1/5.
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When the population is not in the large-g region, i.e., g̃ < 3/4, we have

∆(1/f)

1/f
= − 2Ig−

2v + 3
+

2Ig+

2v − 1
≤ − 2Ig−

2n+ 3
+

2Ig+

2n/4− 1

Hence, from Lemma 2.3 the stochastic process {Gt} given by

Gt =
exp

((
1
6
Sgt +

∑t
i=1

(
2
3
Ig−i − 5Ig+i

)
(1− Igi )

)
/n
)

2vt + 1

is a supermartingale process. This gives us the bound

E

exp
((

1
6
Sgτ +

∑τ
i=1

(
2
3
Ig−i − 5Ig+i

)
(1− Igi )

)
/n
)

2n+ 1

 ≤ EGτ ≤ G0 ≤ 1

Again for Markov’s inequality,

P
(

1

6
Sgτ +

τ∑
i=1

(
2

3
Ig−i − 5Ig+i

)
(1− Igi ) ≥ cn log n+ n log(2n+ 1)

)
≤ n−c

Note that
∑t
i=1 I

g−
i (1 − Igi ) is the number of Ig− interactions that occur in the

region {g < 3n/4} and
∑t
i=1 I

g+
i (1− Igi ) is the number of Ig+ interactions that occur

in the region {g < 3n/4}. If the process never leaves the region after entering it,

we have
∑t
i=1 I

g+
i (1 − Igi ) ≤ ∑t

i=1 I
g−
i (1 − Igi ) + 3n/4. If it passes the boundary of

the region more than once, because every time that the process leaves the region it

must have g = 3n/4 − 1 and every time that it returns to the region it must have

g = 3n/4 − 1 too, we still have
∑t
i=1 I

g+
i (1 − Igi ) ≤ ∑t

i=1 I
g−
i (1 − Igi ) + 3n/4. In

addition,
∑t
i=1 I

g−
i (1− Igi ) ≤ Sg−t so we have

P
(

1

6
Sgτ +

τ∑
i=1

(
−13

3
Ig−i

)
(1− Igi )− 15

4
n ≥ cn log n+ n log(2n+ 1)

)
≤ n−c
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P
(

1

6
Sgτ −

13

3
Sg−τ ≥ cn log n+ n log(2n+ 1) +

15

4
n
)
≤ n−c

and

P
(
Sgτ ≥ 26Sg−τ + 6cn log n+ 6n log(2n+ 1) +

45

2
n
)
≤ n−c

which completes the proof. �

2.2.5 Bounding Sbτ = O(n log n) and Swτ = O(n log n)

We first bound the number of interactions Sbτ in the corner region where b̃ ≥ 3/4.

Then the upper bound for the number of interactions Swτ in the other corner region

where w̃ ≥ 3/4 follows in a symmetric way.

Lemma 2.10 With probability 1− o(1), Sbτ = O(n log n). In addition, for any con-

stant c > 0, we have

P
(
Sbτ ≥ 153Sg−τ + 85Sg+τ + 17cn log n+ 17n log(3n+ 1)

)
≤ n−c

Proof In the large-b region, we choose the potential function f = 3w+ g+ 1. Table

2.3 lists the changes in f by different types of interactions. Suppose 3/4 ≤ b̃ < 1 so

max(g, w) ≥ 1. (The case when b̃ = 1 is convergence.) Again we need to bound the
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interaction b w g 3w + g + 1

(b,+, w) −1 +1 −2

(w,−, b) −1 +1 +1

(b,+, g) +1 −1 −1

(w,−, g) +1 −1 +2

(g,+, g) +1 −1 −1

(g,−, g) +1 −1 +2

(g,+, w) −1 +1 −2

(g,−, b) −1 +1 +1

Others 0

Table 2.3: Changes in (3w + g + 1)

expectation E (∆f/f):

E
(

∆f

f

)
=(n2(3w + g + 1))−1 ·

(
−2bw + bw − bg + 2gw − 1

2
g2 + g2 − gw +

1

2
bg
)

=(n2(3w + g + 1))−1 ·
(
−bw − 1

2
bg + gw +

1

2
g2
)

=(n2(3w + g + 1))−1 ·
(
−1

2
g(2w + g) +

1

2
g(2w + g)

)
≤− b

2n2
· 2w + g

3w + g + 1
+

g(2w + g)

2n2(3w + g)

=
1

2n

(
−b̃ · 2w + g

3w + g + 1
+
g̃(2w̃ + g̃)

3w̃ + g̃

)

≤ 1

2n

(
−3

4
· 1

2
+

1

4

)
=− 1

16n

where the last inequality comes from the facts that function (2y+x)/(3y+x+1) given

x, y ≥ 0 and max(x, y) ≥ 1 is at least 1/2, and that function (x(2y + x))/(3y + x)

given x, y ≥ 0 and x+ y ≤ 1/4 is at most 1/4.
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When the population is not in the large-b region, i.e., b̃ < 3/4, we have w+g ≥ n/4

and

∆f

f
≤ 2Ig− + Ig+

3w + g + 1
≤ 2Ig− + Ig+

n/4
= (8Ig− + 4Ig+)n−1

Hence, from Lemma 2.3 the stochastic process {Bt} given by

Bt = (3wt + gt + 1) · exp

((
1

17
Sbt −

t∑
i=1

(
9Ig−i + 5Ig+i

)
(1− Ibi )

)
/n

)

is a supermartingale. This gives us the bound

E
(

exp

((
1

17
Sbτ −

τ∑
i=1

(
9Ig−i + 5Ig+i

)
(1− Ibi )

)
/n

))
≤ EBτ ≤ B0 ≤ 3n+ 1

Again for Markov’s inequality and
∑t
i=1 I

g−
i (1−Ibi ) ≤ Sg−t and

∑t
i=1 I

g+
i (1−Ibi ) ≤ Sg+t ,

we have

P
(

1

17
Sbτ − 9Sg−τ − 5Sg+τ ≥ cn log n+ n log(3n+ 1)

)
≤ n−c

and

P
(
Sbτ ≥ 153Sg−τ + 85Sg+τ + 17cn log n+ 17n log(3n+ 1)

)
≤ n−c

which completes the proof. �

Then the number of interactions Swτ in the other region where w̃ ≥ 3/4 can be

bounded in a symmetric way using the potential function f = 3b+ g + 1.

Lemma 2.11 With probability 1 − o(1), Swτ = O(n log n). In addition, for any

constant c > 0, we have

P
(
Swτ ≥ 153Sg−τ + 85Sg+τ + 17cn log n+ 17n log(3n+ 1)

)
≤ n−c
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Finally, combining all the above lemmas implies a bound on τ = Scτ +Sbτ +Sgτ +Swτ

that

P (τ ≥ 96930(c+ 1)n log n) ≤ max

(
9n−c,

c log n
3
√
n

)

As we explained in Section 2.1, let τ = min(τ∗, 105(c + 1)n log n). This makes τ a

well-defined stopping time and eventually, we have Theorem 2.1. Again the O
(

logn
3√n

)
error term is because all the lemmas give error bounds at most O(n−c) except Lemma

2.7, which gives an O
(

logn
3√n

)
error bound and dominates the other error terms (with

a tiny increase in the constant) when c is large. �

2.3 Binary Signaling Consensus with r > 2

In the previous section we have provided a comprehensive study of the binary signal-

ing consensus process with r = 2. This is a reasonable start to study binary signaling

consensus, as it is common to assume a large population n with a relatively small

resistance. However, to understand the model in depth, we have to investigate the

general case with larger r.

In this section we allow resistance r to be arbitrarily large, i.e., not necessarily a

small constant. Denote by ni the population of confidence level i and by xi = ni/n

the corresponding proportion. Any configuration over the society can be represented

as a (r + 1)-dimensional vector ~x ∈ [0, 1]r+1 where
∑r
i=0 xi = 1. Denote by p =∑r

i=0(i/r)xi. We say an interaction is a positive interaction if the initiator sends a

positive bit, and is a negative interaction otherwise. Then p is the probability of

occurrence of a positive interaction. The curve of p serves as a significant indicator

of the underlying status of the society. A large p implies the grammar is almost
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accepted and p = 1 is equivalent to positive convergence. A small p indicates the

grammar is close to extinction and p = 0 is equivalent to negative convergence. If

we expect a positive convergence, then a positive interaction is never harmful while

a negative interaction never helps, and vice versa for negative convergence.

Unfortunately, rigorous and comprehensive analysis of large-r case turns out to

be rather difficult. This is not surprising given that even the proof for the three-

state model is already very lengthy. The increase of degrees of freedom with large

r leads to high dimensionality of the configuration space and makes the process

more unpredictable. One path of p could correspond to a large number of possible

hidden configuration sequences, which does not permit us to generalize the potential

functions in Section 2.2 to large-r case. In addition, the fact that the corresponding

systems of differential equations do not have closed-form solutions (even for the r = 2

case) rules out arguments based on techniques involving reduction to a continuous

process in the limit. In fact we will see later an essential difference between the r = 2

case and the r > 2 case. In the r = 2 case p is always increasing or always decreasing

in the limit, but the curve of p in the r > 2 case doesn’t have this nice property and

is more unpredictable. This intrinsic difference is one indication of that we should

expect more difficulties in analyzing the large-r case. However, this doesn’t prevent

us from pursuing theoretical results for the general model.

2.3.1 Continuous-time binary signaling consensus

When the gap between the discrete time steps in the model goes to zero in the

limit, the communication process becomes continuous-time. To study this continuous

process, we use the asynchronous timing defined by Boyd et al. [BGPS06]. Each agent

in the society has a clock which ticks at the times of a Poisson process of rate r. The

inter-tick times at each agent are exponentials of rate r, independent across agents
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and over time. Equivalently, this corresponds to a single clock ticking according to a

Poisson process of rate nr at time tk, k ≥ 1, where {tk+1− tk} are i.i.d. exponentials

of rate nr. At time tk, an edge (i, j) is chosen uniformly at random from E and the

two chosen agents interact as defined in the model.

Note that the continuous process can be arbitrarily close to but never reaches

complete consensus where p = 0 or 1. A direct reason is that the derivative of

p goes to 0 as the process approaches to convergence. Therefore, instead of entire

convergence, we redefine consensus for the continuous process to be the region where

min(p, 1 − p) = O(1/(nr)), which is the closest point the process can achieve to

complete convergence. We say a configuration is monotone if it has x0 ≤ x1 ≤ . . . ≤

xr with at least one < in the middle, or x0 ≥ x1 ≥ . . . ≥ xr with at least one >

in the middle. The set of all monotone configuration is called the monotone region.

In this subsection we will show the fast convergence to consensus of the continuous

process inside the monotone region.

Theorem 2.2 If the initial configuration is monotone, then the continuous process

will reach consensus within O(r log nr) time.

The proof starts with derivation of the corresponding ODE system of the process,

which can be inferred by taking the limit of the expectation of the configuration

vector. This ODE system provides a mathematical formula of the vector field in

the configuration space. We show that the vector field anywhere at the boundary of

the monotone region always points inwards into the monotone region, which means

the process stays in the monotone region and never leaves. We divide the monotone

region into two sub-areas A+, the region where x0 ≤ x1 ≤ . . . ≤ xr with at least one

< in the middle, and A−, the region where x0 ≥ x1 ≥ . . . ≥ xr with at least one >

in the middle. The ODE system also gives us the differential equation for p, from
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which we prove that p is always increasing in A+ and is always decreasing in A−. It

suffices to show the convergence bound for A+, as it holds for A− symmetrically.

The above two facts already tell us that once the process enters A+, p will keep

increasing until convergence. What we need is a positive lower bound for the deriva-

tive of p that will lead to logarithmic convergence time. We need to take care of

two cases where dp/dt is very small. The first case is when the process is almost at

convergence and p is very close to 1. The other is when the configuration vector is

almost uniform and p is very close to 1/2. To do so, we divide the path of p from

1/2 + 1/(nr) to 1− 1/(nr) into two corresponding stages: from 2
3

to 1− 1
nr

and from

1
2

+ 1
nr

to 2
3
. We show the time for the former stage is O(log nr) and the time for the

latter is O(r log nr).

Lemma 2.12 Once the process enters the monotone region, it never leaves.

Proof The corresponding systems of differential equations of the process can be

inferred by taking the limit of the expectation of the configuration vector. For the

change of {xi} and p from time tick tk to the next time tick tk+1, we have



x0(tk+1) = x0(tk) + (1− p(tk)) · x1(tk) · 1
n
− p(tk) · x0(tk) · 1

n

xi(tk+1) = xi(tk) + p(tk) · xi−1(tk) · 1
n

+ (1− p(tk)) · xi+1(tk) · 1
n
− xi(tk) · 1

n

xr(tk+1) = xr(tk)− (1− p(tk)) · xr(tk) · 1
n

+ p(tk) · xr−1(tk) · 1
n

where the second equation is for 1 ≤ i ≤ r− 1. Dividing both sides of the equations
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by the infinitesimal 1/(nr) gives



x0(tk+1)− x0(tk)

1/(nr)
= r · ((1− p(tk)) · x1(tk)− p(tk) · x0(tk))

xi(tk+1)− xi(tk)
1/(nr)

= r · (p(tk) · xi−1(tk) + (1− p(tk)) · xi+1(tk)− xi(tk))

xr(tk+1)− xr(tk)
1/(nr)

= r · (p(tk) · xr−1(tk)− (1− p(tk)) · xr(tk))

Since nr is the rate of the Poisson process and we let 1/(nr) go to 0, we have the

ODE system



dx0

dt
= r · ((1− p) · x1 − p · x0)

dxi

dt
= r · (p · xi−1 + (1− p) · xi+1 − xi)

dxr

dt
= r · (p · xr−1 − (1− p) · xr)

This ODE system provides a mathematical formula for the vector field in the

configuration space. To complete the proof, we need to show that the vector field

anywhere at the boundary of the monotone region always points inwards into the

monotone region. Let A+ be the region where x0 ≤ x1 ≤ . . . ≤ xr with at least one

< in the middle and A− be the region where x0 ≥ x1 ≥ . . . ≥ xr with at least one >

in the middle. It is sufficient to prove the lemma for A+ and the proof for A− will

hold in a symmetric way.

For some 1 ≤ i ≤ r− 2, when the process is close to a point where xi+1− xi = 0,
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given that the process is in region A+, we have

d(xi+1 − xi)
dt

=r · (pxi + (1− p)xi+2 − xi+1 − pxi−1 − (1− p)xi+1 + xi)

=r · (p(xi − xi−1) + (1− p)(xi+2 − xi+1)) > 0

which pushes the system back to the area with xi+1 − xi > 0.

Notice that the probability of positive interaction p =
∑r
i=0(i/r)xi is always

greater than 1/2 in region A+. When the process is close to a point where x1−x0 = 0

or xr − xr−1 = 0, we have

d(x1 − x0)

dt
=r · (px0 + (1− p)x2 − x1 − (1− p)x1 + px0)

=r · (2px0 − x1 + (1− p)(x2 − x1)) > 0

and

d(xr − xr−)

dt
=r · (pxr−1 − (1− p)xr − pxr−2 − (1− p)xr + xr−1)

=r · (p(xr−1 − xr−2)− 2(1− p)xr + xr−1) > 0

which pushes the system back to the area with x1 − x0 > 0 and xr − xr−1 > 0 re-

spectively. Therefore, the continuous process will never escape from region A+ once

it is inside. We can similarly show symmetric results in the other region A−. �

Lemma 2.13 The derivative of p is always positive in region A+ and always negative

in region A−.

Proof From the above ODE system and p =
∑r
i=0(i/r)xi and

∑r
i=0 xi = 1, we can
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infer the differential equation for p, which turns out to be very neat.

dp

dt
= (1− xr)p− (1− x0)(1− p)

We can interpret the differential equation in a very simple way. With probability

p a positive interaction occurs. This is a stay-put interaction if and only if the

responder is already fully confident. Thus with conditional probability (1− xr) it is

a state-changing interaction and increases p by 1/(nr). Likewise, with probability

(1− x0)(1− p), we will have a negative interaction that decreases p by 1/(nr).

Again, it suffices to prove the statement for region A+. We have already shown

the process stays in A+ once it is inside. Denote by B =
∑r−1
i=1 (i/r)xi, which is the

contribution of x1 to xr − 1 to the probability p. Then p = B + xr and

dp

dt
=(1− xr)p− (1− x0)(1− p)

=(B + xr)(1− xr)− (1−B − xr)(1− x0)

=(2− xr − x0)B + (1− xr)(xr − 1 + x0)

Since 2 − xr − x0 and B ≥ ∑r−1
i=1 (i/r) · (1 − x0 − xr)/(r − 1) = (1 − x0 − xr)/2 in

region A+, we have

dp

dt
≥ (2− xr − x0) · 1

2
(1− x0 − xr) + (1− xr)(xr − 1 + x0)

Region A+ also gives 1 =
∑r
i=0 xi ≥ x0 + (r − 1)x0 + xr and 0 ≤ x0 ≤ (1 − xr)/r.

Note that function (2− x− y)(1− x− y)/2 + (1− x)(x+ y− 1) for x ≥ y, x+ y < 1

and 0 ≤ y ≤ (1 − x)/2 is always non-negative. The only case where this func-

tion is 0 is when x = y but we always have x0 < xr in A+. For any r ≥ 2,
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x0 ≤ (1− xr)/r ≤ (1− xr)/2. Thus, we always have dp/dt > 0 inside region A+. In

a symmetric way, we know dp/dt < 0 inside region A−. �

Proof (of Theorem 2.2) Again without loss of generality, we only study the region

A+. We know the probability of positive interaction p is always greater than 1/2

inside A+ and we expect a positive convergence p → 1. The above two lemmas

already tell us that once the process enters A+, p will keep increasing until conver-

gence. What we need is a positive lower bound for dp/dt that will lead to the desired

convergence time. Let ε = p− 1/2 and δ = 1− p. There are two cases where dp/dt

is very small.

1. The process is almost at convergence and p is very close to 1 with a very small

δ;

2. The configuration vector is almost uniform and p is very close to 1/2 with a

very small ε.

To do so, we divide the path of p from 1/2 + 1/(nr) to 1 − 1/(nr) into two corre-

sponding stages:

1. p goes from 2
3

to 1− 1
nr

;

2. p goes from 1
2

+ 1
nr

to 2
3
.

For Stage 1, we have 2/3 ≤ p =
∑r
i=0(i/r)xi ≤

∑r
i=0(i/r)xr = (1 + r)xr/2 and

xr ≥ 4/(3(r + 1)). Note that function (2− x− y)(1− x− y)/2 + (1− x)(x+ y − 1)

for x ≥ y, x + y < 1, 0 ≤ y ≤ (1− x)/r and 4/(3(r + 1)) ≤ x ≤ 1− δ is minimized
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at (y = δ/r, x = 1− δ). Thus

dp

dt
≥(2− xr − x0) · 1

2
(1− x0 − xr) + (1− xr)(xr − 1 + x0)

≥
(

2− 1 + δ − δ

r

)
· 1

2

(
1− 1 + δ − δ

r

)
+ δ

(
1− δ − 1 +

δ

r

)

=
(

1 +
(

1− 1

r

)
δ
)
· 1

2

(
1− 1

r

)
δ − δ

(
1− 1

r

)
δ

=
1

2

(
1− 1

r

)
δ ·
(

1 +
(

1− 1

r

)
δ − 2δ

)
=

1

2

(
1− 1

r

)
δ ·
(

1−
(

1 +
1

r

)
δ
)

As δ < 1
2
, we have

dp

dt
>

1

2

(
1− 1

r

)
δ ·
(

1−
(

1 +
1

r

)
1

2

)
=

1

2

(
1− 1

r

)
δ ·
(

1− 1

2
− 1

2r

)
=
[
1

2

(
1− 1

r

)]2

· δ

We let c =
[

1
2

(
1− 1

r

)]2
> 0, which doesn’t change with time. Now the ODE becomes

simply dp/dt > c(1−p) which is easy to solve. Let p(t1) = 1/2+1/(nr), p(t2) = 2/3

and p(t3) = 1− 1/(nr). We have

c(t3 − t2) < − log(1− p(t3)) + log(1− p(t2)) = log nr − log 3

Hence, t3 − t2 < (log nr − log 3)/c = O(log nr) time since 1/16 ≤ c < 1/4 for r ≥ 2.

For Stage 2 from t1 to t2, we have 1
2

+ ε ≤ (1 + r)xr/2 and xr ≥ (1 + 2ε)/(r+ 1).

Note that function (2−x− y)(1−x− y)/2 + (1−x)(x+ y− 1) for x ≥ y, x+ y < 1,

0 ≤ y ≤ (1−x)/r and (1+2ε)/(r+1) ≤ x ≤ 1−δ is minimized at (y = (1−x)/r, x =
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(1 + 2ε)/(r + 1)). Thus letting z be (1 + 2ε)/(r + 1),

dp

dt
≥(2− xr − x0) · 1

2
(1− x0 − xr) + (1− xr)(xr − 1 + x0)

≥
(

2− z − 1− z
r

)
· 1

2

(
1− z − 1− z

r

)
+ (1− z)

(
z − 1 +

1− z
r

)
=

1− z
2

(
2− z − 1− z

r

)(
1− 1

r

)
+ 2

(
z − 1 +

1− z
r

)
=

1− z
2r2

(2r − rz − 1 + z) (r − 1) + 2r (rz − r + 1− z)

=
(1− z)(r − 1)

2r2
[2r − 1− (r − 1)z − 2r (1− z)]

=
(1− z)(r − 1)

2r2
[(r + 1)z − 1]

=
r − 1

2r2
· 2ε · r − 2ε

r + 1

=
(r − 1)(r − 2ε)ε

(r + 1)r2

As ε < 1
2
, we have

dp

dt
≥ (r − 1)(r − 2ε)ε

(r + 1)r2
>

(r − 1)2

(r + 1)r2
· ε

Again we let g = (r − 1)2/((r + 1)r2) > 0, which doesn’t change with time. Solving

the simple ODE dp/dt > c(p− 1/2) gives

g(t2 − t1) < log(2p(t2)− 1)− log(2p(t1)− 1) = log
1

3
− log

2

nr

and t2 − t1 < (log nr − log 6)/g = O(r log(nr)) time. Thus the total time from

p = 1/2 + 1/(nr) to p = 1 − 1/(nr) is t3 − t1 = (t3 − t2) + (t2 − t1) = O(r log nr).

The same statement can be proved for the other region A− in a symmetric way. �

We have bounded the convergence time for the monotone region. To achieve
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a complete bound for the whole configuration space, we need either a convergence

bound for the non-monotone region separately if the process can stay in the non-

monotone region, or to bound the time until the process enters the monotone region

and show this always happens. Empirical results presented in Section 2.4 suggest

that the process will eventually enter the monotone region regardless of the initial

configuration and that the time needed for this to happen is short (see Conjecture

2.4), which indicates bounding the convergence time in the monotone region will be

essential to the general bound for the entire configuration space. This is why the

monotone case is interesting to us.

When the resistance r = 2 or r = O(1), the convergence time is O(log n) and

the rate of the clock is O(n), so the total number of ticks of the clock is Θ(n log n),

which matches our result for three-state binary signaling consensus in Section 2.2.

The analysis of the continuous process above gives us the following lemma.

Lemma 2.14 When r = 2, p is always increasing when p > 1/2 and is always

decreasing when p < 1/2. This doesn’t hold for any r > 2.

Proof When r = 2, we have p = x2 + (1− x2 − x0)/2 = (1 + x2 − x0)/2 and

dp

dt
=(1− x2)p− (1− x0)(1− p)

=(1− x2) · 1 + x2 − x0

2
− (1− x0) ·

(
1− 1 + x2 − x0

2

)
=

1

2
((1− x2)(1 + x2)− (1− x2)x0 − (1− x0)(1 + x0) + (1− x0)x2)

=
1

2
(1− x2

2 − x0 + x0x2 − 1 + x2
0 + x2 − x0x2)

=
1

2
((x2 − x2

2)− (x0 − x2
0))

Note that p > 1/2 is equivalent to x0 < x2. Since x0 + x2 ≤ 1 and 0 ≤ x0 < x2,

we have either 0 ≤ x0 < x2 < 1/2 or 0 ≤ x0 < 1/2 ≤ x2 < 1. In the former case we
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have (x2−x2
2)− (x0−x2

0) > 0 and dp/dt > 0. In the latter case we have x0 ≤ 1−x2

and because function x− x2 is symmetric with respect to line x = 1/2, we also have

dp/dt > 0. Likewise we have dp/dt < 0 when p < 1/2 when r = 2.

When r ≥ 3, we have dp/dt = (1− xr)p− (1− x0)(1− p). We consider a case in

which x0 = 0 and x1 + xr = 1. Then we have p = xr + (1− xr)/r and this becomes

dp

dt
=(1− xr)p− (1− x0)(1− p)

=(1− xr)p− (1− p)

=(2− xr)p− 1

=(2− xr) ·
(
xr +

1− xr
r

)
− 1

=
1

r
· ((2− xr)((r − 1)xr + 1)− r)

=
1

r
· ((2r − 3)xr − (r − 1)x2

r + 2− r)

Thus dp/dt is negative when xr < (r − 2)/(r − 1). When r ≥ 3 we know

(r − 2)/(r − 1) ≥ 1/2. We now let xr = (r − 2)/(r − 1)− 1/5 where dp/dt is surely

negative. Then

p =xr +
1− xr
r

=
1

r
+
(

1− 1

r

)
xr

=
1

r
+
r − 1

r
·
(
r − 2

r − 1
− 1

5

)
=

1

r
+ 1− 2

r
− 1

5

(
1− 1

r

)
=

4

5
·
(

1− 1

r

)
≥ 4

5
·
(

1− 1

3

)
=

8

15
>

1

2

which disproves the statement for any r > 2. �

Therefore, when r = 2 the probability of positive interaction p is always pushed

towards convergence in the correct direction, but in the r > 2 case the change of p is
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more unpredictable. This shows an intrinsic difference between the r = 2 case and

the r > 2 case.

2.3.2 A convergence lower bound

Although convergence upper bounds are our primary interest in the population pro-

tocol for binary signaling consensus, in this subsection we study the general pro-

tocol in another direction and prove a convergence lower bound on the number of

interactions. Recall that for the three-state population protocol, the convergence

lower bound Ω(n log n) is an immediate result from the well-known coupon collec-

tor’s bound, because when the initial configuration is cl(i) = 1 for all i ∈ V , every

agent must participate in at least one interaction in order to achieve consensus.

Likewise, to bound the number of interactions for the r > 2 case, we consider a

generalized version of the coupon collector problem. An r-coupon collector is where

instead of collecting at least one copy for each type of coupon, we need to keep draw-

ing coupons until we have collected at least r copies for each type of coupon. The

number of steps an (r/2)-coupon collector takes gives a convergence lower bound

for the general binary signaling consensus process, as every agent must participate

in at least r/2 interactions before convergence, when the initial configuration of the

population is xr/2=1 and xi = 0 for all i 6= r/2. Since we are only interested in

the magnitude, we will consider an r-coupon collector instead of an (r/2)-coupon

collector, for algebraic convenience.

Another important reason for us to study the r-coupon collector problem here is

the inspiration from the three-state population protocol that the convergence bound

of the binary signaling consensus process is exactly the tight bound of coupon col-

lector. This fact leads to our conjecture that this connection also holds for r > 2

(see Conjecture 2.2 in Section 2.4).
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We note that the r-coupon collector problem defined above is also known as the

double dixie cup problem in the literature. Most works in the literature are concerning

the asymptotic formula in expectation and the limit distribution of the answer to this

problem with r = O(1) < +∞ [NS60, ER61a, Fla82]. To the best of our knowledge,

there exists no direct result we can use here for the general case with r = ω(1).

Although getting the asymptotic formula for the general case is rather difficult, we

are only interested in the magnitude order here, which is proved in the following

theorem.

Theorem 2.3 An r-coupon collector needs Θ(nr+ n log n) steps with high probabil-

ity.

To prove this bound, we consider the equivalent balls-in-bins problem: if we keep

throwing balls uniformly at random into n bins, how many balls do we need to throw

such that every bin has at least r balls with high probability? Let N be the answer

to this question. The proof is easy for r = O(1), by doing at most r rounds of classic

coupon collector to fill the bins. For r = ω(1), the proof is done by using Poisson

approximation. Let Y be the minimum load among the n bins, which is the minimum

among n i.i.d. Poisson random variables with mean N/n in Poisson approximation.

We show case by case, depending on the magnitude of r, that we can always find

an N0 = Θ(nr + n log n) such that P(Y < r) goes to zero after throwing N0 balls.

Because P(Y < r) is monotonically decreasing in N , all N ≥ N0 have P(Y < r)→ 0.

Therefore, we have N ≤ N0 = O(nr + n log n), which completes the proof.

Proof When r = O(1) is a constant, we have N = Ω(n log n) from the classic

coupon collector’s bound. We also have N = O(n log n) because at most r rounds of

coupon collector are enough to fill the bins. Thus N = Θ(n log n) = Θ(nr+n log n) is

a tight bound for r = O(1). We refer to related works on the equivalent double dixie
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cup problem for concrete asymptotic formula in expectation [NS60, ER61a, Fla82].

When r = ω(1), the lower bound N = Ω(nr + n log n) is also easy to see. We

must throw at least nr balls to fill the bins and the addend Ω(n log n) is again from

classic coupon collector. To prove the upper bound N = O(nr + n log n), by using

Poisson approximation, we know the joint distribution of the number of balls in all

the bins is well approximated by assuming the load at each bin is an independent

Poisson random variable with mean λ = N/n after we have thrown N balls in total.

More concretely, if the probability of an event is either monotonically increasing or

monotonically decreasing in the number of balls, then if this event has probability

q in Poisson approximation, it has probability at most 2q in the exact balls-in-bins

case [MU05, p. 103]. As Y is the minimum load among the n bins, the probability of

Y < r is monotonically decreasing in the number of balls and satisfies the condition of

Poisson approximation. If P(Y < r)→ 0 holds in Poisson approximation, P(Y < r)

also goes to zero in the exact balls-in-bins case (or equivalently the r-coupon collector

problem).

In Poisson approximation, Y is the minimum among n i.i.d. Poisson random

variables with mean N/n. We have

P(Y < r) = P(Y ≤ r − 1) = 1−
(

1− Γ(r, λ)

(r − 1)!

)n

where λ = N/n and Γ(·, ·) is the incomplete Gamma function. An asymptotic

representation for Γ(·, ·) is Γ(r, λ) = λr−1e−λ + o(1) when λ → +∞. When N =

Ω(nr + n log n), λ = N/n = Ω(r + log n) = ω(1) and this asymptotic representation
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is applicable. Letting s = r − 1, we have

s!

n · Γ(s+ 1, λ)
=O(1) ·

√
s · ss

n · esλse−λ

=O(1) · exp
(

1

2
log s+ s log s+

N

n
− s log

N

n
− s− log n

)
=O(1) · exp

(
s

(
N

ns
− log

N

ns
− 1− 1

s
log

n√
s

))

Denote by f the exponent in this expression. The sign and magnitude of f are

crucial for the convergence bound. When f → −∞, we have s!/Γ(s + 1, λ) = o(n)

and P(Y ≥ r)→ 0; When f = O(1) is a constant, we have s!/Γ(s+1, λ) = Θ(n) and

P(Y ≥ r) is a constant between 0 and 1; When f → +∞, we have s!/Γ(s + 1, λ) =

ω(n) and P(Y < r)→ 0.

When r = o(log n), we have Θ(nr + n log n) = Θ(n log n). Choose N1 = 2n log n

and then

N1

ns
− log

N1

ns
− 1− 1

s
log

n√
s

=2 · log n

s
− log

2 log n

s
− 1− 1

s
log

n√
s

>
log n

s
− 1

s
log

n√
s

=
1

2s
log s

Since r = ω(1), s is also ω(1). Thus f > s · log s/(2s) = log s/2 = ω(1) and

P(Y < r) → 0. Because P(Y < r) is monotonically decreasing in N , all N ≥ N1

have P(Y < r)→ 0. Therefore, we have N ≤ N1 = O(nr + n log n).
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When r = ω(log n), we choose N2 = 2ns+ n log n and then

N2

ns
− log

N2

ns
− 1− 1

s
log

n√
s

=2 +
log n

s
− log

(
2 +

log n

s

)
− 1− 1

s
log n+

1

2s
log s

=1− log

(
2 +

log n

s

)
+

1

2s
log s >

1

2s
log s

Thus f > s · log s/(2s) = log s/2 = ω(1) and P(Y < r)→ 0. Hence, all N ≥ N2 have

P(Y < r)→ 0. Therefore, we have N ≤ N2 = O(nr + n log n).

The only case left is when r = Θ(log n) and we need to take care of the constant.

When lim logn
s
≤ 2, we choose N3 = 3ns+ n log n and then

N3

ns
− log

N3

ns
− 1− 1

s
log

n√
s

=3 +
log n

s
− log

(
3 +

log n

s

)
− 1− 1

s
log n+

1

2s
log s

=2− log

(
3 +

log n

s

)
+

1

2s
log s

≥2− log 5 +
1

2s
log s >

1

2s
log s

Thus f = ω(1) and P(Y < r) → 0. Hence, all N ≥ N3 have P(Y < r) → 0.

Therefore, we have N ≤ N3 = O(nr + n log n).

When lim logn
s

> 2, we choose N4 = ns + 2n log n. Notice that function x −
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log(1 + 2x) is always greater than 0.2 for all x > 2.

N4

ns
− log

N4

ns
− 1− 1

s
log

n√
s

=1 + 2 · log n

s
− log

(
1 + 2 · log n

s

)
− 1− 1

s
log n+

1

2s
log s

=
log n

s
− log

(
1 + 2 · log n

s

)
+

1

2s
log s

>0.2 +
1

2s
log s >

1

2s
log s

Thus f = ω(1) and P(Y < r) → 0. Hence, all N ≥ N4 have P(Y < r) → 0.

Therefore, we have N ≤ N4 = O(nr + n log n).

Combining with the lower bound N = Ω(nr+n log n) we have N = Θ(nr+n log n)

and complete the proof. �

An intuitive interpretation of this bound is that we throw the first Θ(nr) balls to

have all the bins almost full, and after that the last stage is to wait for these almost-

full bins to be eventually full, which is a classic coupon collector. The r-coupon

collector gives a convergence lower bound for the binary signaling consensus process.

Corollary 2.2 With high probability, a binary signaling consensus process needs

Ω(nr + n log n) interactions to converge.

2.4 Empirical Results and Conjectures

To support our theoretical results, in this section we present a series of empirical

results, based on which we propose several conjectures for different aspects of binary

signaling consensus. All experiments were run in MATLAB on a workstation built

with Intel i5-2500 3.30GHz CPU and 8GB memory. To be more robust against

65



Figure 2.1: The number of interactions with fixed resistance 2 and varying population

Figure 2.2: The number of interactions with fixed resistance 50 and varying popula-
tion

fluctuation from randomness, each test was run for ten times and the medians were

taken. The simulation of the discrete model strictly follows the description in Section

2.1 using discrete time steps, and the continuous-time process is simulated according

to the corresponding system of differential equations derived in Section 2.3.1 using

the Runge-Kutta method.

The experiments start from verifying the fast convergence result for three-state

binary signaling model. In Section 2.2, we have proved that with high probability
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the society with fixed resistance r = 2 will reach consensus within Θ(n log n) inter-

actions. We study two groups of experiments with different initial configurations.

Group 1 is a society starting with everyone in the intermediate state. Group 2 is a

society with initial balanced configuration where half of the population supports the

grammar with full confidence while the other half is in the opposite state. These are

two worst cases that are expected to have the longest convergence time and are ideal

for examining convergence upper bound. We fix the resistance r as 2 and vary the

population n. The results are plotted in Figure 2.1 with the curves of convergence

time (i.e., the number of interactions in discrete model) of the two groups respec-

tively. These two curves indicate the society in group 2 converges slightly slower

than the one in group 1. To verify the order of the convergence time and estimate

the concrete constant, we divide the number of interactions by n log n and also show

this quotient on the plot. From the results we can see this quotient is stable around

5. This is supportive evidence of our theoretical results on the order of convergence

rate. However, the constant we provided in Theorem 2.1 seems too large, as the

experiments suggest this constant be 5, or conservatively speaking, smaller than 10,

which leads to our first conjecture.

Conjecture 2.1 With high probability, the number of interactions for a society with

resistance 2 to reach consensus is at most 10 · n log n for all sufficiently large n.

This means there is still space to improve our constants in Theorem 2.1.

What interests us more is the large-r case, for the questions we are not able to

answer theoretically. We have noticed that the number of interactions Θ(n log n)

of the three-state binary signaling model is exactly the tight bound of the coupon

collector problem. This inspires us that the tight bound of the r-coupon collector

might also indicate (or at least approximate) the convergence time of large-r binary
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Figure 2.3: The number of interactions with fixed population 1000 and varying
resistance

signaling consensus. In Section 2.3.2 we have shown Θ(nr+n log n) is a tight bound

for the r-coupon collector process. Thus it is reasonable for us to conjecture Θ(nr+

n log n) as the number of interactions in the large-r case.

Conjecture 2.2 With high probability, the number of interactions for a society with

resistance r to reach consensus in the worst case is Θ(nr + n log n).

We seek empirical evidence to support this conjecture. Since the bound Θ(nr +

n log n) involves both r and n, we conduct two sets of experiments with fixed r

(shown in Figure 2.2) and with fixed n (shown in Figure 2.3) respectively. With

fixed r and varying n, we expect the number of interactions to increase in the order

of Θ(n log n). In fact the experiments we presented above for the three-state model

can serve as the supportive fixed-r experiments needed here. Nevertheless, given

the essential difference between the r = 2 case and the r > 2 case discussed in

Section 2.3.1, we found it more persuasive to choose a large value of r. In Figure

2.2, we fix the resistance r as 50 and vary the population n. The four curves are

plotted as in the previous experiments with r = 2 and have similar shapes. The

process converges obviously slower with r = 50 than with r = 2. The constant is
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Figure 2.4: Convergence time comparison for continuous process

also larger. For group 1 the quotient is stable around 28 and for group 2 it is around

33. The process in group 2 is still slower to converge than the one in group 1 but

the difference is now more apparent. Hence, the behaviors of the curves match what

our conjecture predicts. Figure 2.3 shows the curves of convergence time when we

fix the population n as 1000 and vary the resistance r. The same four curves are

plotted and the only difference is now we divide the number of interactions by r, as

we expect the convergence time to be Θ(r) with fixed n. Group 1 is still faster than

group 2 in the sense of convergence and also with smaller constant, which is stable

around 5000 while the constant of group 2 is about 8200. These large constants are

not surprising since all the values of n and r we choose for this set are quite large.

Again these results agree with the prediction of our conjecture.

In Section 2.3.1 we studied the continuous-time process in the limit with in-

finitesimal time step and showed that the convergence time is O(r log nr) if it starts

from a monotone initial configuration. However, the behavior of the process outside
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the monotone region is still uncertain. Fortunately, empirical simulation suggests

the process will enter the monotone region fast enough and then go to convergence

rapidly. To simulate the continuous-time binary signaling model, we follow the cor-

responding system of differential equations derived in Section 2.3.1 using the Runge-

Kutta method. As this is a numerical method, we are unable to have n equal to

infinity with infinitesimal time step. To approximate the process well, we choose a

large value of n and let n = 100000. In order to show the process will eventually

enter the monotone region with any initial configuration, we conduct more groups

of simulations with different types of initial configuration. Figure 2.4 demonstrates

the experimental results in the form of a bar chart to compare the time in the non-

monotone region and the time in the monotone region. The initial setup of each

group is as follows.

Group 1: 40% of the population at confidence level 0 and 60% of the population

at confidence level r;

Group 2: 1/2− 1/(nr) of the population at confidence level 0 and 1/2 + 1/(nr)

of the population at confidence level r;

Group 3: 0.1% of the population at confidence level 0 and 99.9% of the population

at confidence level r;

Group 4: 50% of the population at confidence level 1 and 50% of the population

at confidence level r;

Group 5: 40% of the population at confidence level 1 and 60% of the population

at confidence level r.

Group 1 is designed for the majority computation scenario. Group 2 and group

3 are to show the process will enter the monotone region first before convergence

regardless of whether the population is almost balanced (group 2) or almost con-

verged (group 3). As expected, group 2 is the slowest to converge while group 3 is
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the fastest. Group 4 and group 5 are designed to witness the drop of p in the p > 1/2

region, which is an essential difference between the r = 2 case and the r > 2 case

(Lemma 2.14). From these results we propose the following conjecture.

Conjecture 2.3 A continuous-time binary signaling process will enter the monotone

region before convergence starting from any initial configuration.

The bar chart also suggests the time needed to enter the monotone region doesn’t

dominate the whole process, although it is still considerable in some special cases

such as group 2. Thus it is reasonable to conjecture that the total convergence time

is of the same order as the convergence time inside the monotone region we presented

in Theorem 2.2.

Conjecture 2.4 A continuous-time binary signaling process reaches consensus within

O(r log nr) time.

2.5 Conclusion and Future Work

We study here the language emergence process in human society. To capture this

process, we describe and analyze a binary signaling consensus model for language

emergence, which builds a connection between language emergence process and the

study of population protocols. We present a tight convergence bound Θ(n log n) with

concrete constants for the three-state binary signaling consensus process where the

resistance parameter r is 2. Even though this model appears to be quite simple,

it turns out to be very hard to analyze. When the resistance r is large, we show

the continuous-time binary signaling process in the limit will reach consensus within

O(r log nr) time if the initial configuration is monotone. We show that the binary

signaling process needs at least Ω(nr + n log n) interactions to converge with high
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probability. To support our theoretical results, we have done a series of experiments,

based on which we also propose several conjectures for the convergence properties of

the process.

One direct open question is to prove or disprove the conjectures we propose

in this chapter, especially those for the large-r case. A potential way to study

the large-r case is to generalize the proof idea for the three-state model, which

divides the configuration space into several regions and constructs a well-bounded

supermartingale process for each region using carefully chosen potential functions.

The high dimensionality of the configuration space would be one of the trickiest

parts in the analysis. Another direction of future work is to study a more general

model of binary signaling consensus where, for example, the interaction graph is not

necessarily complete, or different people in the society could have different resistance

values. We are also interested in multi-valued consensus under this binary signaling

setting, where there is more than one grammar spreading among the society which

are not independent. With our convergence upper bound for the three-state binary

signaling consensus process, additional results can be proved including bounds on

approximate majority computation, correctness with epidemic-triggered start and

tolerance towards Byzantine agents. Last but not least, we believe this model can be

generalized and applied to other real-world problems because, as described in Section

1.1, the language emergence process in human society shares many similarities with

other dynamic systems in the world. We are hoping this work will also make a

contribution to other related fields such as epidemiology, physics and biology.
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Chapter 3

Learning Shuffle Ideals Under

Restricted Distributions

The class of shuffle ideals is a fundamental sub-family of regular languages. The

shuffle ideal generated by a string set U is the collection of all strings containing

some string u ∈ U as a (not necessarily contiguous) subsequence. In spite of its

apparent simplicity, the problem of learning a shuffle ideal from given data is known

to be computationally intractable. In this chapter, we study the PAC learnability

of shuffle ideals. After introducing the preliminaries in Section 3.1, we present our

main result in Section 3.2: the extended class of shuffle ideals is PAC learnable from

element-wise i.i.d. strings. That is, the distributions of the symbols in a string are

identical and independent of each other. A constrained generalization to learning

shuffle ideals under product distributions is also provided. In Section 3.3, we further

show the PAC learnability of principal shuffle ideals when the example strings drawn

from Σ≤n are generated by a Markov chain with some lower bound assumptions on the

transition matrix. In Section 3.5, we propose a greedy algorithm for learning principal

shuffle ideals under general unrestricted distributions. Experiments demonstrate the
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advantage for both efficiency and accuracy of our heuristic algorithm.

The content of this chapter appears in [Che14].

3.1 Preliminaries

We consider strings over a fixed finite alphabet Σ. The empty string is λ. Let Σ∗

be the Kleene star of Σ and Σ∪ be the collection of all subsets of Σ. As strings are

concatenations of symbols, we similarly define augmented strings as concatenations

of unions of symbols.

Definition 3.1 (Alphabet, simple string and augmented string) Let Σ be a

non-empty finite set of symbols, called the alphabet. A simple string over Σ is any

finite sequence of symbols from Σ, and Σ∗ is the collection of all simple strings. An

augmented string over Σ is any finite sequence of symbol sets from Σ∪, and (Σ∪)∗ is

the collection of all augmented strings.

For example, (a|b|d)a(b|c) is an augmented string. It is the set of the strings

which start with an ‘a’ or a ‘b’ or a ‘d’, followed by an ‘a’, and end with a ‘b’ or a ‘c’.

Denote by s the cardinality of Σ. Because an augmented string only contains

strings of the same length, the length of an augmented string U , denoted by |U |, is

the length of any u ∈ U . We use exponential notation for repeated concatenation of a

string with itself, that is, vk is the concatenation of k copies of string v. Starting from

index 1, we denote by vi the i-th symbol in string v and use notation v[i, j] = vi . . . vj

for 1 ≤ i ≤ j ≤ |v|. Define the binary relation v on 〈(Σ∪)∗ ,Σ∗〉 as follows. For a

simple string w, w v v holds if and only if there is a witness~i = (i1 < i2 < . . . < i|w|)

such that vij = wj for all integers 1 ≤ j ≤ |w|. For an augmented string W ,

W v v if and only if there exists some w ∈ W such that w v v. When there are
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Figure 3.1: The DFA accepting precisely the shuffle ideal of U = (a|b|d)a(b|c) over
Σ = {a, b, c, d}.

several witnesses for W v v, we may order them coordinate-wise, referring to the

unique minimal element as the leftmost embedding. We will write IWvv to denote

the position of the last symbol of W in its leftmost embedding in v (if the latter

exists; otherwise, IWvv =∞).

Definition 3.2 (Extended/Principal Shuffle Ideal) The (extended) shuffle ideal

of an augmented string U ∈ (Σ∪)L is a regular language defined as X(U) = {v ∈

Σ∗ | ∃u ∈ U, u v v} = Σ∗U1Σ∗U2Σ∗ . . .Σ∗ULΣ∗. A shuffle ideal is principal if it is

generated by a simple string.

A shuffle ideal is an order ideal on monoid 〈Σ∗, ·, λ〉 and was originally defined

for lattices. Denote by the class of principal shuffle ideals and by X the class of

extended shuffle ideals. Unless otherwise stated, in this chapter shuffle ideal refers to

the extended ideal. An example is given in Figure 3.1. The feasibility of determining

whether a string is in the class X(U) is obvious.

Lemma 3.1 Evaluating relation U v x and meanwhile determining IUvx is feasible

in time O(|x|).

Proof The evalution can be done recursively. The base case is U = λ , where

U v x holds and IUvx = 0. If U = U1U
′ where U1 ∈ Σ∪, we search for the leftmost

occurrence of U1 in x. If there is no such occurrence, then U 6v x and IUvx = ∞.

Otherwise, x = yU1x
′, where U1 6v y. Then U v x if and only if U ′ v x′ and

IUvx = IU1vx + IU ′vx′ . We continue recursively with U ′ and x′. The total running
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time of this procedure is O(|x|). �

In a computational learning model, an algorithm is usually given access to an or-

acle providing information about the sample. In Valiant’s work [Val84], the example

oracle EX(c,D) was defined, where c is the target concept and D is a distribution

over the instance space. On each call, EX(c,D) draws an input x independently at

random from the instance space I under the distribution D, and returns the labeled

example 〈x, c(x)〉.

Definition 3.3 (PAC Learnability: [Val84]) Let C be a concept class over the

instance space I. We say C is probably approximately correctly (PAC) learnable if

there exists an algorithm A with the following property: for every concept c ∈ C, for

every distribution D on I, and for all 0 < ε < 1/2 and 0 < δ < 1/2, if A is given

access to EX(c,D) on I and inputs ε and δ, then with probability at least 1 − δ, A

outputs a hypothesis h ∈ H satisfying Px∈D(c(x) 6= h(x)) ≤ ε. If A runs in time

polynomial in 1/ε, 1/δ and the representation size of c, we say that C is efficiently

PAC learnable.

We refer to ε as the error parameter and δ as the confidence parameter. If the

error parameter is set to 0, the learning is exact [Bsh97]. Kearns [Kea98] extended

Valiant’s model and introduced the statistical query oracle STAT (c,D). Kearns’

oracle takes as input a statistical query of the form (χ, τ). Here χ is any mapping of

a labeled example to {0, 1} and τ ∈ [0, 1] is called the noise tolerance. STAT (c,D)

returns an estimate for the expectation Eχ, that is, the probability that χ = 1

when the labeled example is drawn according to D. A statistical query can have a

condition so Eχ can be a conditional probability. This estimate is accurate within

additive error τ .
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Definition 3.4 (Legitimacy and Feasibility: [Kea98]) A statistical query χ is

legimate and feasible if and only if with respect to 1/ε, 1/τ and representation size

of c:

1. Query χ maps a labeled example 〈x, c(x)〉 to {0, 1};

2. Query χ can be efficiently evaluated in polynomial time;

3. The condition of χ, if any, can be efficiently evaluated in polynomial time;

4. The probability of the condition of χ, if any, should be at least polynomially

large.

Throughout this chapter, the learnability of shuffle ideals is studied in the statisti-

cal query model. Kearns [Kea98] proves that oracle STAT (c,D) is weaker than oracle

EX(c,D). In other words, if a concept class is PAC learnable from STAT (c,D), then

it is PAC learnable from EX(c,D), but not necessarily vice versa.

Angluin et al. [AAEK13] have proved the class of shuffle ideals is not efficiently

PAC learnable unless RP=NP. In the positive direction, they showed that a principal

shuffle ideal can be efficiently approximately learned in the statistical query model

under the uniform distribution.

3.2 Learning shuffle ideals from element-wise i.i.d.

strings

Although learning the class of shuffle ideals has been proved hard, in most scenarios

the string distribution is restricted or even known. A very usual situation in practice

is that we have some prior knowledge of the unknown distribution. One common
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Figure 3.2: Definition of θV,a(x) when V = U [1, `]

example is the string distributions where each symbol in a string is generated in-

dependently and identically from an unknown distribution. It is element-wise i.i.d.

because we view a string as a vector of symbols. This case is general enough to

cover some popular distributions in applications such as the uniform distribution

and the multinomial distribution. In this section, we present as our main result a

statistical query algorithm for learning the concept class of extended shuffle ideals

from element-wise i.i.d. strings and provide theoretical guarantees of its computa-

tional efficiency and accuracy in the statistical query model. The instance space is

Σn. Denote by U the augmented pattern string that generates the target shuffle ideal

and by L = |U | the length of U .

3.2.1 Statistical query algorithm

Before presenting the algorithm, we define function θV,a(·) and query χV,a(·, ·) for any

augmented string V ∈ (Σ∪)≤n and any symbol a ∈ Σ as as follows.

θV,a(x) =


a if V 6v x[1, n− 1]

xIVvx+1 if V v x[1, n− 1]

χV,a(x, y) =
1

2
(y + 1) given θV,a(x) = a

where y = c(x) is the label of example string x. More precisely, y = +1 if x ∈X(U)

and y = −1 otherwise. Figure 3.2 explains the definition of θV,a(x) when we have
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V = U [1, `]. For any augmented string V , if at least one element in V is a subsequence

of x[1, n − 1], then θV,a(x) is the symbol next to the leftmost embedding of V in x.

Otherwise, θV,a(x) is simply the symbol a. Conditioned on θV,a(x) = a, the query

χV,a(x, y) is 1 if x is a positive string and is 0 otherwise. The expected value of χV,a

under the distribution over the instance space means the conditional probability of

positivity given θV,a(x) = a.

Our learning algorithm uses statistical queries to recover string U ∈ (Σ∪)L one

element at a time. It starts with the empty string V = λ. Having recovered V =

U [1, `] where 0 ≤ ` < L, we infer U`+1 as follows. For each a ∈ Σ, the statistical

query oracle is called with the query χV,a at the error tolerance τ claimed in Theorem

3.1. Our key technical observation is that the value of EχV,a effectively selects U`+1.

The query results of χV,a will form two separate clusters such that the maximum

difference (variance) inside one cluster is smaller than the minimum difference (gap)

between the two clusters, making them distinguishable. The set of symbols in the

cluster with larger query results is proved to be U`+1. Notice that this statistical

query only works for 0 ≤ ` < L. To complete the algorithm, we address the trivial

case ` = L with query P(y = +1 | V v x) and the algorithm halts if the query

answer is close to 1.

3.2.2 PAC learnability

We show the algorithm described above learns the class of shuffle ideals from element-

wise i.i.d. strings in the statistical query learning model.

Theorem 3.1 Under element-wise independent and identical distributions over in-

stance space I = Σn, concept class X is approximately identifiable with O(sn) con-
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ditional statistical queries from STAT(X,D) at tolerance

τ =
ε2

40sn2 + 4ε

or with O(sn) statistical queries from STAT(X,D) at tolerance

τ̄ =
(

1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

The proof starts from the legitimacy and feasibility of the algorithm. Since χV,a

computes a binary mapping from labeled examples to {0, 1}, the legitimacy is trivial.

But χV,a is not feasible for symbols in Σ of small occurrence probabilities. We avoid

the problematic cases by reducing the original learning problem to the same problem

with a polynomial lower bound assumption P(xi = a) ≥ ε/(2sn) − ε2/(20sn2 + 2ε)

for any a ∈ Σ and achieve feasibility.

The correctness of the algorithm is based on the intuition that the query result

EχV,a+ of a symbol a+ ∈ U`+1 should be greater than that of a symbol a− 6∈ U`+1 and

the difference is large enough to tolerate the noise from the oracle. To prove this,

we first consider the exact learning case. Define an infinite string U ′ = U [1, `]U [` +

2, L]U∞`+1 and let x′ = xΣ∞ be the extension of x obtained by padding it on the right

with an infinite string generated from the same distribution as x. Let Q(j, i) be the

probability that the largest g such that U ′[1, g] v x′[1, i] is j, or formally

Q(j, i) = P(U ′[1, j] v x′[1, i] ∧ U ′[1, j + 1] 6v x′[1, i])

By taking the difference between EχV,a+ and EχV,a− in terms of Q(j, i), we get the

query tolerance for exact learning.

Lemma 3.2 Under element-wise independent and identical distributions over in-
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stance space I = Σn, concept class X is exactly identifiable with O(sn) conditional

statistical queries from STAT(X,D) at tolerance

τ ′ =
1

5
Q(L− 1, n− 1)

Lemma 3.2 indicates bounding the quantity Q(L − 1, n − 1) is the key to the

tolerance for PAC learning. Unfortunately, the distribution {Q(j, i)} doesn’t seem

of any strong properties we know of providing a polynomial lower bound. Instead

we introduce new quantity

R(j, i) = P(U ′[1, j] v x′[1, i] ∧ U ′[1, j] 6v x′[1, i− 1])

being the probability that the smallest g such that U ′[1, j] v x′[1, g] is i. An impor-

tant property of distribution {R(j, i)} is its strong unimodality as defined below.

Definition 3.5 (Unimodality: [GK49]) A distribution {P (i)} with all support

on the lattice of integers is unimodal if and only if there exists at least one inte-

ger K such that P (i) ≥ P (i − 1) for all i ≤ K and P (i + 1) ≤ P (i) for all i ≥ K.

We say K is a mode of distribution {P (i)}.

Throughout this chapter, when referring to the mode of a distribution, we mean

the one with the largest index, if the distribution has multiple modes with equal

probabilities.

Definition 3.6 (Strong Unimodality: [Ibr56]) A distribution {H(i)} is strongly

unimodal if and only if the convolution of {H(i)} with any unimodal distribution

{P (i)} is unimodal.

Since a distribution with all mass at zero is unimodal, a strongly unimodal dis-

tribution is also unimodal. In this chapter, we only consider distributions with all
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support on the lattice of integers. So the convolution of {H(i)} and {P (i)} is

{H ∗ P}(i) =
∞∑

j=−∞
H(j)P (i− j) =

∞∑
j=−∞

H(i− j)P (j)

We prove the strong unimodality of {R(j, i)} with respect to i via showing it is the

convolution of two log-concave distributions by induction. We do an initial statistical

query to estimate P(y = +1) to handle two marginal cases P(y = +1) ≤ ε/2 and

P(y = +1) ≥ 1− ε/2. After that an additional query P(y = +1 | V v x) is made to

tell whether ` = L. If the algorithm doesn’t halt, it means ` < L and both P(y = +1)

and P(y = −1) are at least ε/2− 2τ . By upper bounding P(y = +1) and P(y = −1)

using linear sums of R(j, i), the strong unimodality of {R(j, i)} gives a lower bound

for R(L, n), which further implies one for Q(L− 1, n− 1) and completes the proof.

Now we present the formal proof. We first provide a quick proof of Lemma 3.1.

Proof (of Lemma 3.1) The evalution can be done recursively. The base case is

U = λ , where U v x holds and IUvx = 0. If U = U1U
′ where U1 ∈ Σ∪, we search

for the leftmost occurrence of U1 in x. If there is no such occurrence, then U 6v x

and IUvx = ∞. Otherwise, x = yU1x
′, where U1 6v y. Then U v x if and only if

U ′ v x′ and IUvx = IU1vx + IU ′vx′ . We continue recursively with U ′ and x′. The

total running time of this procedure is O(|x|). �

Lemma 3.3 Under element-wise independent and identical distributions over in-

stance space I = Σn, the conditional statistical query χV,a is legitimate and feasible

at tolerance

τ =
ε2

40sn2 + 4ε

Proof First of all, the function χV,a computes a binary mapping from labeled ex-

amples (x, y) to {0, 1} and satisfies the definition of a statistical query. Given
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θV,a(x) = a, that is, given V 6v x[1, n − 1] or xIVvx+1 = a if V v x[1, n − 1],

the query χV,a(x, y) returns 0 if x is a negative example (y = −1) or returns 1 if x is

a positive example (y = +1).

From Lemma 1, evaluating the relation V v x and meanwhile determining IVvx

is feasible in time O(n). Thus, θV,a(x) and then χV,a(x, y) can be efficiently evaluated.

For

P(θV,a(x) = a) =P(V 6v x[1, n− 1])+

P(V v x[1, n− 1]) · P(xIVvx+1 = a | V v x[1, n− 1])

in order to prove P(θV,a(x) = a) not too small, we only need to show one of the two

items in the sum is at least polynomially large.

We make an initial statistical query with tolerance τ = ε2/(40sn2+4ε) to estimate

P(y = +1). If the answer is ≤ ε− τ , then P(y = +1) ≤ ε and the algorithm outputs

a hypothesis that all examples are negative. Otherwise, P(y = +1) is at least ε− 2τ ,

and the statistical query χV,a is used. As V v x[1, n− 1] = U [1, `] v x[1, n− 1] is a

necessary condition of y = +1, we have

P(V v x[1, n− 1]) ≥ P(y = +1) ≥ ε− ε2

20sn2 + 2ε

Since xIVvx+1 and x[1, IVvx] are independent,

P(xIVvx+1 = a | V v x[1, n− 1]) = P(xIVvx+1 = a)

Because we don’t have any knowledge of the distribution, we can’t guarantee

P(xIVvx+1 = a) is large enough for every a ∈ Σ. However, we notice that there is no

need to consider symbols with small probabilities of occurrence. Now we show why
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and how. For each a ∈ Σ, execute a statistical query

χ′a(x, y) = 1{xi=a} (3.1)

at tolerance τ , where 1{π} represents the 0-1 truth value of the predicate π. Since

the strings are element-wise i.i.d., the index i can be any integer between 1 and n.

If the answer from oracle STAT is ≤ ε/(2sn) − τ , then P(xi = a) ≤ ε/(2sn). For

such an a, the probability that it shows up in a string is at most ε/(2s). Because

there are at most s − 1 such symbols in Σ, the probability that any of them shows

up in a string is at most ε/2. Otherwise, P(xi = a) ≥ ε/(2sn) − 2τ . Thus we only

need to consider the symbols a ∈ Σ such that P(xi = a) ≥ ε/(2sn) − 2τ and learn

the ideal with error parameter ε/2 so that the total error will be bounded within ε.

For algebraic succinctness, we use a concise lower bound for P(xi = a):

P(xi = a) ≥ ε

2sn
− 2τ =

ε

2sn
− ε2

20sn2 + 2ε
≥ ε

4sn
(3.2)

Eventually we have

P(θV,a(x) = a) ≥ P(V v x[1, n− 1]) · P(xIVvx+1 = a | V v x[1, n− 1])

≥
(

1− ε

20sn2 + 2ε

)
ε2

4sn

(3.3)

is polynomially large. Query χV,a is legitimate and feasible. �

The correctness of the algorithm is based on the intuition that the query result

EχV,a+ of a+ ∈ U`+1 should be greater than that of a− 6∈ U`+1 and the difference is

large enough to tolerate the noise from the oracle. To prove this, we first consider

the exact learning case. Define an infinite string U ′ = U [1, `]U [` + 2, L]U∞`+1 and let
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x′ = xΣ∞ be the extension of x obtained by padding it on the right with an infinite

string generated from the same distribution as x. Let Q(j, i) be the probability that

the largest g such that U ′[1, g] v x′[1, i] is j, or formally, Q(j, i) = P(U ′[1, j] v

x′[1, i] ∧ U ′[1, j + 1] 6v x′[1, i]).

Proof (of Lemma 3.2) If the algorithm doesn’t halt, U has not been completely

recovered and ` < L. By assumption, V = U [1, `]. If V 6v x[1, n − 1] then x

must be a negative example and χV,a(x, y) = 0. Hence χV,a(x, y) = 1 if and only if

V v x[1, n− 1] and y = +1.

Let random variable J be the largest value for which U ′[1, J ] is a subsequence of

x[1, n− 1]. Consequently, P(J = j) = Q(j, n− 1).

If a ∈ U`+1, then y = +1 if and only if J ≥ L− 1. Thus we have

EχV,a =
n−1∑

j=L−1

Q(j, n− 1)

If a 6∈ U`+1, then y = +1 if and only if U v x[1, IVvx]x[IVvx+2, n]. Since elements

in a string are i.i.d., P(U v x[1, IVvx]x[IVvx+2, n]) = P(U ′[1, L] v x[1, n−1]), which

is exactly P(J ≥ L). Thus we have

EχV,a =
n−1∑
j=L

Q(j, n− 1)

The difference between these two values is Q(L−1, n−1). In order to distinguish

the target U`+1 from other symbols, the query tolerance can be set to one fifth of the

difference. The alphabet Σ will be separated into two clusters by the results of EχV,a:

U`+1 and the other symbols. The maximum difference (variance) inside a cluster is

smaller than the minimum difference (gap) between the two clusters, making them

distinguishable. As a consequence s statistical queries for each prefix of U suffice to

learn U exactly. �
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Lemma 3.2 indicates bounding the quantity Q(L − 1, n − 1) is the key to the

tolerance for PAC learning. Unfortunately, the distribution {Q(j, i)} doesn’t seem

of any strong properties we know of providing a polynomial lower bound. Instead

we introduce new quantity R(j, i) = P(U ′[1, j] v x′[1, i]∧U ′[1, j] 6v x′[1, i− 1]) being

the probability that the smallest g such that U ′[1, j] v x′[1, g] is i. Now we show the

strong unimodality of distribution {R(j, i)}. Denote pj = P(xi ∈ U ′j).

Lemma 3.4 The convolution of two strongly unimodal discrete distributions is strongly

unimodal.

Proof The proof is obvious from the definition of strong unimodality and the asso-

ciativity of convolution. Let H3 = H2 ∗ H1 be the convolution of two strongly uni-

modal distributions H1 and H2. For any unimodal distribution P1, let P2 = H1 ∗ P1

be the convolution of H1 and P1. Because of the strong unimodality of distribution

H1, P2 is a unimodal distribution. Also because of the strong unimodality of dis-

tribution H2, the convolution of H3 and P1, H3 ∗ P1 = H2 ∗ H1 ∗ P1 = H2 ∗ P2 is

a unimodal distribution. Since P1 can be an arbitrary unimodal distribution, H3 is

strongly unimodal according to the definition of strong unimodality. �

Previous work [Ibr56] provided a useful equivalent statement of the strong uni-

modality of a distribution.

Lemma 3.5 [Ibr56] Distribution {H(i)} is strongly unimodal if and only if H(i) is

log-concave. That is,

H(i)2 ≥ H(i+ 1) ·H(i− 1)

for all i.
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Since a distribution with all mass at zero is unimodal, an immediate consequence

is

Corollary 3.1 A strongly unimodal distribution is unimodal.

We now prove the strong unimodality of distribution {R(j, i)}.

Lemma 3.6 For any fixed j, distribution {R(j, i)} is strongly unimodal with respect

to i.

Proof This proof can be done by induction on j as follows.

Basis : For j = 1, it is obvious that {R(1, i)} = {(1 − p1)i−1p1} is a geometric

distribution, which is strongly unimodal. According to Lemma 3.5, this is due to

R2(1, i) = R(1, i− 1) ·R(1, i+ 1) for all i > 1.

Inductive step: For j > 1, assume by induction {R(j−1, i)} is strongly unimodal.

Based on the definition of R(j, i), we have

R(j, i) =
i−1∑

k=j−1

(
R(j − 1, k) · (1− pj)i−k−1pj

)
(3.4)

Thus R(j, i) is the convolution of distribution {R(j − 1, i)} and distribution {(1 −

pj)
i−1pj}, a geometric distribution just proved to be strongly unimodal. By assump-

tion, {R(j − 1, i)} is strongly unimodal. From Lemma 3.4, distribution {R(j, i)} is

also strongly unimodal.

Conclusion: For any fixed j, distribution {R(j, i)} is strongly unimodal with re-

spect to i. �

Combining Lemma 3.6 with Corollary 3.1, we have

Corollary 3.2 For any fixed j, distribution {R(j, i)} is unimodal with respect to i.
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Lemma 3.7 Denote by N(j) the mode of {R(j, i)}, then N(j) is strictly increasing

with respect to j. That is, for any j > 1, N(j) > N(j − 1).

Proof According to Equation 3.4, R(j, i) is the convolution of distribution {R(j −

1, i)} and distribution {(1− pj)i−1pj} so

R(j, i) =
i−1∑

k=j−1

(
R(j − 1, k) · (1− pj)i−k−1pj

)

and

R(j, i+ 1) =
i∑

k=j−1

(
R(j − 1, k) · (1− pj)i−kpj

)

Hence, we get

R(j, i+ 1) = pjR(j − 1, i) + (1− pj)R(j, i) (3.5)

Denote by ∆R(j, i) the difference R(j, i)−R(j, i− 1). From Equation 3.5, we have

∆R(j, i+ 1) = pj∆R(j − 1, i) + (1− pj)∆R(j, i) (3.6)

For any j ≥ 1, we have R(j, 1) ≥ R(j, 0) = 0 or ∆R(j, 1) ≥ 0. From the def-

inition of N(j), N(j) must be at least j and for any i ≤ N(j − 1), the difference

∆R(j − 1, i) is non-negative. Hence, if ∆R(j, i) is non-negative, then ∆R(j, i+ 1) is

non-negative for Equation 3.6. So inductively, for any i ≤ N(j − 1) + 1, we always

have ∆R(j, i) ≥ 0. Recall that we define the mode of a distribution with multiple

modes as the one with the largest index, thus N(j) > N(j − 1). �

With the strong unimodality of distribution {R(j, i)}, we are able to present the

PAC learnability of concept class X in the statistical query model.
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Proof (of Theorem 3.1) From Lemma 3.3, statistical query χV,a is legitimate and

feasible at tolerance τ = ε2/(40sn2 + 4ε) and our error parameter must be set to ε/2

in order to have Inequality 3.2.

We modify the statistical query algorithm to make an initial statistical query

with tolerance τ = ε2/(40sn2 +4ε) to estimate P(y = +1). If the answer is ≤ ε/2−τ ,

then P(y = +1) ≤ ε/2 and the algorithm outputs a hypothesis that all examples are

negative. If the answer is ≥ 1− ε/2+ τ , then P(y = +1) ≥ 1− ε/2 and the algorithm

outputs a hypothesis that all examples are positive.

Otherwise, P(y = +1) and P(y = −1) are both at least ε/2 − 2τ . We then do

another statistical query at tolerance τ to estimate P(y = +1 | V v x). Since V v x

is a necessary condition of positivity, P(V v x) must be at least P(y = +1) ≥ ε/2−2τ

and this statistical query is legitimate and feasible. If the answer is ≥ 1 − ε/2 + τ ,

then P(y = +1 | V v x) ≥ 1 − ε/2. The algorithm outputs a hypothesis that all

strings x such that V v x are positive and all strings x such that V 6v x are negative

because P(y = −1 | V 6v x) = 1. If ` = L, P(y = +1 | V v x) must be 1 and

the algorithm halts. Otherwise, ` < L and the first statistical query algorithm is

used. We now show that Q(L− 1, n− 1) ≥ 5τ , establishing the bound on the query

tolerance.

Let random variable I be the smallest value for which U ′[1, L] is a subsequence

of x′[1, I]. Based on the definition of R(j, i), we have P(I = i) = R(L, i). String x

is a positive example if and only if U ′[1, L] v x′[1, n], which is exactly I ≤ n. As a

consequence,

P(y = +1) =
n∑
i=L

R(L, i) (3.7)

From Corollary 3.2, distribution {R(L, i)} is unimodal and assume its mode is

N(L). If n ≤ N(L) then R(L, n) is at least as large as every term in the sum
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P(y = +1) =
∑n
i=LR(L, i). Hence we get

R(L, n) ≥ ε− 4τ

2(n− L+ 1)
≥ ε− 4τ

2n
≥ 5ε2

40sn2 + 4ε
= 5τ

If n > N(L), according to Lemma 3.7, for any j ≤ L we have n > N(j). That is,

for any j ≤ L, we have R(j, n) ≥ R(j, n+ 1).

From Equation 3.5,

R(j, n+ 1) = pjR(j − 1, n) + (1− pj)R(j, n)

so

pjR(j − 1, n) + (1− pj)R(j, n) ≤R(j, n)

=pjR(j, n) + (1− pj)R(j, n)

We then have

R(j − 1, n) ≤ R(j, n)

This holds for any j ≤ L so R(j, n) is non-decreasing with respect to j when n >

N(L). Inductively we get R(L, n) ≥ R(j, n) for any j ≤ L.

Because U ′[1, L] 6v x[1, n− 1] is a necessary condition of y = −1 and

P(U ′[1, L] 6v x[1, n− 1]) =
L−1∑
j=0

Q(j, n− 1)

we get
L−1∑
j=0

Q(j, n− 1) ≥ P(y = −1) ≥ ε− 4τ

2

Note that R(j, n) = pjQ(j − 1, n− 1), then

L∑
j=1

R(j, n)

pj
≥ ε− 4τ

2
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Since

P(y = +1) ≥ ε− 4τ

2
> 0

from Inequality 3.2, we must have pj ≥ ε/(4sn) for all j. Then we have

4sn

ε

L∑
j=1

R(j, n) ≥
L∑
j=1

R(j, n)

pj
≥ ε− 4τ

2

Because R(L, n) ≥ R(j, n) for any j ≤ L, we get

4sn

ε
LR(L, n) ≥ ε− 4τ

2

and

R(L, n) ≥ (ε− 4τ)ε

8sn2
=

5ε2

40sn2 + 4ε
= 5τ

Finally, we have

Q(L, n) = (1− pL+1)Q(L, n− 1) + pLQ(L− 1, n− 1)

≥ pLQ(L− 1, n− 1) = R(L, n) ≥ 5ε2

40sn2 + 4ε

That is, Q(L−1, n−1) ≥ 5τ . For Lemma 3.2, we have τ = ε2/(40sn2 +4ε). Inferring

τ̄ from τ is trivial. Define general statistical query

χ̄V,a(x, y) =


(y + 1)/2 if θV,a(x) = a

0 if θV,a(x) 6= a
(3.8)

Then for any a, the expected query result

Eχ̄V,a = P(θV,a(x) = a) · EχV,a + 0
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and the difference between Eχ̄V,a | a ∈ U`+1 and Eχ̄V,a | a 6∈ U`+1 is 5τ ·P(θV,a(x) = a).

Hence, from Inequality 3.3,

τ̄ =
(

1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

This completes the proof. �

3.2.3 A generalization to instance space Σ≤n

We have proved the extended class of shuffle ideals is PAC learnable from element-

wise i.i.d. fixed-length strings. Nevertheless, in many real-world applications such as

natural language processing and computational linguistics, it is more natural to have

strings of varying lengths. Let n be the maximum length of the sample strings and as

a consequence the instance space for learning is Σ≤n. Here we show how to generalize

the statistical query algorithm in Section 3.2.1 to the more general instance space

Σ≤n.

Let Ai be the algorithm in Section 3.2.1 for learning shuffle ideals from element-

wise i.i.d. strings of fixed length i. Because instance space Σ≤n =
⋃
i≤n Σi, we divide

the sample S into n subsets {Si} where Si = {x | |x| = i}. An initial statistical

query then is made to estimate probability P(|x| = i) for each i ≤ n at tolerance

ε/(8n). We discard all subsets Si with query answer ≤ 3ε/(8n) in the learning

procedure, because we know P(|x| = i) ≤ ε/(2n). There are at most (n− 1) such Si

of low occurrence probabilities. The total probability that an instance comes from

one of these negligible sets is at most ε/2. Otherwise, P(|x| = i) ≥ ε/(4n) and we

apply algorithm Ai on each Si with query answer ≥ 3ε/(8n) with error parameter

ε/2. Because the probability of the condition is polynomially large, the algorithm is
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feasible. Finally, the total error over the whole instance space will be bounded by ε

and concept class X is PAC learnable from element-wise i.i.d. strings over instance

space Σ≤n.

Corollary 3.3 Under element-wise independent and identical distributions over in-

stance space I = Σ≤n, concept class X is approximately identifiable with O(sn2)

conditional statistical queries from STAT(X,D) at tolerance

τ =
ε2

160sn2 + 8ε

or with O(sn2) statistical queries from STAT(X,D) at tolerance

τ̄ =
(

1− ε

40sn2 + 2ε

)
ε5

512sn2(20sn2 + ε)

3.3 Learning principal shuffle ideals from Marko-

vian strings

Markovian strings are widely studied in natural language processing and biological

sequence modeling. Formally, a random string x is Markovian if the distribution of

xi+1 only depends on the value of xi: P(xi+1 | x1 . . . xi) = P(xi+1 | xi) for any i ≥ 1.

If we denote by π0 the distribution of x1 and define s × s stochastic matrix M by

M(a1, a2) = P(xi+1 = a1 | xi = a2), then a random string can be viewed as a Markov

chain with initial distribution π0 and transition matrix M . We choose Σ≤n as the

instance space in this section and assume independence between the string length

and the symbols in the string. We assume P(|x| = k) ≥ t for all 1 ≤ k ≤ n and

min{M(·, ·), π0(·)} ≥ c for some positive t and c. We will prove the PAC learnability

of class under this lower bound assumption. Denote by u the target pattern string
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and let L = |u|.

3.3.1 Statistical query algorithm

Starting with empty string v = λ, the pattern string u is recovered one symbol at a

time. Having recovered v = u[1, `], we infer u`+1 by Ψv,a =
∑n
k=h+1 Eχv,a,k, where

χv,a,k(x, y) =
1

2
(y + 1) given Ivvx = h, xh+1 = a and |x| = k

0 ≤ ` < L and h is chosen from [0, n − 1] such that the probability P(Ivvx = h) is

polynomially large. The statistical queries χv,a,k are made at tolerance τ claimed in

Theorem 3.2 and the symbol with the largest query result of Ψv,a is proved to be

u`+1. Again, the case where ` = L is addressed by query P(y = +1 | v v x). The

learning procedure is completed if the query result is close to 1.

3.3.2 PAC learnability

With query Ψv,a, we are able to recover the pattern string u approximately from

STAT ( (u),D) at proper tolerance as stated in Theorem 3.2:

Theorem 3.2 Under Markovian string distributions over instance space I = Σ≤n,

given P(|x| = k) ≥ t > 0 for ∀ 1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, concept

class is approximately identifiable with O(sn2) conditional statistical queries from

STAT( ,D) at tolerance

τ =
ε

3n2 + 2n+ 2

or with O(sn2) statistical queries from STAT( ,D) at tolerance

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2
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Due to the probability lower bound assumptions, the legitimacy and feasibility

are obvious. To calculate the tolerance for PAC learning, we first consider the exact

learning tolerance. Let x′ be an infinite string generated by the Markov chain defined

above. For any 0 ≤ ` ≤ L − j, we define quantity R`(j, i) to be the conditional

probability

P(u[`+ 1, `+ j] v x′[m+ 1,m+ i] ∧ u[`+ 1, `+ j] 6v x′[m+ 1,m+ i− 1] | x′m = u`)

Intuitively, R`(j, i) is the probability that the smallest g such that u[` + 1, ` + j] v

x′[m+ 1,m+ g] is i, given x′m = u`. We have the following conclusion for the exact

learning tolerance.

Lemma 3.8 Under Markovian string distributions over instance space I = Σ≤n,

given P(|x| = k) ≥ t > 0 for ∀ 1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0,

the concept class is exactly identifiable with O(sn2) conditional statistical queries

from STAT( ,D) at tolerance

τ ′ = min
0≤`<L

 1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)


The algorithm first deals with the marginal case where P(y = +1) ≤ ε through query

P(y = +1). If it doesn’t halt, we know P(y = +1) is at least (3n2+2n)ε/(3n2+2n+2).

We then make a statistical query χ′h(x, y) = 1
2
(y + 1) · 1{Ivvx=h} for each h from ` to

n−1. It can be shown that at least one h will give an answer≥ (3n+1)ε/(3n2+2n+2).

This implies lower bounds for P(Ivvx = h) and P(y = +1 | Ivvx = h). The former

guarantees the feasibility while the latter can serve as a lower bound for the sum in

Lemma 3.8 after some algebra and completes the proof.

95



The assumption on M and π0 can be weakened to M(u`+1, u`) = P(x2 = u`+1 |

x1 = u`) ≥ c and π0(u1) ≥ c for all 1 ≤ ` ≤ L− 1. We first make a statistical query

to estimate M(a, u`) for ` ≥ 1 or π0(a) for ` = 0 for each symbol a ∈ Σ at tolerance

c/3. If the result is ≤ 2c/3 then M(a, u`) ≤ c or π0(a) ≤ c and we won’t consider

symbol a at this position. Otherwise, M(a, u`) ≥ c/3 or π0(a) ≥ c/3 and the queries

in the algorithm are feasible.

Corollary 3.4 Under Markovian string distributions over instance space I = Σ≤n,

given P(|x| = k) ≥ t > 0 for ∀1 ≤ k ≤ n, π0(u1) ≥ c and M(u`+1, u`) ≥ c > 0 for

∀1 ≤ ` ≤ L−1, concept class is approximately identifiable with O(sn2) conditional

statistical queries from STAT( ,D) at tolerance

τ = min
{

ε

3n2 + 2n+ 2
,
c

3

}

or with O(sn2) statistical queries from STAT( ,D) at tolerance

τ̄ = min

{
ctnε2

(3n2 + 2n+ 2)2
,

tnεc2

3(3n2 + 2n+ 2)

}

Now we present the complete proof.

Proof (of Lemma 3.8) If the algorithm doesn’t halt, u has not been completely

recovered and ` < L. Again, we calculate the difference of Ψv,a between the cases

a+ = u`+1 and a− 6= u`+1.

For a− 6= u`+1, let pj denote the probability that the first passage time from a−

to u`+1 is equal to j. Notice that

Eχv,a−,k =
k−h−1∑
j=1

pj k−h−1−j∑
i=0

R`+1(L− `− 1, i)


≤

k−h−1∑
j=1

(
pj

k−h−2∑
i=0

R`+1(L− `− 1, i)

)
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We get

Eχv,a−,k ≤
k−h−2∑
i=0

R`+1(L− `− 1, i)

For a+ = u`+1, we have

Eχv,a+,k =
k−h−1∑
i=0

R`+1(L− `− 1, i)

Summing up all the items, we can get the difference

Ψv,a+ −Ψv,a− =
n∑

k=h+1

(
Eχv,a+,k − Eχv,a−,k

)

≥
n∑

k=h+1

(
k−h−1∑
i=0

R`+1(L− `− 1, i)−
k−h−2∑
i=0

R`+1(L− `− 1, i)

)

=
n∑

k=h+1

R`+1(L− `− 1, k − h− 1)

In order to distinguish the target u`+1 from other symbols, the query tolerance can

be set to one third of the difference so that the symbol with largest query result must

be u`+1. Thus the overall tolerance for Ψv,a is
∑n
k=h+1R`+1(L−`−1, k−h−1)/3. Since

Ψv,a is the expectation sum of (n − h) statistical queries, we can evenly distribute

the overall tolerance on each χv,a,k. So the final tolerance on each statistical query is

τ ′ = min
0≤`<L

 1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)


Taking minimum over 0 ≤ ` < L is because h depends on ` and the tolerance needs

to be independent of h. As a consequence sn statistical queries for each prefix of U

suffice to learn U exactly. �

We then show how to choose a proper h from [0, n− 1].
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Lemma 3.9 Under Markovian string distributions over instance space I = Σ≤n,

given P(|x| = k) ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, the

conditional statistical query χv,a,k is legitimate and feasible at tolerance

τ =
ε

3n2 + 2n+ 2

Proof First of all, the function χv,a,k computes a binary mapping from labeled

examples (x, y) to {0, 1} and satisfies the definition of a statistical query. Under the

given conditions, χv,a,k returns 0 if x is a negative example (y = −1) or returns 1 if

x is a positive example (y = +1).

From Lemma 3.1, evaluating the relation v v x and meanwhile determining Ivvx

is feasible in time O(n). Since |x| ≤ n, determining |x| also takes O(n) time. Thus,

χv,a,k(x, y) and then Ψv,a can be efficiently evaluated.

According to the Markov property and the independence between string length

and symbols in a string, we have

P(Ivvx = h, xh+1 = a and |x| = k)

=P(Ivvx = h) · P(xh+1 = a | Ivvx = h) · P(|x| = k)

≥P(Ivvx = h) · c · t

The only problem left is to make sure P(Ivvx = h) is polynomially large. Obviously

this can’t be guaranteed for all h between ` and n− 1 so h must be chosen carefully.

We now show there must be such an h.

We make an initial statistical query with tolerance ε/(3n2 + 2n + 2) to estimate

P(y = +1). If the answer is ≤ (3n2 + 2n + 1)ε/(3n2 + 2n + 2), then P(y = +1) ≤ ε

and the algorithm outputs a hypothesis that all examples are negative. Otherwise,

P(y = +1) is at least (3n2 + 2n)ε/(3n2 + 2n+ 2), and the statistical queries {χv,a,k}
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are used. Since

P(y = +1) =
n−1∑
h=`

P(y = +1 ∧ Ivvx = h) (3.9)

There must be at least one h so that

P(y = +1 ∧ Ivvx = h) ≥ 1

n− h
P(y = +1)

≥ 1

n
P(y = +1)

≥ 1

n
· (3n2 + 2n)ε

3n2 + 2n+ 2

=
(3n+ 2)ε

3n2 + 2n+ 2

As

P(y = +1 ∧ Ivvx = h) = P(y = +1 | Ivvx = h) · P(Ivvx = h)

both P(y = +1 | Ivvx = h) and P(Ivvx = h) must be at least (3n+2)ε/(3n2 +2n+2).

This means there must be some h making our statistical queries legitimate.

We now show how to determine a proper value of h. We can do a statistical query

χ′h(x, y) =
1

2
(y + 1) · 1{Ivvx=h} (3.10)

for each h from ` to n− 1, where 1{π} represents the 0-1 truth value of the predicate

π. It is easy to see Eχ′h = P(y = +1 ∧ Ivvx = h). According to our analysis above

and due to the noise of the statistical query, there must be at least one h such that

the answer is ≥ (3n+ 1)ε/(3n2 + 2n+ 2). If we choose such an h, it is guaranteed to

have

P(y = +1 ∧ Ivvx = h) ≥ 3nε

3n2 + 2n+ 2
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so that

P(Ivvx = h) ≥ 3nε

3n2 + 2n+ 2

and

P(y = +1 | Ivvx = h) ≥ 3nε

3n2 + 2n+ 2
(3.11)

After at most n statistical queries {χ′h}, we can determine the value of h in query

χv,a,k. Thus statistical queries {χv,a,k} and Ψv,a are legitimate and feasible. �

Below is the proof of Theorem 3.2.

Proof (of Theorem 3.2) From Lemma 3.9, statistical queries {χv,a,k} and Ψv,a are

legitimate and feasible at tolerance ε/(3n2 + 2n+ 2).

We modify the statistical query algorithm to make an initial statistical query with

tolerance ε/(3n2 + 2n + 2) to estimate P(y = +1). If the answer is ≤ (3n2 + 2n +

1)ε/(3n2 + 2n+ 2), then P(y = +1) ≤ ε and the algorithm outputs a hypothesis that

all examples are negative. Otherwise, P(y = +1) is at least (3n2+2n)ε/(3n2+2n+2).

We then do another statistical query with tolerance ε/(3n2 + 2n+ 2) to estimate

P(y = +1 | v v x). Since v v x is a necessary condition of positivity, P(v v x)

must be at least P(y = +1) ≥ (3n2 + 2n)ε/(3n2 + 2n + 2) and this statistical query

is legitimate and feasible. If the answer is ≥ 1 − (3n2 + 2n)ε/(3n2 + 2n + 2), then

P(y = +1 | v v x) ≥ 1 − ε. The algorithm outputs a hypothesis that all strings x

such that v v x are positive and all strings x such that v 6v x are negative because

P(y = −1 | v 6v x) = 1. If ` = L, P(y = +1 | v v x) must be 1 and the algorithm

halts. Otherwise, ` < L and the first statistical query algorithm is used.

From the proof for Lemma 3.9, we then use O(n) statistical queries

χ′h(x, y) =
1

2
(y + 1) · 1{Ivvx=h}
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to find an h such that Inequality 3.11 holds:

P(y = +1 | Ivvx = h) ≥ 3nε

3n2 + 2n+ 2

Similarly, let qj denote the probability that the first passage time from u` to u`+1 is

equal to j. Notice that

P(y = +1 | Ivvx = h) ≤
n−h∑
j=1

qj n−h−j∑
i=0

R`+1(L− `− 1, i)



We have

3nε

3n2 + 2n+ 2
≤P(y = +1 | Ivvx = h)

≤
n−h∑
j=1

qj n−h−j∑
i=0

R`+1(L− `− 1, i)


≤

n−h∑
j=1

(
qj

n−h−1∑
i=0

R`+1(L− `− 1, i)

)

≤
n−h−1∑
i=0

R`+1(L− `− 1, i)

=
n∑

k=h+1

R`+1(L− `− 1, k − h− 1)

From Lemma 3.8, the conditional tolerance is

τ = min
0≤`<L

 1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

 ≥ ε

3n2 + 2n+ 2

Similar to the proof of Theorem 3.1, define general statistical query

χ̄v,a,k(x, y) =


(y + 1)/2 if Ivvx = h, xh+1 = a and |x| = k

0 otherwise
(3.12)
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and

Ψ̄v,a =
n∑

k=h+1

Eχ̄v,a,k (3.13)

Then the general tolerance τ̄ can be easily inferred from the conditional tolerance τ :

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2

Considering we have used n statistical queries to determine h, (s + 1)n statistical

queries for each prefix of u suffice to PAC learn u. This completes the proof. �

3.4 A constrained generalization to learning shuf-

fle ideals under product distributions

A direct generalization from element-wise independent and identical distributions

is product distributions. A random string, or a random vector of symbols under

a product distribution has element-wise independence between its elements. That

is, P(X = x) =
∏|x|
i=1 P(Xi = xi). Although strings under product distributions

share many independence properties with element-wise i.i.d. strings, the algorithm

in Section 3.2.1 is not directly applicable to this case as the distribution {R(j, i)}

defined above is not unimodal with respect to i in general. However, the intuition that

given IVvx = h, the strings with xh+1 ∈ U`+1 have higher probability of positivity

than that of the strings with xh+1 6∈ U`+1 is still true under product distributions.

Thus we generalize query χV,a and define for any V ∈ (Σ∪)≤n, a ∈ Σ and h ∈ [0, n−1],

χ̃V,a,h(x, y) =
1

2
(y + 1) given IVvx = h and xh+1 = a
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where y = c(x) is the label of example string x. To ensure the legitimacy and

feasibility of the algorithm, we have to attach a lower bound assumption that P(xi =

a) ≥ t > 0, for ∀1 ≤ i ≤ n and ∀a ∈ Σ. This section provides a constrained

algorithm based on this intuition. Let P (+|a, h) denote Eχ̃V,a,h. If the difference

P (+|a+, h)−P (+|a−, h) is large enough for some h with nonnegligible P(IVvx = h),

then we are able to learn the next element in U . Otherwise, the difference is very

small and we will show that there is an interval starting from index (h + 1) which

we can skip with little risk. The algorithm is able to classify any string whose

classification process skips O(1) intervals.

Again the algorithm uses query P(y = +1 | V v x) to tell whether it is time

to halt. As before, let V be the partial pattern we have learned and the algorithm

starts with V = λ. For 1 ≤ i ≤ n and 1 ≤ j ≤ L, define probability Q̃(j, i) as below.

Q̃(j, i) =



if 1 ≤ j < L :

P(U [L− j + 1, L] v x[n− i+ 1, n] ∧ U [L− j, L] 6v x[n− i+ 1, n])

if j = L :

P(U v x[n− i+ 1, n])

Lemma 3.10 Under product distributions over instance space I = Σn, given P(xi =

a) ≥ t > 0 for ∀1 ≤ i ≤ n and ∀a ∈ Σ, concept class X is exactly identifiable with

O(sn) conditional statistical queries from STAT(X,D) at tolerance

τ ′ =
1

5
min

{
Q̃(L− 1, n− 1), min

1≤`≤L
max

`≤h≤n−1
Q̃(L− `− 1, n− h− 1)

}

Proof If the algorithm doesn’t halt, U has not been completely recovered and ` < L.

As before, we calculate the difference of Eχ̃V,a,h between the cases a+ ∈ U`+1 and
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a− 6∈ U`+1.

When ` = 0 and V = λ, the value of IVvx must be 0 so h is fixed to be 0 in the

query. For symbol a+ ∈ U1, we have

Eχ̃λ,a+,0 = Q̃(L− 1, n− 1) + Q̃(L, n− 1)

and for symbol a− 6∈ U1,

Eχ̃λ,a−,0 = Q̃(L, n− 1)

Taking one fifth of the difference gives the tolerance Q̃(L− 1, n− 1)/5 for ` = 0.

When 1 ≤ ` < L and V = U [1, `], we have for symbol a+ ∈ U`+1,

Eχ̃V,a+,h =
L∑

j=L−`−1

Q̃(j, n− h− 1)

and for symbol a− 6∈ U`+1,

Eχ̃V,a−,h =
L∑

j=L−`
Q̃(j, n− h− 1)

Again taking one fifth of the difference gives the tolerance Q̃(L− `− 1, n−h− 1)/5.

For a fixed 1 ≤ ` < L, tolerance max`≤h≤n−1 Q̃(L− `− 1, n− h− 1)/5 is enough to

learn U`+1 exactly. Taking the minimum tolerance among all 0 ≤ ` < L gives the

overall tolerance in the statement. As a consequence s statistical queries for each

prefix of U suffice to learn U exactly. �

A more complicated algorithm is needed to PAC learn shuffle ideals under product
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distributions. We first define two additional simple queries:

χ′V,a,h,i(x, y) = 1{xh+i=a} given IVvx = h

χ+
V,a,h,i(x, y) = 1{xh+i=a} given IVvx = h and y = +1

whose expectations serve as empirical estimators for the distributions of the symbol

at the next i-th position over all strings (χ′V,a,i) and over all positive strings (χ+
V,a,i),

both conditioned on IVvx = h. Below is how the algorithm works, with ε̄g+1 and ε′

to be decided later in the proof.

First an initial query to estimate probability P(y = +1 | V v x) is made. The

algorithm will classify all strings such that V v x negative if the answer is close to 0,

or positive if the answer is close to 1. To ensure the legitimacy and feasibility of the

algorithm, we make another initial query to estimate the probability P(IVvx = h)

for each h. The algorithm then excludes the low-probability cases such that any of

the excluded ones happens with probability lower than ε/2. Thus we only need to

consider the cases with polynomially large P(IVvx = h) and learn the target ideal

within error ε/2. Otherwise, let P (+|a, h) denote Eχ̃V,a,h and we make a statistical

query to estimate P (+|a, h) for each a ∈ Σ. If the difference P (+|a+, h)−P (+|a−, h),

where a+ is in the next element of U and a− is not, is large enough for some h, then

the results of queries for P (+|a, h) will form two distinguishable clusters, where the

maximum difference inside one cluster is smaller than the minimum gap between

them, so that we are able to learn the next element in U .

Otherwise, for all h with nonnegligible P(IVvx = h), the difference P (+|a+, h)−

P (+|a−, h) is very small and we will show that there is an interval starting from index

h + 1 which we can skip with little risk for each case when IVvx = h. Problematic

cases leading to misclassification will happen with very small probability within this

interval. We are safe to skip the whole interval and move on. The remaining problem
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is to identify the length of this interval, that is, to estimate the probability that an

error happens if we skip an interval. Let D1:k(h) be the distribution of x[h+ 1, h+k]

over all strings given IVvx = h and D+
1:k(h) be the corresponding distribution over

all positive strings given IVvx = h. The probability that an error happens due to

skipping the next k elements is the total variation distance between D1:k(h) and

D+
1:k(h). Thanks to the independence between the elements in a string, it can be

proved that ‖D1:k(h) − D+
1:k(h)‖TV can be estimated within polynomially bounded

error. Recall that the total variation distance ‖ · ‖TV between two distributions µ1

and µ2 is

‖µ1 − µ2‖TV =
1

2
‖µ1 − µ2‖1 = min

(Y,Z)
P(Y 6= Z)

where Y ∼ µ1 and Z ∼ µ2 are random variables over µ1 and µ2 respectively. The

minimum is taken over all joint distributions (Y, Z) such that the marginal distribu-

tions are still µ1 and µ2, i.e., Y ∼ µ1 and Z ∼ µ2.

Because the lengths of skipped intervals in cases with different IVvx could be

different, the algorithm branches the classification tree to determine the skipped

interval according to the value of IVvx. The algorithm runs the procedure above

recursively on each branch. Figure 3.3 demonstrates this skipping strategy of the

algorithm, where parameter C is the maximum allowed number of skipped intervals

on each path. Notice that the algorithm might not recover the complete pattern

string U . Instead the hypothesis pattern string returned by the algorithm for one

classification path is a subsequence of U with skipped intervals. We provide a toy

example to explain the skipping logic. Let n = 4, Σ ={a, b, c} and U = ‘ab’.

Strings are drawn from a product distribution such that x1, x2 and x4 are uniformly

distributed over Σ but x2 is almost surely ‘a’. The algorithm first estimates P(y =

+1 | x1 = a) for each a ∈ Σ and finds the value of x1 matters little to the positivity.
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1. Estimate probability P(y = +1 | V v x) at tolerance ε′/3. If the answer is
≤ 2ε′/3, classify all strings x such that V v x as negative and backtrack on
the classification tree. If the answer is ≥ 1−2ε′/3, classify all strings x such
that V v x as positive and backtrack. If the number of intervals skipped on
the current path exceeds C, classify all strings x such that V v x as positive
and backtrack. Otherwise go to Step 2.

2. For each h with nonnegligible P(IVvx = h), estimate EχV,a,h at tolerance
τ1 = ε̄2g+1/384 for each a ∈ Σ. Go to Step 3.

3. If the results for some h produce two distinguishable clusters, where the
maximum difference inside one cluster is ≤ 4τ1 while the minimum gap
between two clusters is > 4τ1, then the set of all the symbols that belong
to the cluster with larger query results is the next element in U . Update V
and go to Step 1. Otherwise, branch the classification tree. For each h, let
k ← 1 and T ← 1. Go to Step 4.

4. For each a ∈ Σ, estimate Eχ′V,a,h,k and Eχ+
V,a,h,k at tolerance τ2 = ε̄g+1/(8sn)

so that we will have estimators D̂k(h) and D̂+
k (h). Go to Step 5.

5. T ← (1 − ‖D̂k(h) − D̂+
k (h)‖TV ) · T . If 1 − T ≤ 3ε̄g+1/4, k ← k + 1 and go

to Step 4. Otherwise, skip the interval from xh+1 to xh+k−1. Update V and
go to Step 1.

Figure 3.3: Approximately learning X under product distributions

It then estimates the distance between the distribution of x1x2 over all positive

strings and that over all strings and finds the two distributions are close. However,

when it moves on to estimate the distance between the distribution of x1x2x3 over

all positive strings and that over all strings, it gets a nonnegligible total variation

distance. Therefore, the skipped interval is x1x2. The algorithm finally outputs the

hypothesis pattern string ‘ΣΣb’ which means skipping the first two symbols and

matching symbol ‘b’ in the rest of the string.

Theorem 3.3 Under product distributions over instance space I = Σn, given P(xi =

a) ≥ t > 0 for ∀1 ≤ i ≤ n and ∀a ∈ Σ, the algorithm PAC classifies any string that

skips C = O(1) intervals during the classification procedure with O(snC+2) condi-
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tional statistical queries from STAT(X,D) at tolerance

τ = min

{
ε̄21

384
,
ε̄1

8sn

}

or with O(snC+2) statistical queries from STAT(X,D) at tolerance

τ̄ = (ε′ − 2τ) ·min

{
tε̄21
384

,
ε̄1

8sn

}

where ε̄1 = (ε′/3C+2)2C and ε′ = ε/(2nC).

Proof For the sake of the legitimacy and feasibility of the algorithm, we make an

initial query to estimate the probability P(IVvx = h) for each h at tolerance τ .

Denote ε′ = ε/(2nC). If the answer is ≤ ε′ − τ , then P(IVvx = h) ≤ ε′ is negligible

and we won’t consider such cases because any of them happens with probability

≤ ε/2. Otherwise we have P(IVvx = h) ≥ ε′−2τ . With the lower bound assumption

that P(xi = a) ≥ t > 0 for ∀1 ≤ i ≤ n and ∀a ∈ Σ, the legitimacy and feasibility are

assured. Thus bounding the classification error in the nonnegligible cases within ε/2

establishes a total error bound ε. Because there are at most nC nonnegligible cases,

the problem reduces to bounding the classification error for each within ε′.

In the learning procedure, the algorithm skips an interval x[i1, i2] given IVvx = h

based on the assumption that the interval x[i1, i2] matches some segment next to V in

the pattern string U . Let ιg be the indicator for the event that the assumption is false

in the first g skipped intervals and denote probability εg = Eιg. Let ε0 = 0. Note that

εg serves as an upper bound for the probability of misclassification due to skipping

the first g intervals, because there are some lucky cases where the assumption doesn’t

hold but the algorithm still makes correct classifications. To ensure the accuracy of

the algorithm, it suffices to prove εg is small. Let ε̄g+1 = 8
√

3εg for g ≥ 1 and ε̄1 as
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defined in the theorem. We will prove εg+1 ≤ ε̄g+1 so that by induction and taking

the minimum tolerance among all g ≤ C we then have the overall tolerances τ and

τ̄ as claimed in the statement.

Let a+, a
′
+ be two (not necessarily distinct) symbols in the next element of U and

a−, a
′
− be two (not necessarily distinct) symbols not in the next element of U . We

have |P (+|a+, h) − P (+|a′+, h)| ≤ εg and likewise |P (+|a−, h) − P (+|a′−, h)| ≤ εg.

Let Pi(+|a, h) = P (+|a, h, ιg = i) and denote ∆ = P (+|a+, h) − P (+|a−, h) and

∆i = Pi(+|a+, h)−Pi(+|a−, h) for i ∈ {0, 1}. As a consequence, ∆ = εg∆1+(1−εg)∆0

and ∆0 = ∆−εg∆1

1−εg ≥ ∆−εg
1−εg . Therefore, ∆ > εg implies ∆0 > 0. In the other direction,

∆0 = ∆−εg∆1

1−εg ≤ 2(∆ + εg).

For each h we make a statistical query to estimate P (+|a, h) for each a ∈ Σ at

tolerance τ1 = ε̄2g+1/384. If the minimum ∆ among all pairs of (a+, a−), denoted

by ∆min, is > 6τ1, the results of queries for P (+|a, h) must form two distinguishable

clusters, where the maximum difference inside one cluster is≤ 4τ1 while the minimum

gap between two clusters is > 4τ1. According to Lemma 3.10, the set of symbols

with larger query answers is the next element in U because ∆ > εg holds for all pairs

of (a+, a−).

Otherwise, the difference ∆0 ≤ 2(∆min + 2εg + εg) ≤ ε̄2g+1/16 for all h. Let

x′ = xz where z is an infinite string under the uniform distribution. Let Eh(1, i)

be the event that matching the next element in U consumes exactly i symbols in

string x′ given IVvx′ = h and ιg = 0. Define probability Rh(1, i) = P(Eh(1, i)). Let

conditional probability P0(+|Eh(1, i)) be the probability of positivity conditioned on

event Eh(1, i). For example, P0(+|a+, h) is indeed P0(+|Eh(1, 1)).

Denote by P0(+|h) = P(y = +1 | IVvx = h ∧ ιg = 0). Because P0(+|h) ≥
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P0(+|a−, h), we have

P0(+|a+, h)− P0(+|h) ≤ P0(+|a+, h)− P0(+|a−, h) <
ε̄2g+1

16

while

P0(+|a+, h)− P0(+|h) =
+∞∑
i=1

Rh(1, i) · (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

Notice that probability P0(+|Eh(1, i)) is monotonically non-increasing with respect

to i. Then there must exist an integer k ∈ [1,+∞] such that P0(+|Eh(1, 1)) −

P0(+|Eh(1, i)) ≤ ε̄g+1/4 for ∀i ≤ k and P0(+|Eh(1, 1))− P0(+|Eh(1, i)) ≥ ε̄g+1/4 for

∀i > k. This implies

∑
i≤k

Rh(1, i) (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

+
∑
i>k

Rh(1, i) (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

<
ε̄2g+1

16

and

ε̄g+1

4

∑
i>k

Rh(1, i) <
ε̄2g+1

16

Then we have
∑
i>k Rh(1, i) < ε̄g+1/4. This means the next element in U almost

surely shows up in this k-length interval. In addition, the difference P0(+|Eh(1, 1))−

P0(+|Eh(1, i)) ≤ ε̄g+1/4 for ∀i ≤ k means whether the next element in U first shows

up at xh+1 or xh+k has little effect on the probability of positivity. There are two cases

where an error happens due to skipping the interval. The first case is that the next

element in U doesn’t occur within the interval, whose probability is
∑
i>k Rh(1, i).

The second case is that after matching the next element in U at xh+i for some
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1 ≤ i < k, the value of x[h+ i+ 1, h+ k] flips the class of the string. This happens

with probability ≤ P0(+|Eh(1, 1))−P0(+|Eh(1, k)). By union bound, the probability

of the errors because of skipping the interval x[h+ 1, h+ k] is at most ε̄g+1/2.

It is worth pointing out that k is an integer from 1 to +∞ because when i = 1

the difference P0(+|Eh(1, 1)) − P0(+|Eh(1, i)) is 0 ≤ ε̄g+1/4 and surely k ≥ 1. This

means this interval is not empty and ensures the existence of the interval we want.

On the other hand, the value k can be positive infinity but this makes no difference

because the algorithm will skip everything until the end of a string.

After showing the existence of such an interval, we need to determine k and locate

the interval. Let Dk(h) be the distribution of xh+k and D1:k(h) be the distribution

of the x[h+ 1, h+ k] over all strings, both conditioned on IVvx = h. Also, let D+
k (h)

and D+
1:k(h) be the corresponding distributions over all positive strings. We use ·̂ as

estimators for probabilities or distributions. The probability that an error happens

due to skipping the next k letters is the total variation distance between D1:k(h) and

D+
1:k(h).

Now let Y ∼ D1:k(h) and Z ∼ D+
1:k(h) be random strings over D1:k(h) and D+

1:k(h)

respectively. Then

‖D1:k(h)−D+
1:k(h)‖TV = min

(Y,Z)
P(Y 6= Z)

=1−max
(Y,Z)

P(Y = Z)

=1−max
(Y,Z)

k∏
i=1

P(Yi = Zi)

=1−
k∏
i=1

max
(Y,Z)

P(Yi = Zi)

=1−
k∏
i=1

(
1− min

(Y,Z)
P(Yi 6= Zi)

)

=1−
k∏
i=1

(
1− ‖Di(h)−D+

i (h)‖TV
)
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because of the independence between the symbols in a string and the fact that all

minimums and maximums are taken over all joint distributions (Y, Z) such that the

marginal distributions are still product distributions.

Thus we could estimate the global total variation distance ‖D1:k(h)−D+
1:k(h)‖TV

through estimating the local variation distance ‖Di(h)−D+
i (h)‖TV for each 1 ≤ i ≤ k.

Assume p̂1 and p̂2 are estimates of two probabilities p1 and p2 from a statistical query

at some tolerance τ0. We have

|p1p2 − p̂1p̂2| = |p1p2 − p1p̂2 + p1p̂2 − p̂1p̂2|

= |p1(p2 − p̂2) + (p1 − p̂1)p̂2|

≤ p1|p2 − p̂2|+ |p1 − p̂1|p̂2

≤ (p1 + p̂2)τ0 ≤ 2τ0

By induction it can be proved that
∣∣∣∏k

i=1 pi −
∏k
i=1 p̂i

∣∣∣ ≤ kτ0, which is a polynomial

bound. For a probability q, let qi be the corresponding probability conditioned on

ιg = i for i ∈ {0, 1}. We have q = εgq1 + (1− εg)q0 and

q0 =
q − εgq1

1− εg
≥ q − εgq1 ≥ q − εg

In the other direction,

q0 =
q − εgq1

1− εg
=
q + εg − ε2g − εgq − εg + ε2g + εgq − εgq1

1− εg

=
(q + εg)(1− εg)− εg(1 + q1 − εg − q)

1− εg
≤ q + εg

Note that here without loss of generality, we assume ε ≤ min{(n − 1)t, 24/(sn)} so

that 1 + q1 − εg − q ≥ (n− 1)t− εg + q1 > 0 and εg ≤ ε̄2g+1/192 < ε̄g+1/(8sn). In the

PAC learning model a polynomial upper bound for the error parameter ε is trivial,
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because if a learning algorithm works with a small error bound, it automatically

guarantees larger error bounds. As a consequence, |q − q0| ≤ εg. In addition, using

the definition of ‖ · ‖TV ,

| ‖Di(h)−D+
i (h)‖TV − ‖D̂i(h)− D̂+

i (h)‖TV |

=
1

2
| ‖Di(h)−D+

i (h)‖1 − ‖D̂i(h)− D̂+
i (h)‖1 |

≤1

2
| ‖Di(h)−D+

i (h)− D̂i(h) + D̂+
i (h)‖1 |

≤1

2

(
‖Di(h)− D̂i(h)‖1 + ‖D+

i (h)− D̂+
i (h)‖1

)
≤s

2

(
‖Di(h)− D̂i(h)‖∞ + ‖D+

i (h)− D̂+
i (h)‖∞

)

Hence, if we make statistical queries χ′V,a,h,i and χ+
V,a,h,i at tolerance τ2 = ε̄g+1 ·

1/(8sn) and because ε̄g+1/(8sn) + εg < ε̄g+1/(4sn), the noise on ‖Di(h)−D+
i (h)‖TV

will be at most ε̄g+1/(4n) and we will be able to estimate ‖D1:k(h)−D+
1:k(h)‖TV within

error kε̄g+1/(4n) ≤ ε̄g+1/4. If ‖D̂1:k(h) − D̂+
1:k(h)‖TV ≥ 3ε̄g+1/4, then ‖D1:k(h) −

D+
1:k(h)‖TV ≥ ε̄g+1/2. Otherwise, ‖D1:k(h)−D+

1:k(h)‖TV < ε̄g+1 and we are still safe

to increase k.

The algorithm does O(snC+2) queries χV,a,h at tolerance τ1 = ε̄2g+1/384, plus

O(snC+2) queries χ′V,a,h,i and χ+
V,a,h,i at tolerance τ2 = ε̄g+1/(8sn). Thus by induction

and taking the minimum tolerance among all g ≤ C we have the overall tolerances

τ and τ̄ as claimed in the statement. �
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3.5 Learning shuffle ideals under general distribu-

tions

Although the string distribution is restricted (or sometimes even known) in most

application scenarios, one might be interested in learning shuffle ideals under gen-

eral unrestricted and unknown distributions without any prior knowledge. Unfor-

tunately, under standard complexity assumptions, the answer is negative. Angluin

et al. [AAEK13] have shown that a polynomial time PAC learning algorithm for

principal shuffle ideals would imply the existence of polynomial time algorithms to

break the RSA cryptosystem, factor Blum integers, and test quadratic residuosity.

Theorem 3.4 [AAEK13] For any alphabet of size at least 2, given two disjoint

sets of strings S, T ⊂ Σ≤n, the problem of determining whether there exists a string

u such that u v x for each x ∈ S and u 6v x for each x ∈ T is NP-complete.

As ideal is a subclass of ideal X, we know learning ideal X is only harder. Is

the problem easier over instance space Σn? The answer is again no.

Lemma 3.11 Under general unrestricted string distributions, a concept class is PAC

learnable using statistical queries over instance space Σ≤n if and only if it is PAC

learnable using statistical queries over instance space Σn.

The proof of the if direction of Lemma 3.11 is similar to our generalization in

Section 3.2.3 from instance space Σn to instance space Σ≤n. The only-if direction is

an immediate consequence of the fact Σn ⊆ Σ≤n.

Note that Lemma 3.11 holds under general string distributions. It is not neces-

sarily true when we have assumptions on the marginal distribution of string length.

Notice that Lemma 3.11 requires algorithm A to be applicable to any Si | i ≤ n.
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But this requirement can be weakened. There might not exist such a general algo-

rithm A. Instead we could have an algorithm Ai applicable to each subspace Si with

non-negligible occurrence probability P(|x| = i) ≥ ε/(4n), then it is easy to see that

Lemma 3.11 still holds in this case. Moreover, Lemma 3.11 makes no assumption on

the string distribution. In the cases under restricted string distributions, here are

two conditions that suffice to make Lemma 3.11 hold: First, there is no assumption

on the string length distribution; Second, we have an algorithm Ai applicable to

instance space Si over marginal distribution D|x|=i for each 1 ≤ i ≤ n such that

P(|x| = i) is polynomially large.

Despite the infeasibility of PAC learning a shuffle ideal in theory, it is worth

exploring the possibilities to do the classification problem without theoretical guar-

antees, since in most applications we care more about the empirical performance

than about theoretical results. For this purpose we propose a heuristic greedy al-

gorithm for learning principal shuffle ideals based on a reward strategy as follows.

Upon having recovered v = û[1, `], for a symbol a ∈ Σ and a string x of length n, we

say a consumes k elements in x if min{Ivavx, n+ 1}− Ivvx = k. The reward strategy

depends on the ratio r+/r−: the algorithm receives r− reward from each element it

consumes in a negative example or r+ penalty from each symbol it consumes in a

positive string. A symbol is chosen as û`+1 if it brings us the most reward. The

algorithm will halt once û exhausts any positive example and makes a false negative

error, which means we have gone too far. Finally the ideal (û[1, `− 1]) is returned

as the hypothesis. The performance of this greedy algorithm depends a great deal

on the selection of parameter r+/r−. A clever choice is r+/r− = #(−)/#(+), where

#(+) is the number of positive examples x such that û v x and #(−) is the number

of negative examples x such that û v x. A more recommended but more complex

strategy to determine the parameter r+/r− in practice is cross validation. Figure 3.4
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Input: N labeled strings 〈xi, yi〉, string length n, alphabet Σ
Output: pattern string û
1. û← λ
2. for `← 0 to n
3. reward← a vector of 0’s of length |Σ|
4. for each a ∈ Σ
5. for i← 1 to N
6. if û v xi

7. if yi = +1
8. reward[a]← reward[a]+
9. (Iûvxi −min{Iûavxi , n+ 1})r+

10. else
11. reward[a]← reward[a]+
12. (min{Iûavxi , n+ 1} − Iûvxi)r−
13. endif
14. else
15. if yi = +1
16. return û[1, `− 1]
17. endif
18. endif
19. endfor
20. endforeach
21. û`+1 ← argmaxa∈Σ{reward[a]}
22. û← ûû`+1

23. endfor
24. return û

Figure 3.4: A greedy algorithm for learning a principal shuffle ideal from example
oracle EX

provides detailed pseudocode for this greedy method.

A recently studied approach to learning piecewise-testable regular languages is

kernel machines [KCM08, KN09]. An obvious advantage of kernel machines over our

greedy method is its broad applicability to general classification learning problems.

Nevertheless, the time complexity of the kernel machine is O(N3 + n2N2) on a

training sample set of size N [BL07], while our greedy method only takes O(snN)

time due to its great simplicity. Because N is usually large to ensure accuracy,
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kernel machines suffer from low efficiency and long running time in practice. To

make a comparison between the greedy method and kernel machines for empirical

performance, we conducted a series of experiments on a real world dataset [BL13]

with string length n as a variable. The experiment results demonstrate the empirical

advantage for both efficiency and accuracy of the greedy algorithm over the kernel

method, in spite of its simplicity.

Experiment settings and results

To make a comparison between the greedy method and kernel machines for empirical

performance, we conducted a series of experiments in MATLAB on a workstation

built with Intel i5-2500 3.30GHz CPU and 8GB memory. As discussed in Section

3.5, the running time of the kernel machine will be very large in practice when the

sample size N and the string length n are large. Also, a pattern string u of improper

length will lead to a degenerate sample set which contains only positive or only

negative example strings. To prevent this less interesting case from happening, we

set |u| = dns−1e. Intuitively, the sample set will be evenly partitioned into two

classes in expectation under the uniform distribution. However, in this case n not

being large demands the alphabet size s not being large either.

Combining all these constraints together, the experiment settings are: alphabet

size s = 8, size of training set = size of testing set = 1024. We vary the string length

n from 16 to 56 and let |u| = dns−1e. The pattern string u is generated uniformly

at random from Σ|u|. Our tests are run on the NSF Research Award Abstracts data

set [BL13]. We use the abstracts of year 1993 as the training set and those of year

1992 as the testing set. The tests are case-insensitive and all the characters except

the subset from ‘a(A)’ to ‘h(H)’ are removed from the texts. The result texts are

then partitioned into a set of strings of length n, which serve as the example strings.
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Figure 3.5: Experiment results with NSF abstracts data set (training 1993; testing
1992)

To be more robust against fluctuation from randomness, each test with a particular

value of n is run for 10 times and the medians of error rates and running times are

taken as the final performance scores. Both lines climb as n increases.

The experiment results are shown in Figure 3.5, with accuracy presented as line

plot and efficiency demonstrated as bar chart. The overwhelming advantage of the

greedy algorithm on efficiency is obvious. The kernel machine ran for hours in high

dimensional cases, while the greedy method achieved even better accuracy within

only milliseconds. The error rate of the greedy algorithm is always lower than that

of the kernel machine as well.

It is worth noting that MATLAB started reporting a no-convergence error for the

kernel method when the string length n reaches 56. Only successful runs of the kernel

method were taken into account. Therefore, the performance of the kernel method
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Figure 3.6: Experiment results with NSF abstracts data set (training 1999; testing
1998)

when n = 56 is very unstable over some datasets. Figure 3.6 is an example where

kernel method became unpredictable when the no-convergence error happened. In

this plot when n = 56 the kernel machine seems to have better accuracy than the

greedy method, but considering that all the failed runs of the kernel machine were

ruled out and only successful ones were taken into account, the apparent accuracy

of the kernel method is shaky.

3.6 Discussion

We have shown positive results for learning shuffle ideals in the statistical query

model under element-wise independent and identical distributions and Markovian

distributions, as well as a constrained generalization to product distributions. It is
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still open to explore the possibilities of learning shuffle ideals under less restricted

distributions with weaker assumptions. Also a lot more work needs to be done on

approximately learning shuffle ideals in applications with pragmatic approaches. In

the negative direction, even a family of regular languages as simple as the shuffle ide-

als is not efficiently properly PAC learnable under general unrestricted distributions

unless RP=NP. Thus, the search for a nontrivial properly PAC learnable family of

regular languages continues. Another theoretical question that remains is how hard

the problem of learning shuffle ideals is, or whether PAC learning a shuffle ideal is

as hard as PAC learning a deterministic finite automaton.
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Chapter 4

Learning a Random DFA from

Uniform Strings and State

Information

Deterministic finite automata (DFAs) have long served as a fundamental compu-

tational model in the study of theoretical computer science, and the problem of

learning a DFA from given input data is a classic topic in computational learning

theory. In this chapter we study the learnability of a random DFA and propose a

computationally efficient algorithm for learning and recovering a random DFA from

uniform input strings and state information in the statistical query model. A random

DFA is uniformly generated: for each state-symbol pair (q ∈ Q, σ ∈ Σ), we choose

a state q′ ∈ Q with replacement uniformly and independently at random and let

ϕ(q, σ) = q′, where Q is the state space, Σ is the alphabet and ϕ is the transition

function. The given data are string-state pairs (x, q) where x is a string drawn uni-

formly at random and q is the state of the DFA reached on input x starting from

the start state q0. After introducing the preliminaries in Section 4.1, we present the
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fast convergence of the random walks on a random DFA in Section 4.2. In addition

to this positive property, a computationally efficient algorithm for learning random

DFAs from uniform input strings in the statistical query model is proposed in Section

4.3, with a set of supporting experimental results.

The content of this chapter appears in [AC15].

4.1 Preliminaries

The Deterministic finite automaton (DFA) is a powerful and widely studied computa-

tional model in computer science. Formally, a DFA is a quintuple A = (Q,ϕ,Σ, q0, F )

where Q is a finite set of states, Σ is the finite alphabet, q0 ∈ Q is the start state,

F ⊆ Q is the set of accepting states, and ϕ is the transition function: Q × Σ → Q.

Let λ be the empty string. Define the extended transition function ϕ∗ : Q×Σ∗ → Q

by ϕ∗(q, λ) = q and inductively ϕ∗(q, xσ) = ϕ(ϕ∗(q, x), σ) where σ ∈ Σ and x ∈ Σ∗.

Denote by s = |Σ| the size of the alphabet and by n = |Q| the number of states.

In this chapter we assume s ≥ 2. Let G = (V,E) be the underlying directed multi-

graph of the DFA A (also called an automaton graph). We say a vertex set V0 ⊆ V

is closed if for any u ∈ V0 and any v such that (u, v) ∈ E, we must have v ∈ V0.

A walk on an automaton graph G is a sequence of states (v0, v1, . . . , v`) such that

(vi−1, vi) ∈ E for all 1 ≤ i ≤ `, where v0 is the vertex in G that corresponds to

the start state q0. A random walk on graph G is defined by a transition probability

matrix P with P (u, v) = #{(u, v) ∈ E} · s−1 denoting the probability of moving

from vertex u to vertex v, where #{(u, v) ∈ E} is the number of edges from u to v.

For an automaton graph, a random walk always starts from the start state q0. In

this chapter random walks on a DFA refer to the random walks on the underlying

automaton graph. A vertex u is aperiodic if gcd{t ≥ 1 | P t(u, u) > 0} = 1. Graph
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G (or a random walk on G) is irreducible if for every pair of vertices u and v in V

there exists a directed cycle in G containing both u and v, and is aperiodic if every

vertex is aperiodic. A distribution vector φ satisfying φP = φ is called a Perron

vector of the walk. An irreducible and aperiodic random walk has a unique Perron

vector φ and limt→+∞ P
t(u, ·) = φ (called the stationary distribution) for any u ∈ V .

In the study of rapidly mixing walks, the convergence rate in L2 distance ∆L2(t) =

maxu∈V ‖P t(u, ·) − φ‖2 is often used. A stronger notion in L1 distance is measured

by the total variation distance, given by ∆TV (t) = 1
2

maxu∈V
∑
v∈V |P t(u, v)− φ(v)|.

Another notion of distance for the measuring convergence rate is the χ-square dis-

tance:

∆χ2(t) = max
u∈V

(∑
v∈V

(P t(u, v)− φ(v))
2

φ(v)

) 1
2

As the Cauchy-Schwarz inequality gives ∆L2(t) ≤ 2∆TV (t) ≤ ∆χ2(t), a convergence

upper bound for ∆χ2(t) implies ones for ∆L2(t) and ∆TV (t).

Trakhtenbrot and Barzdin [TB73] first introduced the model of a random DFA

by employing a uniformly generated automaton graph as the underlying graph and

labeling the edges uniformly at random. In words, for each state-symbol pair (q ∈

Q, σ ∈ Σ), we choose a state q′ ∈ Q with replacement uniformly and independently

at random and let ϕ(q, σ) = q′.

4.2 Random walks on a random DFA

Random walks have proven to be a simple, yet powerful mathematical tool for ex-

tracting information from well connected graphs. Since automaton graphs are long

known to be of strong connectivity with high probability [Gru73], it’s interesting to

explore the possibilities of applying random walks to DFA learning. In this section

we will show that with high probability, a random walk on a random DFA converges
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to the stationary distribution φ polynomially fast in χ-square distance as stated in

Theorem 4.1.

Theorem 4.1 With probability 1 − o(1), a random walk on a random DFA has

∆χ2(t) ≤ e−k after t ≥ 2C(C + 1)sn1+C(log n + k) · logs n, where constant C > 0

depends on s and approaches unity with increasing s.

A standard proof of fast convergence consists of three parts: irreducibility, aperiodic-

ity and convergence rate. Grusho [Gru73] first proved the irreducibility of a random

automaton graph.

Lemma 4.1 [Gru73] With probability 1− o(1), a random automaton graph G has

a unique strongly connected component, denoted by G̃ = (Ṽ , Ẽ), of size ñ, and a)

lim
n→+∞

ñ
n

= C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when

s > 6; b) Ṽ is closed.

A subsequent work by Balle [Bal13] proved the aperiodicity.

Lemma 4.2 [Bal13] With probability 1− o(1), the strongly connected component

G̃ in Lemma 4.1 is aperiodic.

However, the order of the convergence rate of random walks on a random DFA

was left as an open question. One canonical technique for bounding the convergence

rate of a random walk is to bound the smallest nonzero eigenvalue of the Laplacian

matrix L of the graph G, defined by

L = I − Φ
1
2PΦ−

1
2 + Φ−

1
2P ∗Φ

1
2

2

where Φ is an n×n diagonal matrix with entries Φ(u, u) = φ(u) and P ∗ denotes the

transpose of matrix P . For a random walk P , define the Rayleigh quotient for any
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function f : V → R as follows.

R(f) =

∑
u→v |f(u)− f(v)|2φ(u)P (u, v)∑

v |f(v)|2φ(v)

Chung [Chu05] proved the connection between the Rayleigh quotient and the

Laplacian matrix of a random walk.

Lemma 4.3 [Chu05]

R(f) = 2
〈gL, g〉
‖g‖2

2

where g = fΦ
1
2 and 〈·, ·〉 means the inner product of two vectors.

From this lemma we can further infer the relation between the Rayleigh quotient

and the Laplacian eigenvalues. Suppose the Laplacian matrix L has eigenvalues

0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1.

Lemma 4.4 For all 1 ≤ i ≤ n − 1, let vector ηi be the unit eigenvector of λi and

vector fi = ηiΦ
− 1

2 . Then λi = 1
2
R(fi) and fi satisfies 〈fi, φ〉 = 0.

Proof By Lemma 4.3 we know 1
2
R(f) = 〈gL,g〉

‖g‖2 . From the symmetry of the Laplacian

matrix L, there exists a set of eigenvectors of L that forms an orthogonal basis.

We denote this set of eigenvectors by η0, η1, . . . , ηn−1 where ηi is the eigenvector

corresponding to λi. Notice that for all 0 ≤ i ≤ n− 1 we have

1

2
R(ηiΦ

− 1
2 ) =

〈ηiL, ηi〉
‖ηi‖2

2

=
λi‖ηi‖2

2

‖ηi‖2
2

= λi

We let fi = ηiΦ
− 1

2 . According to the definition of R(f), we have R(f) ≥ 0. We know

λ0 = R(f0) = 0. Thus f0 is the all-one vector and η0 = φ
1
2 is the unit eigenvector of

eigenvalue 0. For all 1 ≤ i ≤ n−1 we have 〈ηi, η0〉 = 0, i.e., (fiΦ
1
2 ) ·φ 1

2 = 〈fi, φ〉 = 0.
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Hence, for all 1 ≤ i ≤ n− 1, we have λi = 1
2
R(fi) where fi satisfies 〈fi, φ〉 = 0. �

From this we can see that the Rayleigh quotient serves as an important tool for

bounding the Laplacian eigenvalues. A lower bound on R(f1) is equivalent to one

on λ1. We present a lower bound on λ1 in terms of the diameter and the maximum

out-degree of the vertices in the graph.

Lemma 4.5 For a random walk on a strongly connected graph G, let λ1 be the

smallest nonzero eigenvalue of its Laplacian matrix L. Denote by Diam the diameter

of graph G and by s0 the maximum out-degree of the vertices in the graph. Then

λ1 ≥
1

2n ·Diam · s1+Diam
0

Proof Let u0 = arg maxx∈V φ(x) and v0 = arg minx∈V φ(x). Let `0 be the distance

from u0 to v0. As φP `0 = φ, we have φ(v0) ≥ P `0(u0, v0)φ(u0) ≥ s−`00 φ(u0) ≥

s−Diam0 φ(u0). We then have 1 =
∑
x∈V φ(x) ≤ nφ(u0) ≤ nsDiam0 φ(v0) and φ(v0) ≥

n−1s−Diam0 .

From Lemma 4.4 we have λ1 = 1
2
R(f1) and 〈f1, φ〉 = 0. As φ(x) > 0 for any

vertex x ∈ V , there must exist some vertex u with f1(u) > 0 and some vertex v

whose f1(v) < 0. Let y = arg maxx∈V |f1(x)|. Then there must exist some vertex

z such that f1(y)f1(z) < 0. Let ~r = (y, x1, x2 . . . , x`−1, z) be the shortest directed

path from y to z, which must exist due to the strong connectivity. Then the length
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of path ~r is `. Therefore,

λ1 =
1

2
R(f1) =

1

2

∑
u→v |f1(u)− f1(v)|2φ(u)P (u, v)∑

v |f1(v)|2φ(v)(
due to min

x∈V
φ(x) ≥ n−1s−Diam0 and min

(u,v)∈E
P (u, v) ≥ 1

s0

)

≥ 1

2ns1+Diam
0

∑
u→v |f1(u)− f1(v)|2∑

v |f1(v)|2φ(v)

≥ 1

2ns1+Diam
0

∑
u→v∈~r |f1(u)− f1(v)|2∑

v |f1(v)|2φ(v)

(by letting x0 = y and x` = z)

=
1

2ns1+Diam
0

∑`−1
i=0 |f1(xi)− f1(xi+1)|2∑

v |f1(v)|2φ(v)

≥ 1

2ns1+Diam
0

[∑`−1
i=0(f1(xi)− f1(xi+1))

]2
` ·∑v |f1(v)|2φ(v)

=
1

2ns1+Diam
0

[f1(y)− f1(z)]2

` ·∑v |f1(v)|2φ(v)

(for f1(y)f1(z) < 0)

≥ 1

2n ·Diam · s1+Diam
0

|f1(y)|2∑
v |f1(v)|2φ(v)

≥ 1

2n ·Diam · s1+Diam
0

|f1(y)|2

|f1(y)|2∑v φ(v)

=
1

2n ·Diam · s1+Diam
0

which completes the proof. �

As a canonical technique, a lower bound on the smallest nonzero eigenvalue of

the Laplacian matrix implies a lower bound on the convergence rate. Chung [Chu05]

proved

Theorem 4.2 A lazy random walk on a strongly connected graph G has convergence

rate of order 2λ−1
1 (− log minu φ(u)). Namely, after at most t ≥ 2λ−1

1 ((− log minu φ(u))

+2k) steps, we have ∆χ2(t) ≤ e−k.
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In the paper Chung used lazy walks to avoid periodicity. If the graph is irreducible

and aperiodic, we let P̂ = 1
2
(I + P ) be the transition probability matrix of the lazy

random walk and vector φ̂ be its Perron vector, matrix Φ̂ be the diagonal matrix of

φ̂, matrix L̂ be its Laplacian matrix.

We know φ is the solution of φP = φ or equivalently φ(I −P ) = 0 and
∑
i φ(i) =

1. Similarly, φ̂ is the solution of φ̂(I − P̂ ) = 0 and
∑
i φ̂(i) = 1. Observe that

I − P̂ = I − 1
2
(I + P ) = 1

2
(I − P ) and φ̂(I − P̂ ) = 1

2
φ̂(IP ) = 0, which is equivalently

φ̂(I − P ) = 0. Thus φ̂ = φ and Φ̂ = Φ. Then

L̂ = I − 1

2

(
Φ̂

1
2 P̂ Φ̂−

1
2 + Φ̂−

1
2 P̂ ∗Φ̂

1
2

)
= I − 1

2

(
Φ

1
2 · 1

2
(I + P ) · Φ−

1
2 + Φ−

1
2 · 1

2
(I + P ∗) · Φ

1
2

)
= I − 1

2

(
1

2
I +

1

2
Φ

1
2PΦ−

1
2 +

1

2
I +

1

2
Φ−

1
2P ∗Φ

1
2

)
= I − 1

2

(
I +

1

2
Φ

1
2PΦ−

1
2 +

1

2
Φ−

1
2P ∗Φ

1
2

)
=

1

2
I − 1

4

(
Φ

1
2PΦ−

1
2 + Φ−

1
2P ∗Φ

1
2

)
=

1

2
L

Let λ̂1 be the smallest positive eigenvalue of L̂. Then λ1 = 2λ̂1. Therefore, combining

this with Lemma 4.5, we have

Theorem 4.3 A random walk on a strongly connected and aperiodic directed graph

G has convergence rate of order 2n · Diam · s1+Diam
0 (log

(
nsDiam0

)
), where s0 =

arg maxu∈V du is the maximum out-degree of a vertex in G. Namely, after at most

t ≥ 2n ·Diam · s1+Diam
0 ((log

(
nsDiam0

)
+ 2k)) steps, we have ∆χ2(t) ≤ e−k.

Now it remains to achieve a logarithmic upper bound for the diameter Diam.

Fortunately, in our case s0 = s and Trakhtenbrot and Barzdin [TB73] proved the

diameter of a random DFA is logarithmic.
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Theorem 4.4 With probability 1−o(1), the diameter of a random automaton graph

is O(logs n).

With the logarithmic diameter we complete the proof of Theorem 4.1. The con-

stant C in Theorem 4.1 is the constant used in the proof of Theorem 4.4 by Trakht-

enbrot and Barzdin [TB73]. It depends on s and approaches unity with increasing

s.

Notice that the diameter of an automaton graph won’t increase after state-

merging operations, thus with high probability, a random DFA has at most loga-

rithmic diameter after DFA minimization. It is also easy to see an irreducible DFA

still maintains irreducibility after minimization. In addition, Balle [Bal13] proved

DFA minimization preserves aperiodicity. Now we also have Corollary 4.1.

Corollary 4.1 With probability 1 − o(1), a random walk on a random DFA after

minimization has ∆χ2(t) ≤ e−k after t ≥ 2C(C + 1)sn1+C(log n + k) · logs n, where

constant C > 0 depends on s and approaches unity with increasing s.

4.3 Reconstructing a random DFA

In this section we present a computationally efficient algorithm for recovering random

DFAs from uniform input strings in the statistical query learning model (described

in Section 3.1) with a theoretical guarantee on the maximum absolute error and

supporting experimental results.

4.3.1 The learning algorithm

In our learning model, the given data are string-state pairs (x, q) where x is a string

drawn uniformly at random from Σt and q is the state of the DFA reached on input
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x starting from the start state q0. Here t = poly(n, s) is the length of the example

strings. Our goal is to recover the unique irreducible and closed component of the

target DFA from the given data in the statistical query model. The primary con-

straint on our learning model is the need to estimate the distribution of the ending

state, while the advantage is that our algorithm reconstructs the underlying graph

structure of the automaton. Let quintuple A = (Q,ϕ,Σ, q0, F ) be the target DFA

we are interested in. We represent the transition function ϕ as a collection of n× n

binary matrices Mσ indexed by symbols σ ∈ Σ as follows. For each pair of states

(i, j), the element Mσ(i, j) is 1 if ϕ(i, σ) = j and 0 otherwise. For a string of m sym-

bols y = y1y2 . . . ym, define My to be the matrix product My = My1 ·My2 . . .Mym .

Then My(i, j) is 1 if ϕ∗(i, y) = j and 0 otherwise.

A uniform input string x ∈ Σt corresponds to a random walk of length t on

the states of the DFA A starting from the start state q0. By Lemma 4.1 and 4.2,

we can assume the irreducibility and aperiodicity of the random walk. Due to the

uniqueness of the strongly connected component, the walk will finally converge to the

stationary distribution φ with any start state q0. For any string y = y1y2 . . . ym, we

define the distribution vector py over the state space Q obtained by starting from the

stationary distribution φ and inputting string y to the automaton. That is, py = φMy

and pλ = φ. Consequently, each string y ∈ Σ∗ and symbol σ ∈ Σ contribute a linear

equation pyMσ = pyσ where yσ is the concatenation of y and σ. Due to Theorem 4.4,

the diameter of a random DFA is O(logs n) with high probability. The complete set

of Θ(logs n)-step walks should have already traversed the whole graph and no new

information can be retrieved after Θ(logs n) steps. Hence, we only need to consider

the equation set {pyMσ = pyσ | y ∈ ΣO(logs n)} for each σ ∈ Σ. We further observe

that the equation system {pyMσ = pyσ | y ∈ ΣΘ(logs n)} has the same solution as

{pyMσ = pyσ | y ∈ ΣO(logs n)}. Let vector z be the i-th column of matrix Mσ, matrix
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PA be the sΘ(logs n) × n coefficient matrix whose rows are {py | y ∈ ΣΘ(logs n)} and

vector b be the vector consisting of {pyσ(i) | y ∈ ΣΘ(logs n)}. The task reduces to

solving the linear equation system PAz = b for z. Let φt be the distribution vector

over Q after t steps of the random walk. As the random walk always starts from the

start state q0, the initial distribution φ0 is a coordinate vector whose entry for q0 is

1 and the rest are 0, for which

2‖φt − φ‖TV ≤
(∑
v∈V

(φt(v)− φ(v))2

φ(v)

) 1
2

≤ max
u∈V

(∑
v∈V

(P t(u, v)− φ(v))
2

φ(v)

) 1
2

Theorem 4.1 claims that a polynomially large t0 = 2C(C+1)sn1+C(log n+log 2
τ
) ·

logs n is enough to have the random walk converge to pλ = φ within any polynomially

small χ-square distance τ
2

with high probability where C > 0 is the constant in the

theorem. Let t = t0 + C logs n, which is still polynomially large. We can estimate

the stationary distribution for a state i by the fraction of examples (x, q) such that

q = i. In general, for any string y, we can estimate the value of py for a state i as

the ratio between the number of pairs (x, q) such that y is a suffix of x and q = i

and the number of examples (x, q) where y is a suffix of x.

In the statistical query model we are unable to directly observe the data; in-

stead we are given access to the oracle STAT. Define a conditional statistical query

χy,i(x, q) = 1{q = i | y is a suffix of x} where 1 is the boolean indicator function.

It’s easy to see the legitimacy and feasibility of query χy,i(x, q) for any y ∈ ΣΘ(logs n)

because: (1) it is a boolean function mapping an example (x, q) to {0, 1}; (2) the

proposition 1{q = i} can be tested in O(1) time; (3) the condition 1{y is a suffix of

x} can be tested within Θ(logs n) time; (4) the probability of the condition that

y is a suffix of x is inverse polynomially large s−|y| = s−Θ(logs n) = Θ(n−C) for some

constant C > 0.
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Let p̃λ be the distribution vector over the states after t steps and p̃y = p̃λMy.

Also denote by vector p̂y the query result returned by oracle STAT where p̂y(i) is

the estimate Eχy,i, and by P̂A and b̂ the estimates for PA and b respectively from

oracle STAT. We infer the solution z by solving the perturbed linear least squares

problem: minz ‖P̂Az − b̂‖2. Let ẑ be the solution we obtain from this perturbed

problem. According to the main theorem, the distance ‖pλ − p̃λ‖1 = 2‖φt − φ‖TV ≤

∆χ2(t) ≤ τ
2
. Then for any string y, ‖py− p̃y‖∞ = ‖(pλ− p̃λ)My‖∞ ≤ ‖pλ− p̃λ‖1 ≤ τ

2
.

If we do the statistical queries with tolerance τ
2
, the maximum additive error will be

‖p̃y − p̂y‖∞ ≤ τ
2

for any string y. Thus we have ‖py − p̂y‖∞ ≤ τ . To conclude a

theoretical upper bound on the error, we use the following theorem by Björck [Bjö91],

which was later refined by Higham [Hig94].

Theorem 4.5 Let z be the optimal solution of least squares problem minz ‖Mz−b‖2

and ẑ be the optimal solution of minz ‖M̂z− b̂‖2. If |M − M̂ | - ωE and |b− b̂| - ωf

for some element-wise non-negative matrix E and vector f , where | · | refers to

element-wise absolute value and - means element-wise ≤ comparison, then

‖z − ẑ‖∞ ≤ ω(‖|M †|(E|z|+ f)‖∞ + ‖|(M>M)−1|E>|Mz − b|‖∞) +O(ω2)

when M has full column rank, or

‖z − ẑ‖∞ ≤ ω(‖|M̂ †|(E|ẑ|+ f)‖∞ + ‖|(M̂>M̂)−1|E>|M̂ẑ − b̂|‖∞) +O(ω2)

when M̂ has full column rank, where M † is the MoorePenrose pseudoinverse of matrix

M .

Applying Theorem 4.5 to our case gives an upper bound on the maximum absolute

error.

132



Corollary 4.2 If PA has full rank with high probability,

‖z − ẑ‖∞ ≤
(1 + ε) log ns

log log ns
‖|P †A|‖∞τ +O(τ 2)

with probability 1− o(1) for any constant ε > 0.

Proof First in our case the offset |PAz − b| = 0 and ω = τ . Matrix E is the all-

one matrix and vector f is the all-one vector. As a consequence, ‖f‖∞ = 1 and

‖E|z|‖∞ = ‖z‖1. Now it remains to prove with high probability ‖z‖1 ≤ (1+ε) logns
log logns

for all columns in all Mσ, σ ∈ Σ.

Let θ be the largest 1-norm of the columns in Mσ. According to the properties of

a random DFA, the probability of θ > n is 0 and P(θ = n) ≤ n ·n−n is exponentially

small. For any k < n,

P(θ ≥ k) ≤ n · P(a particular column has 1-norm at least k)

≤n ·
(
n

k

)(
1

n

)k

≤
√

2πn
(
n
e

)n
e

1
12n

√
2πk

(
k
e

)k
e

1
12k+1 ·

√
2π(n− k)

(
n−k
e

)n−k
e

1
12(n−k)+1

· n
(

1

n

)k

≤

√√√√ n3s2

2πk(n− k)s2
· e

1
12n (n)n

(nk)k(n− k)n−k

≤1

s
· elogns+n logn−k log k−(n−k) log(n−k)−k logn+ 1

12n

We only need to choose a k such that the exponent goes to −∞, which is equal to

log ns+ k
(

1− n

k

)
log

(
1− k

n

)
− k log k +

1

12n

If k ≥ n then P(θ ≥ k) is exponentially small as discussed above. Otherwise

we have
(
1− n

k

)
log

(
1− k

n

)
≤ 1 in our case. Also notice that 1

12n
≤ 1. Let k =
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(1+ε) logns
log logns

. The expression is upper bounded by

log ns+
(1 + ε) log ns

log log ns
− (1 + ε) log ns

log log ns
log

(1 + ε) log ns

log log ns
+ 1

= log ns+
(1 + ε) log ns

log log ns
(1− log(1 + ε)− log log ns+ log log log ns) + 1

=− ε log ns+

(
1− log(1 + ε)

log log ns
+

log log log ns

log log ns

)
(1 + ε) log ns+ 1

With respect to n and s, the expression goes to −∞. There are in total s matrices

{Mσ | σ ∈ Σ}. Using a union bound we have ‖z‖1 ≤ (1+ε) logns
log logns

for all columns in all

Mσ with probability 1− o(1), and plugging this upper bound into the conclusion of

Theorem 4.5 completes the proof. �

This further implies that if we set the tolerance τ = log logns

3‖|P †A|‖∞ logns
, the solution

error ‖z− ẑ‖∞ < 1
2

with high probability. Based on the prior knowledge we have for

z, we could refine ẑ by rounding up ẑ to a binary vector z̃, i.e., for each 1 ≤ i ≤ n,

z̃(i) = 1 if ẑ(i) > 1
2

and 0 otherwise, whereby we will have z̃(q) = z(q) for any state

q in the strongly connected component.

Our algorithm only recovers the strongly connected component Ã of a random

DFA A because it relies on the convergence of the random walk and any state

q 6∈ Ã will have zero probability after convergence. We have no information for

reconstructing the disconnected part. In the positive direction, due to Lemma

4.1, with high probability we are able to recover at least 79.68% of the DFA for

any s ≥ 2 and at least 99.9% of the whole automaton if s > 6. Because Ã is

unique and closed, it is also a well defined DFA. In Section 4.2 we have proved

minq∈Q{pλ(q) | pλ(q) > 0} ≥ n−1s−Diam = n−C for some constant C > 0 with high

probability. This means we have a polynomially large gap so that we are able to

distinguish the recurrent states from the transient ones by making a query to esti-
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mate p̃λ(q) for each state q ∈ Q. In our result ‖|P †A|‖∞ is regarded as a parameter.

It might be possible to improve the result by polynomially bounding ‖|P †A|‖∞ with

other given parameters n and s using random matrix theory techniques. The full-

rank assumption is reasonable because a random matrix is usually well conditioned

and full-rank. From the empirical results in Section 4.3.2, the coefficient matrix PA

is almost surely full-rank and ‖|P †A|‖∞ is conjecturally ≤ ns log s. Furthermore, ac-

cording to Corollary 4.1, our algorithm is also applicable to learning a random DFA

after minimization.

A toy example

The following toy example is to demonstrate how the algorithm works. Suppose we

consider the alphabet {0, 1} and a 3-state DFA with the following transition matrices.

M0 =


0 1 0

1 0 0

1 0 0

 and M1 =


0 1 0

0 0 1

0 1 0



For this automaton, the stationary distribution pλ is (1/3, 4/9, 2/9). Since dlogs ne =

dlog2 3e = 2, the algorithm recovers the first column of matrix M0, denoted by

z = (M0(1, 1),M0(2, 1),M0(3, 1))>, by solving the overdetermined equation system



p00 · z = p000(1)

p01 · z = p010(1)

p10 · z = p100(1)

p11 · z = p110(1)

, i.e.,



1
3
M0(1, 1) + 2

3
M0(2, 1) + 0M0(3, 1) = 2

3

0M0(1, 1) + 2
3
M0(2, 1) + 1

3
M0(3, 1) = 1

1M0(1, 1) + 0M0(2, 1) + 0M0(3, 1) = 0

0M0(1, 1) + 4
9
M0(2, 1) + 5

9
M0(3, 1) = 1

Similarly the algorithm recovers all columns in M0 and M1 and reconstructs
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Figure 4.1: ‖|P †A|‖∞ versus n with fixed s = 2

the target automaton. Note that in the statistical query model the above equation

system is perturbed but we showed the algorithm is robust to statistical query noise.

4.3.2 Experiments and empirical results

In this section we present a series of experimental results to study the empirical

performance of the learning algorithm, which was run in MATLAB on a workstation

built with Intel i5-2500 3.30GHz CPU and 8GB memory. To be more robust against

fluctuation from randomness, each test was run for 20 times and the medians were

taken. The automata are generated uniformly at random as defined and the algo-

rithm solves the equation system {pyMσ = pyσ | y ∈ Σ≤dlogs ne} using the built-in

linear least squares function in MATLAB. We simulate the statistical query oracle

with uniform additive noise.

The experiments start with an empirical estimate for the norm ‖|P †A|‖∞. We first

vary the automaton size n from 32 to 4300 with fixed alphabet size s = 2. Figure

4.1 shows the curve of ‖|P †A|‖∞ versus n with fixed s. Notice that the threshold phe-

nomenon in the plot comes from the ceiling operation in the algorithm configuration.
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Figure 4.2: ‖|P †A|‖∞ versus s with fixed n = 256

When n is much smaller than the threshold sdlogs ne, the system is overdetermined

with many extra equations. Thus it is robust to perturbation and well-conditioned.

When n approaches the threshold sdlogs ne, the system has fewer extra equations and

becomes relatively more sensitive to perturbations, for which the condition number

increases until the automaton size reaches n = si of the next integer i. One can

avoid this threshold phenomenon by making the size of the equation system grow

smoothly as n increases. We then fix n to be 256 and vary s from 2 to 75, as shown

in Figure 4.2. Similarly there is the threshold phenomenon resulting from the ceiling

strategy. All peaks where n = si are included and plotted. Meanwhile the rank of

PA is measured to support the full-rank assumption. Matrix PA is almost surely full-

rank for large n or s and both figures suggest an upper bound ns log s for ‖|P †A|‖∞.

We set the query tolerance τ as log logns
ns logns log2 s

in the algorithm and measure the max-

imum absolute error ‖z − ẑ‖∞ at each run. Figures 4.3 and 4.4 demonstrate the

experimental results. Along with the error curve in each figure a function is plotted

to approximate the asymptotic behavior of the error. An empirical error bound is

O(n−0.3) with fixed s and O(s−0.3) with fixed n.
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Figure 4.3: Maximum absolute error versus n with fixed s = 2

4.4 Discussion

In this chapter we prove fast convergence of random walks on a random DFA and

apply this theoretical result to learning a random DFA in the statistical query model.

One potential future work is to validate the full-rank assumption or to polynomially

bound ‖|P †A|‖∞ using the power of random matrix theory. Note that ‖|P †A|‖∞ reflects

the asymmetry of the automaton graph. The class of permutation automata [Thi68]

is one example that has symmetric graph structure and degenerate PA. Another

technical question on the fast convergence result is whether it can be generalized to

weighted random walks on random DFAs. An immediate benefit from this gener-

alization is the release from the requirement of uniform input strings in the DFA

learning algorithm. However, we conjecture such generalization requires a polyno-

mial lower bound on the edge weights in the graph, to avoid exponentially small

nonzero elements in the walk matrix P . A further generalization is applying this

algorithm to learning random probabilistic finite automata. In this case we will

have a similar linear equation system, but the solution vector z is continuous, not
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Figure 4.4: Maximum absolute error versus s with fixed n = 256

necessarily a binary vector.
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Chapter 5

Learning Random Regular Graphs

The family of random regular graphs is a classic topic in the realms of graph theory,

combinatorics and computer science. In this chapter we study the problem of learning

random regular graphs from random paths. A random regular graph is generated

uniformly at random and in a standard label-guided graph exploration setting, the

edges incident from a node in the graph have distinct local labels. The input data to

the statistical query oracle are path-vertex pairs (x, v) where x is a random uniform

path (a random sequence of edge labels) and v is the vertex of the graph reached on

the path x starting from a particular start vertex v0. In Section 5.2 we present our

main theorem on the fast convergence of random walks on random regular graphs. In

addition to the theoretical results, we generalize our learning algorithm in Chapter 4

to learning random regular graphs from uniform paths in the statistical query model,

in Section 5.3, with a group of experimental results. In Section 5.4 we discuss other

applications and potential future work in computer science and machine learning.

The content of this chapter appears in [Che15].
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5.1 Overview

Random walks on graphs have long served as a fundamental topic in the study of

Markov chains and also as an important tool in machine learning research. On

the other hand, regular graphs are widely studied in computer science for their

important role in computational graph models and their applications. Because strong

properties usually don’t hold for all regular graphs, it is natural to ask whether we

can pursue positive results for “almost all” regular graphs. This is addressed by

studying high-probability properties of uniformly generated random regular graphs.

In recent decades random regular graphs have gathered more and more attention

in computer science, combinatorics and graph theory. Nevertheless, the study of

random walks on random regular graphs is relatively limited. This chapter aims to

fill this gap with a comprehensive study of the varieties of random regular graphs

listed in Table 5.1. Detailed definitions of the random graph models are provided

in Section 5.2.1. The notation in Table 5.1 will be used throughout this chapter.

Our main contributions are the positive results on the fast convergence of random

walks on random regular graphs, which fill the gap in the research on random regular

graphs. With these positive theoretical results, we are able to generalize our learning

algorithm in Chapter 4 to learning random regular graphs (i.e., almost all regular

graphs) from random paths in the statistical query model.

Random out-regular multigraphs (RMG+(s)) are the most well-studied among

the family of random regular graphs, mainly because the freedom and independence

of the edge selections makes the analysis simple and direct. This is also due to the

important role of deterministic finite automaton (DFA) in computer science, as the

underlying automaton graph of a random DFA is exactly a RMG+(s) [Gru73, TB73,

AC15]. In the context of DFA learning, we have proved the fast convergence of
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Random regular graph model Notation

Random out-regular multigraph RMG+(s)

Random out-regular simple graph RSG+(s)

Random in-regular multigraph RMG−(s)

Random in-regular simple graph RSG−(s)

Random s-in s-out multigraph RMG±(s)

Random s-in s-out simple graph RSG±(s)

Random regular digraph RDG(s)

Random regular undirected graph RG(s)

Table 5.1: Random regular graphs with fixed degree s

random walks on a RMG+(s) in Chapter 4. In this chapter, we first start with the

slightly more restricted model, the random out-regular simple graphs (RSG+(s)),

with less freedom and independence of the edges. Simple graphs are more natural

in real-world applications like citation graphs and k-nearest neighbor graphs where

self-loops and parallel edges are not allowed. We prove random walks on a RSG+(s)

converge to the stationary distribution polynomially fast with probability 1 − o(1).

Based on the proofs for out-regular models, we then show similar properties for in-

regular models. In-regular graphs are less popular and of limited interest in practice

but their properties are helpful in studying the random s-in s-out graph models,

first introduced by Fenner and Frieze [FF82], which can be viewed as the sum of a

random out-regular graph and a random in-regular graph.

After that we study the two classes of regular graphs in usual sense: regular di-

graphs and regular undirected graphs. They are the most restricted graphs among

these models but very widely studied in the literature. A random undirected sparse

(i.e., s = O(1)) regular multigraph is known to be an expander graph with high prob-

ability. It is well known that expander graphs have well-bounded Laplacian eigenval-
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ues. In this chapter RDG(s) and RG(s) are simple, not necessarily sparse graphs. In

addition, polynomially bounding the Laplacian eigenvalues for RDG(s) and RG(s) is

not hard and doesn’t involve any randomness (including nonsparse cases, see Section

5.2.5 for detailed formal proofs), but bounding Laplacian eigenvalues is not sufficient

for fast convergence. Most of our effort is spent on the aperiodicity, where the ran-

domness in the models is formally dealt with. This is the major difficulty in our

proof and requires a substantial amount of work. To the best of our knowledge, no

work has been done on the ergodicity and convergence rate of the random walks

on RDG(s) and previous results for RG(s) require s = blogC nc for some constant

C ≥ 2, where n is the number of vertices in the graph. We present a complete proof

for fast convergence of random walks on RDG(s) for s ≥ 2 and random walks on

RG(s) for s ≥ 3 if n is odd and for 3 ≤ s = o(
√
n) or s > 1

2
n if n is even.

5.2 Random walks on random regular graphs

In this section, we describe our main theoretical result. Concepts and notation

used throughout this chapter are described in Section 5.2.1. The main theorem is

presented in Section 5.2.2, followed by the proof.

5.2.1 Preliminaries

A graph is a tuple G = (V,E), where V is a (finite) set whose elements are called ver-

tices and E is a (finite) multiset of ordered pairs of V called edges. We denote by n =

|V |. A graph is undirected if the vertex pairs in E are unordered, and is simple if it has

no self-loops or parallel edges. If vertex v is reachable from another vertex u, the dis-

tance d(u, v) from u to v is the minimum length of a path from u to v and d(u, u) = 0.

The diameter of a graph is max{d(u, v) | v = u or v is reachable from u}. A graph

143



G is (cyclically) h-partite if V can be partitioned into h subsets, V0, V1, . . . , Vh−1, in

such a way that all edges from Vi go to V(i+1) mod h. We say a vertex set V0 ⊆ V is

closed if for any u ∈ V0 and any v such that (u, v) ∈ E, we must have v ∈ V0. A

component V0 ⊂ V is isolated if for any u ∈ V0 and any v such that (u, v) ∈ E or

(v, u) ∈ E, we must have v ∈ V0.

In an undirected graph, the degree of a vertex u is the number of edges incident

to u. An undirected graph is regular if every vertex has the same degree. In a

digraph, for a directed edge (u, v) in E, we say that vertex u has an out-neighbor v

and vertex v has an in-neighbor u. The number of edges incident to a vertex u is

the in-degree of u, denoted by d−u , and the number of edges incident from u is its

out-degree, denoted by d+
u . Unless otherwise stated, by default a neighbor refers to

an out-neighbor and the degree of a vertex u denoted by du means its out-degree.

A graph G is out-regular if du = s for all u ∈ V ; and is in-regular if d−u = s for all

u ∈ V . A digraph is regular if it is both in-regular and out-regular.

A walk on a graph G is a sequence of vertices (v0, v1, . . . , v`) such that (vi−1, vi) ∈

E for all 1 ≤ i ≤ `. A random walk on a graph G is defined by a transition

probability matrix P with P (u, v) = #{(u, v) ∈ E} · d−1
u denoting the probability

of moving from vertex u to vertex v, where #{(u, v) ∈ E} is the number of edges

from u to v in the graph. A vertex (or equivalently a state of a random walk)

u is aperiodic if gcd{t ≥ 1 | P t(u, u) > 0} = 1. A graph G (or a random walk

on G) is irreducible if for every u and v in V there exist a directed cycle in G

containing u and v, and is aperiodic if every vertex is aperiodic. A distribution

vector φ satisfying φP = φ is called a Perron vector of the walk. An irreducible and

aperiodic random walk has a unique Perron vector φ and limt→+∞ P
t(u, ·) = φ (called

the stationary distribution) for any u ∈ V . In the study of rapidly mixing walks, the

convergence rate in the L2 distance ∆L2(t) = maxu∈V ‖P t(u, ·)−φ‖2 is often used. A
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stronger notion in L1 distance is measured by the total variation distance, given by

∆TV (t) = 1
2

maxu∈V
∑
v∈V |P t(u, v)−φ(v)|. Another notion of distance for measuring

convergence rate is the χ-square distance:

∆χ2(t) = max
u∈V

(∑
v∈V

(P t(u, v)− φ(v))
2

φ(v)

) 1
2

As the Cauchy-Schwarz inequality gives ∆L2(t) ≤ 2∆TV (t) ≤ ∆χ2(t), a convergence

upper bound for ∆χ2(t) also bounds ∆L2(t) and ∆TV (t).

In this chapter we study the random graph models listed in Table 5.1. For each

model, an instance is drawn uniformly at random from the instance space of the

model. A random s-in s-out graph is generated as the sum of a random in-regular

graph and a random out-regular graph [FF82]. A RDG(s) has no parallel edges but

allows self-loops. A RG(s) is simple.

5.2.2 The main theorem

We prove positive results on the ergodicity and convergence rate of random walks on

random regular graphs, as stated in the following theorem.

Theorem 5.1 With probability 1− o(1), a random walk on a random regular graph

has ∆χ2(t) ≤ e−k after t ≥ t0 steps, where

1. for RMG+(s) and RSG+(s): t0 = 2C(C + 1)sn1+C(log n+ k) · logs n for some

constant C > 0 when s ≥ 2;

2. for RDG(s): t0 = 2s(n− 1)(log n+ 2k) when s ≥ 2;

3. for RG(s): t0 = s(n−1)(log n+2k) when s ≥ 3 if n is odd; when 3 ≤ s = o(
√
n)

or s > 1
2
n if n is even;
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4. for RMG−(s) and RSG−(s): t0 = 2C(C+ 1)sCn1+C(log n+k) · logs n for some

constant C > 0 when the walk is restricted to the unique irreducible component

and there exists a constant C ′ ≥ 1 such that s = Ω
([

logn
log logn

]1/C′)
.

5. for RMG±(s) and RSG±(s): t0 = 2C(C + 1)sCn1+C(log n + k) · logs n for

some constant C > 0 when there exists a constant C ′ ≥ 1 such that s =

Ω
([

logn
log logn

]1/C′)
.

The constraints on s in the theorem are optimal. The low connectivity of 1-

regular graphs makes them of little interest so we need the degree s to be at least

2. In the undirected case we have s ≥ 3 because when s = 2 a connected 2-regular

undirected graph (or component) can only be a simple cycle. That is, a RG(2) must

be a set of isolated simple cycle(s). This not only breaks the irreducibility, but also

violates the aperiodicity of the graph. The other constraint s = o(
√
n) for even n

comes from the study of enumeration of RG(s). In the cases (4) and (5), a lower

bound on s is needed because small in-degree s brings us large maximum out-degree

(with respect to s). Unlike other models, the irreducible component in the in-regular

cases in the theorem is not necessarily closed, and the fast convergence property only

holds when the walk is restricted to the unique irreducible component.

5.2.3 Fast convergence on RMG+ and RSG+

In Chapter 4 we have proved that random walks on a random DFA converge polyno-

mially fast. Because the underlying graph of a random DFA is exactly a RMG+(s),

the RMG+(s) case in the main theorem is established immediately by the work in

Chapter 4.

A standard proof of fast convergence consists of three parts: irreducibility, ape-

riodicity and polynomial convergence rate. The irreducibility of RSG+(s) is built on
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that of RMG+(s), thanks to the similarities they share. A RSG+(s) can be generated

from a RMG+(s) using a two-stage procedure. Stage 1: generate a RMG+(s). Stage

2: for each vertex in the graph, check whether all its s neighbors are distinct nodes

that are not itself. If not, keep choosing neighbors from V uniformly at random until

it has exactly s distinct neighbors excluding itself. Finally, remove self-loops and

merge parallel edges to simple edges. By this method a RSG+(s) can be viewed as

a RMG+(s) adding more edges after removing self-loops and merging parallel edges.

Together with the fact that a RMG+(s) has a large closed and strongly connected

component (Lemma 5.1), we achieve the irreducibility of RSG+(s) (Lemma 5.2).

Denote by ph(n̄) the probability of existence of an h-partite component which

consists of n̄ vertices in a RSG+(s). Let Ḡ = (V̄ , Ē) where |V̄ | = n̄ be one such

component. Note that Ḡ is h-partite if and only if V̄ can be partitioned into h disjoint

subsets V̄0, V̄1, . . . , V̄h−1 such that all edges from V̄i go to V̄(i+1) mod h. Algebra and

combinatorics bounds give us that ph(n̄) is at most

(
n

n̄

)(
n̄− 1

h− 1

)
·
(

n̄
n̄
h
, n̄
h
, . . . , n̄

h

)
·
(

1

h

)2n̄+1

·
(

n̄

n̄− 1

)2n̄

We further show that ph(n̄) is exponentially small for any n̄ > 0.79n and any h ≥ 2 so

that the probability of periodicity ≤ ∑n
n̄=d0.79ne

∑n̄
h=2 ph(n̄) goes to 0 when n→ +∞

(Lemma 5.3).

The proof of the polynomial convergence rate is mainly done by showing that a

RSG+(s) has logarithmic diameter (of order Θ(logs n)) with high probability. To do

so, we generate a RSG+(s) in a “level-wise” order. Initially we pick a start vertex

u0 ∈ V and let level 0 be the set {u0}. Then inductively, for each vertex ui in level i,

we choose its s neighbors from {V \ ui} uniformly at random without replacement.

All the new chosen vertices form level i+ 1. This spanning procedure halts when no
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new vertex is chosen as a neighbor of the boundary so the next level is empty. We

call the set of vertices in all levels ≤ i the ball i. The final step is for each vertex not

in the ball, uniformly choosing s distinct vertices as its neighbors. To accomplish

the proof, we divide the above spanning procedure into six stages (see the proof of

Theorem 5.2 for details). We show that the size of the spanning ball keeps increasing

in the first 3 stages while the boundary of the ball starts shrinking in Stage 4 and

finally the spanning procedure halts with an empty new level. The number of levels

constructed in all stages is logarithmic, and so is the diameter of the graph.

Now we present the formal proof below.

Irreducibility

Since RMG+(s) and RSG+(s) share many similarities, we can achieve the irreducibil-

ity of RSG+(s) based on that of RMG+(s).

Lemma 5.1 [Gru73] With probability 1− o(1), a RMG+(s) has a unique strongly

connected component, denote by G̃ = (Ṽ , Ẽ), of size ñ, and a) limn→+∞
ñ
n

= C for

some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s ≥ 7; b) Ṽ is

closed.

The irreducibility of RSG+(s) is proved in the following lemma.

Lemma 5.2 With probability 1− o(1), a RSG+(s) has a unique closed and strongly

connected component, denoted by G̃ = (Ṽ , Ẽ), of size ñ when n → +∞, and

limn→+∞
ñ
n
≥ C for some constant C > 0.7968 when s ≥ 2 or some C > 0.999

when s ≥ 7.

Proof Recall that the only difference between RSG+(s) from RMG+(s) is that the

s neighbors of each vertex are chosen without replacement so no self-loops or parallel
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edges are allowed. We can consider the following two-stage procedure to generate a

RSG+(s) from a RMG+(s). Stage 1: generate a RMG+(s). Stage 2: for each vertex

in the graph, check whether all its s neighbors are distinct nodes that are not itself.

If not, keep choosing neighbors from V uniformly at random until it has exactly

s distinct neighbors excluding itself. Finally, remove self-loops and merge parallel

edges to simple edges. Because for every vertex u ∈ V , each v ∈ V \{u} will become

one of the s neighbors of u with equal probability, the result of this procedure is a

uniformly generated RSG+(s).

Thus a RMG+(s) can be viewed as a RMG+(s) adding more edges after remov-

ing self-loops and merging parallel edges. This means the simple graph model has

connectivity at least as good as the multigraph model. The size of the strongly con-

nected component will only increase. After Stage 1 we have a RMG+(s), denoted

by G1 = (V,E1) and let Ṽ1 ⊆ V be the closed strongly connected component of G1

stated in Lemma 5.1. To show the irreducible component in a RSG+(s) is also closed,

note that for any v 6∈ Ṽ1, there must exist at least one path from v to Ṽ1. Otherwise

there will be another strongly connected component in G1, which contradicts Lemma

5.1. Thus in Stage 2, every time we add an edge from Ṽ1 to some u 6∈ Ṽ1, there must

be some directed path(s) from u heading back to the irreducible component. All the

vertices on this(these) path(s) are now strongly connected with Ṽ1 and become new

members of the irreducible component. Therefore, the irreducible component in the

final simple graph will also be closed. �

Aperiodicity

Lemma 5.3 With probability 1− o(1), G̃ in Lemma 5.2 is aperiodic.
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Proof Let ph(n̄) be the probability of existence of an h-partite component of size n̄

in a RSG+(s). The proof is completed by showing ph(n̄) goes to 0 exponentially fast

when n→ +∞ for any n̄ > 0.79n and h ≥ 2 so that combining with Lemma 5.2 the

probability of periodicity is ≤ ∑n
n̄=d0.79ne

∑n̄
h=2 ph(n̄) and goes to 0 when n→ +∞.

Let Ḡ = (V̄ , Ē) be a fixed component of size n̄ in the graph. Ḡ is h-partite if V̄

can be partitioned into h subsets, V̄0, V̄1, . . . , V̄h−1, such that all edges from V̄i go to

V̄(i+1) mod h. The number of such partitions is at most hn̄. The probability of forming

a particular partition V̄0, V̄1, . . . , V̄h−1 is

h−1∏
i=0


(
|V̄(i+1) mod h|

s

)
(
n−1
s

)
|V̄i| = h−1∏

i=0

∏s−1
j=0

(
|V̄(i+1) mod h| − j

)
∏s−1
j=0(n− 1− j)

|V̄i|

≤
h−1∏
i=0

s−1∏
j=0

|V̄(i+1) mod h|
n− 1

|V̄i|

=
h−1∏
i=0

(
|V̄(i+1) mod h|

n− 1

)s|V̄i|

≤
(

n̄

h(n− 1)

)sn̄

≤
(

n̄

h(n− 1)

)2n̄

This is because the product
∏h−1
i=0 x

xi
(i+1) mod h, given xi > 0 and

∑h−1
i=0 xi = n̄, is

maximized for xi = n̄/h, i = 0 . . . h− 1. Thus

ph(n̄) ≤
(
n

n̄

)
· hn̄ ·

(
n̄

h(n− 1)

)2n̄

=

(
n

n̄

)
·
(

1

h

)n̄
·
(

n̄

n− 1

)2n̄

≤
(
n

n̄

)
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄
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When n̄ = n, as limn→+∞
(

n
n−1

)2n
= e2, apparently ph(n) goes to 0 exponentially

fast.

When 0.79n < n̄ < n, we have

ph(n̄) ≤
(
n

n̄

)
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

=
n!

n̄!(n− n̄)!
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

≤
√

2πn · nn · en−n̄+ 1
12n · en̄√

2π(n− n̄) · en · (n− n̄)n−n̄ ·
√

2πn̄ · n̄n̄
·
(

1

2

)n̄
·
(

n̄

n− 1

)2n̄

=

√
n

2πn̄(n− n̄)
· e

1
12n ·

(
n̄2

2n2

)n̄
· nn

n̄n̄ · (n− n̄)n−n̄
·
(

n

n− 1

)2n̄

≤
√

n

2πn̄(n− n̄)
· e

1
12n ·

(
n̄

2n

)n̄
· nn−n̄

(n− n̄)n−n̄
·
(

n

n− 1

)2n

=

√
n

2πn̄(n− n̄)
· e

1
12n ·

[(
n̄

2n

) n̄
n

·
(

1− n̄

n

) n̄
n
−1
]n
·
(

n

n− 1

)2n

Note that function f(x) = (1 − x)x−1 ·
(
x
2

)x
< 0.7 for all 0.79 < x < 1. Hence, the

probability ph(n̄) is exponentially small, which completes the proof. �

Fast convergence

Based on Theorem 4.3, to accomplish the fast convergence of random walk on a

RSG+(s), we prove the diameter of a RSG+(s) is logarithmic with high probability.

Theorem 5.2 With probability 1− o(1), the diameter of a RSG+(s) is Θ(logs n).

Proof The logarithmic lower bound is easy to prove. For a particular vertex u ∈ V ,

denote by Si(u) the set of vertices in G such that for any v ∈ Si(u) the distance from

u to v is i. We know S0(u) = {u} and n =
∑+∞
i=0 |Si(u)|. According to the definition

of diameter, |Si(u)| = 0 for all i > Diam. Also notice that |Si+1(u)| ≤ s|Si(u)|, for
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which we have

n ≤ 1 + s+ s2 + . . .+ sDiam =
sDiam+1 − 1

s− 1

After some algebra, Diam ≥ logs(n(s− 1) + 1)− 1 ≥ logs(n(s− 1))− 1 = logs n +

logs(s − 1) − 1 ≥ logs n − 1 due to logs(s − 1) ≥ 0 for all s ≥ 2. Hence, we have

Diam = Ω(logs n). This lower bound holds for RMG+(s) as well.

However, the proof of the upper bound is lengthy. It is well known that a

RMG+(s) has logarithmic diameter with high probability [TB73]. Although the

proof for RMG+(s) doesn’t work for RSG+(s) due to the dependence between its

edge selections, our proof follows the framework of their proof.

Assume that we generate a RSG+(s) in a “level-wise” order. We pick a vertex

u0 ∈ V and let level 0 be the set {u0}. Then choose its s neighbors from V \ {u0}

uniformly at random without replacement. All the neighbors of u0 form level 1.

Inductively, for each vertex in level i−1 we choose its s neighbors uniformly excluding

itself without replacement. All the new chosen vertices form level i. We call the set

of vertices in level ≤ i the ball i. By intuition, level i is the set of vertices to which

the distance from u0 is i and ball i consists of all vertices to which the distance from

u0 is at most i. Obviously level i is the boundary of ball i. The spanning procedure

halts when no new vertex is chosen as a neighbor of the boundary so the next level

is empty. To completely generate a RSG+(s), the final step is for each vertex not in

the ball, uniformly choosing s distinct vertices as its neighbors. Let Li be the size

of level i and Bi be the size of ball i. At any time, we say a vertex is occupied if it

has non-zero in-degree and unoccupied otherwise. During this process, determining

a vertex refers to choosing its s neighbors.

In short, to accomplish the proof, we divide the above spanning procedure into

six stages:
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Stage 1 starts from the very beginning and ends at level `1 once B`1 ≥ n
1
6 .

Stage 2 begins immediately after Stage 1 and ends at level `2 once B`2 ≥ n
s4

.

Stage 3 begins immediately after Stage 2 and ends at level `3 once B`3 ≥

(1− 2−s)n.

Stage 4 begins immediately after Stage 3 and ends at level `4 once L`4 ≤ (log2 n)2.

Stage 5 begins immediately after Stage 4 and ends at level `5 once L`5 ≤ 120 log2 n.

Stage 6 begins immediately after Stage 5 and ends at level `6 once L`6+1 = 0.

The spanning procedure halts.

Letting `0 be 0 and `′i = `i − `i−1, 1 ≤ i ≤ 6 be the number of new levels created

in Stage i, we complete the proof by showing
∑6
i=1 `

′
i = O(logs n).

Now we start moving to the details. First we notice that the above level-wise

procedure can also be used to generate a RMG+(s) if we choose neighbors of a vertex

with replacement and allow self-loops. To distinguish between the multi-graph case

and the simple graph case, let L̂i be the size of level i and B̂i be the size of ball

i in the multi-graph case so that we can make use of some partial results in the

multi-graph case proved by Trakhtenbrot and Barzdin.

Consider a sequence of N Bernoulli trials with probability p for success and

1 − p for failure. Let X(N, p) denote the random variable defined as the number

of successful outcomes in this sequence. Trakhtenbrot and Barzdin proved that for

any p > 0, any natural number N and any pN < k ≤ N , P(X(N, p) ≥ k) <
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N · [k/(pN)](3+pN−k)/2. It’s easy to see the following facts:

P
(
X
(
ms,

n− w
n− s

)
≤ k

)
= P

(
X

(
ms,

(n− 1)− (w − 1)

(n− 1)− (s− 1)

)
≤ k

)

≤ P(Li+1 ≤ k | Li = m ∧Bi = w)

≤ P
(
X

(
ms,

(n− 1)− (w − 1)− (ms− 1)

(n− 1)− (s− 1)

)
≤ k

)

< P
(
X
(
ms,

n− w −ms
n

)
≤ k

)

and

P
(
X
(
ms,

n− w
n

)
≤ k

)
≤ P(L̂i+1 ≤ k | L̂i = m ∧ B̂i = w)

< P
(
X
(
ms,

n− w −ms
n

)
≤ k

)
Imagine we choose the edges one by one in the above described level-wise order.

Assuming the number of occupied nodes is t at the moment when we are choosing

the i-th edge of vertex v, then the probability of choosing an unoccupied vertex as

the destination (so that we have a new member of the next level) is (n−1)−(t−1)
n−i =

n−t
n−i under the simple graph model and is always n−t

n
under the multi-graph model.

Therefore, under the same configuration, we will always have higher probability to

choose an unoccupied vertex under the simple graph model than under the multi-

graph model. We can easily conclude:

P(Li+1 ≤ k | Li = m ∧Bi = w) < P(L̂i+1 ≤ k | L̂i = m ∧ B̂i = w)

Similarly, imagine we determine the vertices one by one in the above described level-

wise order and let B(r) be the number of occupied vertices exactly after we have

determined r vertices. Denote by B̂(r) the corresponding quantity in the multi-graph

case. From our analysis above it’s easy to see P(B(r) ≥ k) > P(B̂(r) ≥ k) for any

r ≥ 1. Below we will go through the six stages and show the number of new levels
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constructed is small in every stage.

Stage 1 : For any level i ≤ d1
6

logs ne − 1, we have Bi+1 ≤
∑j+1
j=0 s

j < si+2 ≤

s2n
1
6 . Thus the probability that an edge created on level i will point to an occupied

vertex is less than s2n
1
6−1

n−1
< s2n−

5
6 . This means that the probability that more

than one edge on the first d1
6

logs ne − 1 levels will point to an occupied vertex is

less than
∑k
j=2 b(j, k, p) where k is the maximal possible number of edges on the

first d1
6

logs ne − 1 levels, p = s2n−
5
6 and b(j, k, p) is the probability of j successful

outcomes and k − j failures in k Bernoulli trials with probability p for success.

Obviously, k < s3n
1
6 . Trakhtenbrot and Barzdin proved that for sufficiently large n,∑k

j=2 b(j, k, p) < n−
8
7 .

Hence, when n→ +∞, with probability more than 1− n− 8
7 , `′1 ≤ d1

6
logs ne and

L`1 ≥ (s− 1)n
1
6/s ≥ n

1
6/2.

Stage 2 : Trakhtenbrot and Barzdin proved that when L̂i−1 ≥ n
1
6/2 and B̂i−1 <

n/s4,

P
(
L̂i ≥

(
1− s+ 2

s4

)
sL̂i−1 | L̂i−1, B̂i−1

)
> 1− n−C

for any fixed C and sufficiently large n. We then have that when Li−1 ≥ n
1
6/2 and

Bi−1 < n/s4,

P
(
Li ≥

(
1− s+ 2

s4

)
sLi−1 | Li−1, Bi−1

)
>P

(
L̂i ≥

(
1− s+ 2

s4

)
sL̂i−1 | L̂i−1 = Li−1, B̂i−1 = Bi−1

)
>1− n−C

for any fixed C > 1 and sufficiently large n. Thus, with probability >
(
1− n−C

)`′2
>(

1− n−C
)n

> 1 − n1−C , all the levels constructed at Stage 2 have growth factor at

155



least s(1− (s+ 2)/s4). With probability >
(
1− n− 8

7

) (
1− n1−C

)
≥ 1− n− 9

8 ,

`2 < log(1−(s+2)/s4)s n =
1

1 + logs(1− (s+ 2)/s4)
logs n

and B`2 ≥ n/s4 and for any i ≤ `2, Bi > ((1− (s+ 2)/s4) s)
i
.

Stage 3 : Trakhtenbrot and Barzdin proved that for sufficiently large n,

(1−2−s)n∏
r=n/s5

P
(
B̂(r) ≥ r + Csn

)
> 1− n−C

for a constant C > 0 and another constant Cs only depending on s. We then know

(1−2−s)n∏
r=n/s5

P (B(r) ≥ r + Csn) >
(1−2−s)n∏
r=n/s5

P
(
B̂(r) ≥ r + Csn

)
> 1− n−C

for a constant C > 0 and another constant Cs only depending on s. This means that

all the levels constructed at Stage 3 have at least Csn vertices with high probability.

Formally, when n→ +∞, with probability greater than 1− n−C , `′3 <
n
Csn

= 1
Cs

.

So far, after Stage 3, there are only n/2s unoccupied vertices in the graph. If

s ≥ log2 n − log2(C ′ logs n) for some constant C ′ > 0, we have n
2s
≤ C′n logs n

n
=

O(logs n). That is, the number of unoccupied vertices is O(logs n). No matter what

will happen in Stage 4 to 6, in the worst case, the diameter of the graph will be at

most `′1 + `′2 + `′3 +O(logs n) = O(logs n) and we are done.

However, if s < log2 n− log2(C ′ logs n), we have to move on to the later stages.

156



Stage 4 : We prove the boundary of the spanning ball starts shrinking in Stage 4.

P
(
Li ≤

1.5s

2s
Li−1 | Li−1, Bi−1

)
≥ P

(
X
(
sLi−1,

n−Bi−1

n− s

)
≤ 1.5s

2s
Li−1

)
≥ P

(
X

(
sLi−1,

n

(n− s)2s

)
≤ 1.5s

2s
Li−1

)

= 1− P
(
X

(
sLi−1,

n

(n− s)2s

)
>

1.5s

2s
Li−1

)

≥ 1− sLi−1 ·
(
n− s
n
· 1.5

)( n
n−s
−1.5)

(
sLi−1

2s+1

)
+ 3

2

Because s < log2 n − log2(C ′ logs n) and Li−1 > (log2 n)2, it follows that when n →

+∞, the above probability is at least 1 − n−C for some constant C > 1. Formally,

with probability at least
(
1− n−C

)n
> 1− n1−C , all the levels constructed at Stage

4 have growth factor at most 1.5s
2s

and

`′4 < log2s/(1.5s) n =
log2 s

s− log2(1.5s)
logs n

Stage 5 : We show the growth factor at this stage is at most 2/3. Using the fact

that s ≥ 2, Li−1 > 120 log2 n and s < log2 n− log2(C ′ logs n), for sufficiently large n,

P
(
Li ≤

2

3
Li−1 | Li−1, Bi−1

)
≥ 1− P

(
X

(
sLi−1,

n

(n− s)2s

)
>

2

3
Li−1

)

≥ 1− sLi−1 ·
(

(n− s)2s+1

3ns

)( ns
(n−s)2s+1−

1
3

)
Li+1+ 3

2

> 1− sLi−1 · 21− 1
30
Li−1

> 1− sLi−1 · 21−4 log2 n

> 1− n−3

This implies that all levels constructed at Stage 5 have growth at most 2/3 and

`′5 < log 3
2
(log2 n)2 < (4 log2 s) logs log2 n with probability greater than (1− n−3)

n
>
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1− n−2.

Stage 6 : We construct a logarithmic upper bound for the number of new vertices

occupied at Stage 6. For some constant C > 0,

P
(
B`6 −B`5 >

C log2 n

s

)

≤P
(
Li >

C log2 n

s
| Li−1 = 120 log2 n+

C log2 n

s
,Bi−1

)

≤P
(
X

(
120s log2 n+ C log2 n,

n

(n− s)2s

)
>
C log2 n

s

)

≤(120s+ C) log2 n ·
(

C(n− s)2s

ns(120s+ C)

)((120s+C)2−s−C
s ) log2

√
n+ 3

2

≤(120s+ C) log2 n · 2(s+log2
C(n−s)

ns(120s+C))((120s+C)2−s−C
s ) log2

√
n+ 3

2(s+log2
C(n−s)

ns(120s+C))

Simple algebra gives

(
s+ log2

C(n− s)
ns(120s+ C)

)(
120s+ C

2s
− C

s

)

=− C +
120s+ C

2s
log2

C(n− s)
ns(120s+ C)

− C

s
log2

C(n− s)
ns(120s+ C)

+
120s2 + Cs

2s

For any s < log2 n−log2(C ′ logs n), all the addends expect the first item approach zero

as s increases. Therefore, there exists some constant C0 such that when n → +∞,

P
(
B`6 −B`5 >

C0 log2 n
s

)
< n−2. Formally, with probability greater than 1− n−2,

`′6 ≤ B`6 −B`5 ≤
C0 log2 n

s
=
C0 log2 s

s
logs n

Conclusion: With probability greater than 1 − n− 10
9 , the diameter of a RSG+(s) is

at most
∑6
i=1 `

′
i = O(logs n). �

With Theorem 4.3 and 5.2, we reach the fast convergence argument on the

RSG+(s) model.
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5.2.4 Fast convergence on RMG−, RSG−, RMG± and RSG±

The conclusions drawn for random walks on random out-regular graphs can be gen-

eralized to the in-regular cases. Let A be the adjacency matrix of graph G. Denote

by G> the transpose of G defined by adjacency matrix A>. We can see that (1)

G> has exactly the same irreducible components as G; (2) The aperiodicity of G

implies the aperiodicity of G>; (3) The diameter of the transpose graph is equal to

the diameter of the original graph. These give us the properties of irreducibility,

aperiodicity and logarithmic diameter for the in-regular models. Note that the irre-

ducible component of a random in-regular graph is usually not closed. Hence, the

fast convergence argument only holds when the walk is restricted to the unique irre-

ducible component. According to Theorem 4.3, it remains to bound the maximum

out-degree s0 = arg maxu∈V du. This requires the lower bound assumption on the

in-degree s as stated in the main theorem, because small in-degree results in large

maximum out-degree of the graph (with respect to s).

A random s-in s-out graph can be viewed as the sum of a random out-regular

graph and a random in-regular graph, generated independently of each other. Thus

logarithmic diameter is trivial. The original paper by Fenner and Frieze [FF82] has

already shown the strong connectivity of the random s-in s-out graphs for s ≥ 2. As

the entire graph is strongly connected, the connected component is surely closed and

unique. Aperiodicity is established by the fact that sum graph retains all directed

cycles in the original graphs.

Formal proof

The following facts are immediate observations from the definitions.

Fact 5.1 For any u, v ∈ V , u and v are strongly connected in G if and only if they
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are strongly connected in G>.

Fact 5.2 Graph G is h-partite if and only if graph G> is h-partite.

Fact 5.3 The distance from u ∈ V to v ∈ V in G is equal to the distance from v to

u in G>.

Fact 5.1 tells usG> has exactly the same irreducible components asG and Fact 5.2

shows the equivalence of the aperiodicity of G and G>. Fact 5.3 leads to Diam(G) =

Diam(G>). Because a random in-regular graph can be created by transposing a

corresponding random out-regular graph, we can conclude the following statements.

Corollary 5.1 With probability 1− o(1), a RMG−(s) has a strongly connected com-

ponent, denoted by G̃ = (Ṽ , Ẽ), of size ñ when n→ +∞, and a) limn→+∞
ñ
n

= C for

some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s ≥ 7; b) a random

walk on G̃ is aperiodic.

Corollary 5.2 With probability 1− o(1), the diameter of a RMG−(s) is Θ(logs n).

Corollary 5.3 With probability 1− o(1), a RSG−(s) has a strongly connected com-

ponent, denoted by G̃ = (Ṽ , Ẽ), of size ñ when n→ +∞, and a) limn→+∞
ñ
n
≥ C for

some constant C > 0.7968 when s ≥ 2 or some C > 0.999 when s ≥ 7; b) a random

walk on G̃ is aperiodic.

Corollary 5.4 With probability 1− o(1), the diameter of a RSG−(s) is Θ(logs n).

Note that in these cases the irreducible component is usually not closed. Hence,

the fast convergence argument only holds when the walk is restricted to the unique

irreducible component. According to Theorem 4.3, to bound the convergence rate we

still need the maximum out-degree s0 = arg maxu∈V du. To prove fast convergence,

we need a lower-bound assumption on the in-degree s.
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Lemma 5.4 Let s0 = arg maxu∈V du be the maximum out-degree of a RMG−(s)

with s = Ω
([

logn
log logn

]1/C′)
for some constant C ′ ≥ 1. With probability 1 − o(1),

s0 = O(sC
′+ε) for any constant ε > 0.

Proof According to the properties of a RMG−(s), the probability of s0 > ns is 0

and P(s0 = ns) ≤ n · n−ns is exponentially small. For any k < ns,

P(s0 ≥ k) ≤ n · P(a particular vertex has out-degree at least k)

≤n ·
(
ns

k

)(
1

n

)k

≤
√

2πns
(
ns
e

)ns
e

1
12ns

√
2πk

(
k
e

)k
e

1
12k+1 ·

√
2π(ns− k)

(
ns−k
e

)ns−k
e

1
12(ns−k)+1

· n
(

1

n

)k

≤

√√√√ n3s

2πk(ns− k)
· e

1
12ns (ns)ns

(nk)k(ns− k)ns−k

≤
√

1

2π
· exp

(
log n+ ns log(ns)− k log k

− (ns− k) log(ns− k)− k log n+
1

12ns

)

We only need to choose a k such that the exponent goes to −∞ when n → +∞,

which is equal to

log n+ k
(

1− ns

k

)
log

(
1− k

ns

)
+ k log s− k log k +

1

12ns

Let k = sc where c = C ′ + ε. If k ≥ ns then P(s0 ≥ k) is exponentially small

as discussed above. Otherwise we have
(
1− ns

k

)
log

(
1− k

ns

)
≤ 1 in our case. Also

notice that 1
12ns
≤ 1. The exponent is then upper bounded by log n + sc − sc(c −

1) log s+ 1. Letting log n ≤ sc(c− 1− 0.5ε) log s gives

s ≥

 c log n

(c− 1− 0.5ε)W
(

c logn
c−1−0.5ε

)
 1

c

= o

[ log n

log log n

] 1
C′

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where W (x) is the Lambert W -function [Lam58], defined by W (x)eW (x) = x for

x ≥ −e−1. �

Combining Lemma 5.4 with Theorem 4.3, we reach the fast convergence of a

random walk on a RMG−(s) with s = Ω
([

logn
log logn

]1/C′)
.

The same convergence property holds on a RSG−(s).

Lemma 5.5 Let s0 = arg maxu∈V du be the maximum out-degree of a RSG−(s) with

s = Ω
([

logn
log logn

]1/C′)
for some constant C ′ ≥ 1. With probability 1 − o(1), s0 =

O(sC
′+ε) for any constant ε > 0.

Proof From the definition of a RSG−(s), the probability of s0 ≥ n is 0. If we have

large s = Θ(n), then the argument automatically holds because s0 ≤ n− 1 = O(s).

Otherwise s = o(n), P(s0 = n − 1) ≤ n ·
(

s
n−1

)n−1
is exponentially small. For any

k < n− 1, using the union bound,

P(s0 ≥ k) ≤ n · P(a particular vertex has at least k neighbors)

≤n ·
(
n− 1

k

)
(

1
1

)(
n−2
s−1

)
(
n−1
s

)
k

=n ·
(
n− 1

k

) [
s

n− 1

]k

≤
n ·
√

2π(n− 1)
(
n−1
e

)n−1
e

1
12(n−1)

√
2πk

(
k
e

)k
e

1
12k+1 ·

√
2π(n− k − 1)

(
n−k−1

e

)n−k−1
e

1
12(n−k−1)+1

(
s

n− 1

)k

≤

√√√√ n2(n− 1)

2πk(n− k − 1)
· e

1
12(n−1) (n− 1)n−k−1sk

kk(n− k − 1)n−k−1

≤
√

1

2π
· exp

(
log n+

1

12(n− 1)
+ (n− k − 1) log(n− 1)

+ k log s− k log k − (n− k − 1) log(n− k − 1)

)
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Again we choose a value of k such that the exponent in the last expression goes to

−∞. The exponent can be reshaped as

log n+
1

12(n− 1)
+ k

(
1− n− 1

k

)
log

(
1− k

n− 1

)
+ k log s− k log k

Because 1
12(n−1)

and
(
1− n−1

k

)
log

(
1− k

n−1

)
are both at most 1 in our case, letting

c = C ′ + ε and k = sc gives us

log n+ 1− sc(c− 1) log s+ sc

For s = Ω
([

logn
log logn

]1/C′)
, the expression goes to −∞ and completes the proof. �

Thus we have proved the RSG−(s) case in the main theorem.

The model of random s-in s-out graphs is a random graph model first introduced

by Fenner and Frieze [FF82], which can be viewed as the sum of a random out-regular

graph and a random in-regular graph, generated independently of each other. We

provide a brief proof for RMG±(s) by simply combining the previously proved argu-

ments for RMG+(s) and RMG−(s). The same result for RSG±(s) can be similarly

achieved based on the arguments for RSG+(s) and RSG−(s).

The original paper by Fenner and Frieze [FF82] has already proved the strong

connectivity of the random s-in s-out graphs for s ≥ 2. As the entire graph is

strongly connected, the connected component is surely closed and unique. As for

aperiodicity, since Ṽ is strongly connected, we only need to show one of the v ∈ Ṽ

is aperiodic. Without loss of generality, let v ∈ Ṽ + and then v is aperiodic in the

RMG+(s) with high probability, which means that there exists a sufficiently large `0

such that for all ` ≥ `0, there is a directed cycle of length ` over v. Because we only

add edges onto the graph when generating the RMG−(s), the sum graph RMG±(s)
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still retains such cycles and v is aperiodic. The logarithmic diameter of RMG±(s) is

due to

Diam(G1 +G2) ≤ Diam(G1) +Diam(G2)

for any graphs G1 and G2.

Again, combining with Theorem 4.3 we reach the fast convergence property stated

in the main theorem, and the same argument holds on a RSG±(s).

5.2.5 Fast convergence on RDG and RG

Among all the models in this chapter, RDG(s) is the most constrained one, due

to the strong dependence and strict restrictions on the edge selections (same in

the undirected model) and the lack of symmetry (while the undirected model has

symmetry). Unlike the previous cases, the proof is based on enumeration.

Previous works have contributed the irreducibility of RDG(s). The proof of ape-

riodicity starts with the asymptotic enumeration of regular digraphs. The key to this

first step is the bijection between regular digraphs and binary square matrices with

equal line sums. Let N(n, s) be the number of s-regular digraphs with n vertices.

We present an asymptotic formula for N(n, s), by unifying the asymptotic results

on binary square matrices with equal line sums (Lemma 5.7). We also observe the

bijection between regular digraphs with n vertices and colored regular bipartite (undi-

rected) graphs with 2n vertices. Let G = (V,E) be a regular digraph of fixed degree

s. We construct a regular bipartite graph G′ = (V ′, E ′) where |V ′| = 2|V | as follows.

Without loss of generality, let V = {v1, v2, . . . , vn} and V ′ = {v′1, v′2, . . . , v′2n} with

{v′1, v′2, . . . , v′n} of one color and {v′n+1, v
′
n+2, . . . , v

′
2n} of the other. Let (v′i, v

′
n+j) ∈ E ′

if and only if (vi, vj) ∈ E. We can see such a regular bipartite graph G′ is unique for

each regular digraph G and vice versa.
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To show the aperiodicity of RDG(s), we again need to inverse-exponentially

upper-bound the probability of the graph being h-partite, denoted by ph. If V can

be partitioned into h disjoint subsets V0, V1, . . . , Vh−1, such that all edges from Vi go

to V(i+1) mod h, because the graph is both in-regular and out-regular, we must have

|V0| = |V1| = . . . = |Vh−1| = n
h

and h ≤ n
s
. Notice that the number of possible edge

combinations from Vi going to V(i+1) mod h is exactly the number of colored s-regular

bipartite (undirected) graphs of size n
h
, which is N(n

h
, s). Based on the bijection we

constructed above, this gives

ph ≤
1

h
·
(

n
n
h
, n
h
, . . . , n

h

)
·

[
N
(
n
h
, s
)]h

N(n, s)

With the asymptotic enumeration results we complete the proof (Lemma 5.8).

Unlike all the previous cases where we achieve fast convergence by proving log-

arithmic diameter, for random regular digraphs the polynomial convergence rate

follows from a lower bound on the first non-zero eigenvalue of the Laplacian matrix.

Note that the walk matrix P = 1
s
A of a random walk on a RDG(s) is a doubly

stochastic matrix, and so is the matrix 1
2
(P + P>). Also observe that the Perron

vector of any regular digraph is always the uniform distribution over the vertices.

Using a spectral lower bound for doubly stochastic matrices due to Fiedler [Fie72],

we complete the proof.

Random regular undirected graphs are much more widely studied than directed

ones, mainly owing to the symmetry of undirected graphs. Previous works have

established connectivity and enumeration results. Because the only periodic case for

an undirected graph is being bipartite, we only need to bound the probability p2.

This is again done by enumeration. In the proof of the preceding digraph case we

have already deduced an asymptotic formula for the number of bipartite s-regular
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undirected graphs with n vertices, which is
(
n
n
2

)
· N(n

2
, s). Denote by N ′(n, s) the

number of s-regular undirected graphs with n vertices. We have

p2 ≤
1

2

(
n
n
2

)
·
N(n

2
, s)

N ′(n, s)

Using the same spectral lower bound for doubly stochastic matrices as in the pre-

ceding digraph case, we have the polynomial convergence rate. Proof details are

presented below.

Proof of Theorem 5.1 for random regular digraphs

In this section we study random walks on RDG(s). Because the edges in this case

are no longer chosen independently, the proof is done mainly by enumeration.

Irreducibility and aperiodicity

Previous works have shown the irreducibility [Wor99].

Lemma 5.6 With probability 1− o(1), a RDG(s) is strongly connected when s ≥ 2.

Now we prove aperiodicity, starting with the asymptotic enumeration of regular

digraphs.

Lemma 5.7 Let N(n, s) be the number of s-regular digraphs of size n.

N(n, s) =



(ns)!
(s!)2n exp

[
− (s−1)2

2
+O

(
s3

n

)]
if 1 ≤ s ≤ n

2

N(n, n− s) if n
2
< s < n

1 if s = n

N(n, s) is also the number of colored s-regular bipartite (undirected) graphs of size

2n.
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Proof We first show the bijection between regular digraphs of size n and colored

regular bipartite (undirected) graphs of size 2n. Let G = (V,E) be a regular di-

graph of fixed degree s. We construct a regular bipartite graph G′ = (V ′, E ′) where

|V ′| = 2|V | as follows. Without loss of generality, let V = {v1, v2, . . . , vn} and

V ′ = {v′1, v′2, . . . , v′2n} with {v′1, v′2, . . . , v′n} of one color and {v′n+1, v
′
n+2, . . . , v

′
2n} of

the other. Let (v′i, v
′
n+j) ∈ E ′ if and only if (vi, vj) ∈ E. We can see such a regular

bipartite graph G′ is unique for each regular digraph G and vice versa. Note that

this bijection is connectivity-preserving. To see this, consider that for a directed

graph there are two cases of being disconnected. The first case is that there exist

nonempty V1 ⊂ V and V2 ⊂ V with only edges going from V1 to V2 and no edge

going back. This is impossible in a regular digraph because the in-degree of V1 must

be equal to its out-degree. The other case is no edge between V1 and V2, where the

corresponding bipartite graph G′ is also disconnected.

In order to prove the aperiodicity of a RDG(s), we first need to do enumeration

for regular digraphs. It’s easy to see another bijection: the one between regular

digraphs and binary square matrices with equal line sums. Although little previous

work has been done on the enumeration of regular digraphs, we are fortunate to

have asymptotic results on the enumeration of binary square matrices with equal

line sums. Let N(n, s) be the number of regular digraphs with n vertices of fixed

in-degree and out-degree equal to s, which is also the number of n×n binary matrices

with equal line sums s and the number of regular bipartite graphs. McKay [McK84]

proved that for 1 ≤ s < 1
6
n,

N(n, s) =
(ns)!

(s!)2n
exp

[
−(s− 1)2

2
+O

(
s3

n

)]
(5.1)
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and Canfield and McKay [CM05] showed for s ≤ 1
2
n and s = Θ(n),

N(n, s) =

(
n
s

)2n(
n2

ns

) (
1− 1

n

)n−1

exp
(

1

2
+ o(1)

)
(5.2)

We are able to unify these two asymptotic results and show that the latter case also

satisfies the former formula. For s ≤ 1
2
n and s = Θ(n),

N(n, s) =

(
n
s

)2n(
n2

ns

) (
1− 1

n

)n−1

exp
(

1

2
+ o(1)

)

=

(
n!

s!(n−s)!

)2n

(n2)!
(ns)!(n2−ns)!

exp
(
o(1)− 1

2

)

=
(ns)!

(s!)2n
·

(
n!

(n−s)!

)2n

(n2)!
(n2−ns)!

exp (O(1))

=
(ns)!

(s!)2n
·

( √
2πn·nn·en−s

en·
√

2π(n−s)·(n−s)n−s

)2n

√
2πn2·n2n2 ·en2−ns

en2 ·
√

2π(n2−ns)·(n2−ns)n2−ns

exp (O(1))

=
(ns)!

(s!)2n
· n

2n2
ens(n2 − ns)n2−ns

e2ns(n− s)2n(n−s)n2n2 ·
(

n

n− s

)n− 1
2

exp (O(1))

=
(ns)!

(s!)2n
· nn

2−ns(n− s)n2−nsnn−
1
2

ens(n− s)2n(n−s)(n− s)n− 1
2

exp (O(1))

=
(ns)!

(s!)2n
· nn

2−(s−1)n− 1
2

ens(n− s)n2−(s−1)n− 1
2

exp (O(1))

=
(ns)!

(s!)2n
·
(

1− s

n

)(s−1)n+ 1
2
−n2

exp (O(1)− ns)

Let C = s
n
≤ 1

2
. Since s = Θ(n),

N(n, s) =
(ns)!

(s!)2n
exp

(
log(1− C) ·

(
(s− 1)n+

1

2
− n2

)
+O(1)− ns

)

=
(ns)!

(s!)2n
exp

(
(C − 1)n2 log(1− C)− n log(1− C) +O(1)− ns

)
=

(ns)!

(s!)2n
exp

[
−(s− 1)2

2
+O

(
s3

n

)]
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Using complement graphs, it is apparent thatN(n, s) = N(n, n−s) for n
2
≤ s < n.

When s = n, the only possible regular digraph in this case is the complete graph so

N(n, n) = 1. Combining all the above cases completes the proof. �

Lemma 5.8 With probability 1− o(1), a RDG(s) is aperiodic.

Proof A regular digraph G = (V,E) is h-partite if V can be partitioned into h

subsets, V0, V1, . . . , Vh−1, such that all edges from Vi go to V(i+1) mod h. Because the

graph is regular, we must have |V0| = |V1| = . . . = |Vh−1| = n
h

and h ≤ n
s
. Also we

notice that the number of possible edge combinations from Vi going to V(i+1) mod h

is exactly the number of colored s-regular bipartite (undirected) graphs of size n
h
,

which is N(n
h
, s). Denote by ph the probability of a RDG(s) being h-partite. The

proof is done by showing ph goes to 0 exponentially fast for all 2 ≤ h ≤ n
s
. The

case where s > n
2

is trivial. Thus below we only consider s ≤ n
2
. We first prove the

argument holds when s = o(n). For 2 ≤ h ≤ n
2s

,

ph ≤
1

h
·
(

n
n
h
, n
h
, . . . , n

h

)
·

[
N
(
n
h
, s
)]h

N(n, s)

According to Lemma 5.7,

N(n, s) =
(ns)!

(s!)2n
exp

[
−(s− 1)2

2
+O

(
s3

n

)]

=

√
2πns(ns)nse2ns

ens
[√

2πs · ss
]2n exp

[
−(s− 1)2

2
+O

(
s3

n

)]

=

√
ns

sn(2π)n−
1
2

·
(
en

s

)ns
exp

[
−(s− 1)2

2
+O

(
s3

n

)]
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and

[
N
(
n

h
, s
)]h

=


√
sn
h

s
n
h (2π)

n
h
− 1

2

·
(
en

hs

)sn
h

exp

[
−(s− 1)2

2
+O

(
s3h

n

)]h

=

(
ns
h

) 1
2
h

sn(2π)n−
h
2

·
(
en

hs

)ns
exp

[
−h(s− 1)2

2
+O

(
s3h2

n

)]

Also, (
n

n
h
, n
h
, . . . , n

h

)
=

n!(
n
h
!
)h ≤

√
2πn · nnen+ 1

12n

en
(√

2π n
h

(
n
h

)n
h

)h
=

√
2πn · hne 1

12n(
2πn
h

) 1
2
h

= (2πn)
1
2

(1−h) · hn+ 1
2
h · e

1
12n

We then have

ph ≤
hn+ 1

2
h−1

(2πn)
1
2

(h−1)
·

(
ns
h

) 1
2
h
sn(2π)n−

1
2

sn(2π)n−
1
2
h
√
ns
·
(

1

h

)ns

· exp

[
(s− 1)2

2
− h(s− 1)2

2
+O

(
s3h2

n

)]

=
hn+ 1

2
h−1

(2πn)
1
2

(h−1)
· (2πns)

1
2

(h−1)

h
1
2
h

·
(

1

h

)ns

· exp

[
−(h− 1)(s− 1)2

2
+O

(
s3h2

n

)]

=
s

1
2

(h−1)

hns−n+1
exp

[
−(h− 1)(s− 1)2

2
+O

(
s3h2

n

)]

= exp

{
−1

2
(h− 1)[(s− 1)2 − log s]− (ns− n+ 1) log h+O

(
s3h2

n

)}

For s ≥ 2, we have (s − 1)2 − log s > 0. When h = O(1), O
(
s3h2

n

)
= O

(
s3

n

)
=

o(ns) since s = o(n). When h = ω(1), as h < n
s
, O

(
s3h2

n

)
= O(ns) = o(ns log h).

Hence, ph goes to 0 exponentially fast.
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For n
2s

< h < n
s
, surely h = ω(1) as s = o(n). Also,

(
n
h
− s

)3
< s3 since

n
2h
< s < n

h
. Then we have

[
N
(
n

h
,
n

h
− s

)]h
=


√

n
h

(
n
h
− s

)
(
n
h
− s

)n
h (2π)

n
h
− 1

2

·

 en

h
(
n
h
− s

)
n

h(n
h
−s)

· exp

−
(
n
h
− s− 1

)2

2
+O


(
n
h
− s

)3
h

n



h

=

(
n
h

(
n
h
− s

)) 1
2
h(

n
h
− s

)n
(2π)n−

h
2

·

 en

h
(
n
h
− s

)
n(n

h
−s)

· exp

−h
(
n
h
− s− 1

)2

2
+O

(
s3h2

n

)

so that

ph ≤
1

h
·
(

n
n
h
, n
h
, . . . , n

h

)
·

[
N(n

h
, n
h
− s)

]h
N(n, s)

=
hn+ 1

2
h−1

(2πn)
1
2

(h−1)
·

(
n
h

(
n
h
− s

)) 1
2
h
sn(2π)n−

1
2(

n
h
− s

)n
(2π)n−

1
2
h
√
ns
·

 en

h
(
n
h
− s

)
n(n

h
−s)

·
(
en

s

)−ns
· exp

(s− 1)2

2
−
h
(
n
h
− s− 1

)2

2
+O

(
s3h2

n

)

Notice that function
(
ey
x

)x
with constraint 0 < x ≤ 1

2
y reaches its maximum at

x = 1
2
y, which implies  en

h
(
n
h
− s

)
n

h
−s

≤ (2e)
n
2h
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and

ph ≤hn+ 1
2
h−1 ·

√
2πn√
ns

(
n

2πhn

) 1
2
h

· (2π)
1
2

(h−1)(
n
h
− s

)n− 1
2
h
· sn ·

(
2s

n

)ns

· (2e)
n2

2h
−ns · exp

(s− 1)2

2
−
h
(
n
h
− s− 1

)2

2
+O

(
s3h2

n

)
=sn−

1
2

(
n

h
− s

) 1
2
h−n
· hn−1(2e)

n2

2h
−ns

(
2s

n

)ns

· exp

(s− 1)2

2
−
h
(
n
h
− s− 1

)2

2
+O

(
s3h2

n

)
=s−

1
2h−1

(
n

h
− s

) 1
2
h−n
· (2e)

n2

2h
−ns · exp

n log s+ n log h+ ns log 2 + ns log s

− ns log n− n2

2h
− hs2

2
− hs− h

2
+ ns+ n+

1

2
s2 − s+O

(
s3h2

n

)
=s−

1
2h−1

(
n

h
− s

) 1
2
h−n
· (2e)

n2

2h
−ns · exp

n log s+ ns log 2 + ns log s

−
(

1− log h

s log n

)
ns log n− n2

2h
− hs2

2
− hs− h

2
+ ns+ n+

1

2
s2

− s+O

(
s3h2

n

)

Notice that O
(
s3h2

n

)
= O(ns) for h < n

s
and n2

2h
− ns < 0 for s > n

2h
. Also,

1− log h
s logn

> 0 for any s ≥ 2, we have ph going to 0 exponentially fast.

The case where h = n
s

is deferred to the end of this proof.

Now we study the case when s = Θ(n) < 1
2
n and n

h
− s = Θ(n). In this case we

have εn ≤ s ≤
(

1
h
− ε

)
n for some positive constant ε > 0 and 2 ≤ h < n

s
is surely

O(1). Let C = s
n
< 1

2
so 0 < ε ≤ limn→+∞C ≤ 1

h
− ε < 1

2
. When 2 ≤ h ≤ n

2s
, we

have s = Θ(n) = Θ(n
h
).

ph ≤
1

h
·
(

n
n
h
, n
h
, . . . , n

h

)
·

[
N
(
n
h
, s
)]h

N(n, s)
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According to Lemma 5.7,

N(n, s) =
(ns)!

(s!)2n
exp

(
(C − 1)n2 log(1− C)− n log(1− C) +O(1)− ns

)
=

√
2πns(ns)nse2ns

ens
[√

2πs · ss
]2n exp

(
(C − 1)n2 log(1− C)− n log(1− C)

+O(1)− ns
)

=

√
ns

sn(2π)n−
1
2

·
(
n

s

)ns
exp

(
(C − 1)n2 log(1− C)

− n log(1− C) +O(1)
)

and

[
N
(
n

h
, s
)]h

=


√
sn
h

s
n
h (2π)

n
h
− 1

2

·
(
n

hs

)sn
h

exp
(

(hC − 1)
(
n

h

)2

log(1− hC)

− log(1− hC) · n
h

+O(1)
)h

=

(
ns
h

) 1
2
h

sn(2π)n−
h
2

·
(
n

hs

)ns
exp

(
(hC − 1)

n2

h
log(1− hC)

− n log(1− hC) +O(h)
)
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so that

ph ≤
hn+ 1

2
h−1

(2πn)
1
2

(h−1)
·

(
ns
h

) 1
2
h
sn(2π)n−

1
2

sn(2π)n−
1
2
h
√
ns
·
(

1

h

)ns
· exp

(hC − 1)
n2

h
log(1− hC)

− n log(1− hC) +O(h)− (C − 1)n2 log(1− C) + n log(1− C)−O(1)


=

hn+ 1
2
h−1

(2πn)
1
2

(h−1)
· (2πns)

1
2

(h−1)

h
1
2
h

·
(

1

h

)ns
· exp

((C − 1

h

)
log(1− hC)

− (C − 1) log(1− C)
)
n2 + (log(1− C)− log(1− hC))n+O(h)


=
s

1
2

(h−1)

hns−n+1
· exp

((C − 1

h

)
log(1− hC)− (C − 1) log(1− C)

)
n2

+ (log(1− C)− log(1− hC))n+O(h)



Notice that function
(
y − 1

x

)
log(1− xy) with constraints xy ≤ 1

2
and x ≥ 2

reaches its maximum at x = 2. Thus

(
C − 1

h

)
log(1− hC) ≤

(
C − 1

2

)
log(1− 2C)

Also note that function f(x) = (1 − x) log(1− x) +
(
x− 1

2

)
log(1− 2x) < 0 for

any 0 < x < 1
2
. Therefore, ph goes to 0 exponentially fast.
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When n
2s
< h < n

s
, as n

h
− s = Θ(n) = Θ(n

h
),

[
N
(
n

h
,
n

h
− s

)]h

=


√

n
h

(
n
h
− s

)
(
n
h
− s

)n
h (2π)

n
h
− 1

2

·

 n

h
(
n
h
− s

)
n

h(n
h
−s)

· exp

O(1)

+ (1− hC − 1)
(
n

h

)2

log(1− (1− hC))− n

h
log(1− (1− hC))

h

=

(
n
h

(
n
h
− s

)) 1
2
h(

n
h
− s

)n
(2π)n−

h
2

·

 n

h
(
n
h
− s

)
n(n

h
−s)

· exp

− Cn2 log(hC)− n log(hC) +O(h)


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and

ph ≤
1

h
·
(

n
n
h
, n
h
, . . . , n

h

)
·

[
N(n

h
, n
h
− s)

]h
N(n, s)

=
hn+ 1

2
h−1

(2πn)
1
2

(h−1)
·

(
n
h

(
n
h
− s

)) 1
2
h
sn(2π)n−

1
2(

n
h
− s

)n
(2π)n−

1
2
h
√
ns
·

 n

h
(
n
h
− s

)
n(n

h
−s)

·
(
n

s

)−ns
· exp

− Cn2 log(hC)− n log(hC) +O(h)

− (C − 1)n2 log(1− C) + n log(1− C)−O(1)


=hn−1sn−

1
2 ·
(
n

h
− s

) 1
2
h−n
· (1− hC)(C−

1
h)n2

· CCn2

exp

(−C log(hC)− (C − 1) log(1− C))n2 + (log(1− C)− log(hC))n

+O(h)


=
hn−1

√
s
·
(
n

h
− s

) 1
2
h−n
· exp

((C − 1

h

)
log (1− hC) + C logC

− C log(hC)− (C − 1) log(1− C)

)
n2 + n log n+ (log(1− C)− log h)n

+O(h)



where

(
C − 1

h

)
log (1− hC) + C logC − C log(hC)− (C − 1) log(1− C)

=
(
C − 1

h

)
log (1− hC)− C log h− (C − 1) log(1− C)

Notice that

∂

∂h

[(
C − 1

h

)
log (1− hC)− C log h

]
=

log(1− Ch)

h2
< 0
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as 0 < Ch = sh
n
< 1. Due to 1

2C
= n

2s
< h < n

s
= 1

C
,

(
C − 1

h

)
log (1− hC) + C logC − C log(hC)− (C − 1) log(1− C)

≤ (C − 2C) log
(

1− C 1

2C

)
− C log

1

2C
− (C − 1) log(1− C)

=C log 2 + C log(2C)− (C − 1) log(1− C)

=C log(4C)− (C − 1) log(1− C) < 0

for any 0 < ε ≤ C ≤ 1
2
− ε < 1

2
. Therefore, we again have ph going to 0 exponentially

fast.

When s = Θ(n) < n
2

and n
h
− s = o(n), let C = s

n
< 1

h
but limn→+∞C = 1

h
.

In this case 2 ≤ h < n
s

is O(1) and surely n
2s
< h < n

s
. Otherwise, h ≤ n

2s
implies

n
h
− s ≥ n

2h
= Θ(n). Also, due to n

h
− s = o(n) and h = O(1), O

(
(n
h
−s)

3
h2

n

)
= o(n2).
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ph ≤
1

h
·
(

n
n
h
, n
h
, . . . , n

h

)
·

[
N(n

h
, n
h
− s)

]h
N(n, s)

=
hn+ 1

2
h−1

(2πn)
1
2

(h−1)
·

(
n
h

(
n
h
− s

)) 1
2
h
sn(2π)n−

1
2(

n
h
− s

)n
(2π)n−

1
2
h
√
ns
·

 en

h
(
n
h
− s

)
n(n

h
−s)

·
(
n

s

)−ns
· exp

− h
(
n
h
− s− 1

)2

2
+O


(
n
h
− s

)3
h2

n


− (C − 1)n2 log(1− C) + n log(1− C)−O(1)


=hn−1sn−

1
2 ·
(
n

h
− s

) 1
2
h−n
·
(

1− hC
e

)(C− 1
h)n2

· CCn2

exp

− n2

2h
− hs2

2

− hs− h

2
+ ns+ n− (C − 1)n2 log(1− C) + n log(1− C) + o(n2)
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=
hn−1

√
s
·
(
n

h
− s

) 1
2
h−n
· exp

((1

h
− C

)
−
(

1

h
− C

)
log (1− hC)

+ C logC − (C − 1) log(1− C)− 1

2h
− hC2

2
+ C

)
n2 + o(n2)



where limn→+∞C = 1
h

and

(
1

h
− C

)
−
(

1

h
− C

)
log (1− hC) + C logC

− (C − 1) log(1− C)− 1

2h
− hC2

2
+ C

=0 + 0− 1

h
log h−

(
1− 1

h

)
log

(
h

h− 1

)
− 1

2h
− 1

2h
+

1

h

=− 1

h
log h−

(
1− 1

h

)
log

(
h

h− 1

)
< 0

for which ph goes to 0 exponentially fast.

There are still two cases to be addressed, where h = n
s

or s = 1
2
n. Notice that

when s = 1
2
n, the only possible h is 2 = n

s
so we can handle both by handling the
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former. In this case, we have

pn
s
≤ s

n

(
n

s, s, . . . , s

)
· 1

N(n, s)

where (
n

s, s, . . . , s

)
=

n!

(s!)
n
s
≤
√

2πn · nnen+ 1
12n

en(
√

2πs · ss)n
s

=

√
2πn

(2πs)
n
2s

(
n

s

)n
e

1
12n

For s = o(n),

pn
s
≤
√

2πn

(2πs)
n
2s

(
n

s

)n−1

e
1

12n · s
n(2π)n−

1
2

√
ns

(
en

s

)−ns
exp

(
(s− 1)2

2

)

=
(2π)n

√
s(2πs)

n
2s

(
s

n

)ns−n+1

exp

(
n log s− ns+

(s− 1)2

2
+

1

12n

)

≤ 1
√
s(2πs)

n
2s

(
2πs

n

)n+1

exp

(
n log s− ns+

(s− 1)2

2
+

1

12n

)

which goes to 0 exponentially fast.

For s = Θ(n) and s ≤ 1
2
n,

pn
s
≤
√

2πn

(2πs)
n
2s

(
n

s

)n−1

e
1

12n · s
n(2π)n−

1
2

√
ns

·
(
n

s

)−ns
exp

(
−(C − 1)n2 log(1− C) + n log(1− C)−O(1)

)
=

(2π)n
√
s(2πs)

n
2s

(
s

n

)ns−n+1

exp
(
− (C − 1)n2 log(1− C)

+ n log n+ (log(1− C) + logC)n+ o(1)
)

which goes to 0 exponentially fast as well. Combining all the above cases completes

the proof. �
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Fast convergence

According to Theorem 4.3, the proof of fast convergence can be done by either

bounding the diameter of the graph or directly bounding the first non-zero eigenvalue

of the Laplacian matrix. In this section we present the fast convergence of random

walks on RSG+(s) via the spectral method.

First note that the walk matrix P of a random walk on a RDG(s) is doubly

stochastic matrix, so is 1
2
(P + P>). Fiedler [Fie72] proved a very useful theorem:

Theorem 5.3 Let Q be a doubly stochastic n× n matrix (n ≥ 2) and λ 6= 1 be any

non-stochastic eigenvalue of Q.

|1− λ| ≥ ϕn[µ(Q)]

where

µ(Q) = min
∅6=M⊂[n]

∑
i∈M,j 6∈M

Qij

and

ϕn(x) =


2
(
1− cos π

n

)
x if 0 ≤ x ≤ 1

2

1− 2(1− x) cos π
n
− (2x− 1) cos 2π

n
if 1

2
< x ≤ 1

The same paper also presented the following lemma.

Lemma 5.9 For any doubly stochastic matrix Q, 0 ≤ µ(Q) ≤ 1. Q is reducible if

and only if µ(Q) = 0.

Now we show the fast convergence of random walks on RDG(s).

Theorem 5.4 With probability 1− o(1), a random walk on a RDG(s) has ∆χ2(t) ≤

e−k after at most t ≥ 2s(n− 1)(log n+ 2k) steps.

Proof As P has been shown irreducible with probability 1− o(1), so is 1
2
(P + P>).

Then for Lemma 5.9 0 < µ(1
2
(P + P>)) ≤ 1. The fact that any non-zero entry in P
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is at least 1
s

gives µ(1
2
(P + P>)) ≥ 1

2s
. For Theorem 5.3,

∣∣∣1− λ 1
2

(P+P>)

∣∣∣ ≥ 2
(

1− cos
π

n

)
1

2s
>

1

s(n− 1)

for all non-stochastic eigenvalues λ 1
2

(P+P>) 6= 1 of matrix 1
2
(P +P>), due to the fact

cosx < 1 − x
π−x for all x ∈

(
0, π

2

)
. Also observing that the stationary distribution

on a RDG(s) is always the uniform distribution, we have the Laplacian matrix

L = I − Φ
1
2PΦ−

1
2 + Φ−

1
2P>Φ

1
2

2
= I − 1

2
(P + P>)

and |λ1(L)| ≥
∣∣∣1− λ 1

2
(P+P>)

∣∣∣ > 1
s(n−1)

where λ1(L) is the smallest nonzero eigenvalue

of L. Combining with φ(u) = 1
n

for any u ∈ V we complete the proof. �

Proof of Theorem 5.1 for random regular undirected graphs

Random regular undirected graphs are much more widely studied than directed ones,

mainly because of the symmetry of undirected graphs. However, the study of the

convergence of random walks on RG(s) is still very limited. Hildebrand [Hil94] proved

fast convergence with constraint s = blogC nc for some constant C ≥ 2. Cooper and

Frieze [CF05] studied the cover time of RG(s) with fixed constant s = O(1) but no

convergence result was provided. In this section we present a more general result with

constraint 3 ≤ s = o(
√
n) or s > 1

2
n. This constraint comes from the enumeration of

RG(s) and the proof could be generalized if we had better results on the enumeration

problem in the future.

Cooper et al. [CFR02] and Krivelevich et al. [KSVW01] together proved the

connectivity of RG(s) for s ≥ 3.
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Lemma 5.10 With probability 1− o(1), a RG(s) is connected when s ≥ 3.

Now we prove the aperiodicity as below.

Lemma 5.11 With probability 1− o(1), a RG(s) is aperiodic when s ≥ 3 for odd n;

3 ≤ s = o(
√
n) or s > 1

2
n for even n.

Proof When n is odd, the graph is surely aperiodic because for undirected graphs

the only periodic case is being bipartite and for regular undirected graphs the only

bipartite partition is an even partition. Also, the aperiodicity is trivial when s > 1
2
n.

Below we will prove the nontrivial case where n is even and 3 ≤ s ≤ 1
2
n. Denote by

N ′(n, s) the number of s-regular undirected graphs of size n. McKay and Wormald

[MW91] proved an enumeration result for s = o(
√
n) that

N ′(n, s) =
(sn)!(

1
2
sn
)
! · 2 1

2
ns(s!)n

exp

[
1− s2

4
− s3

12n
+O

(
s2

n

)]

Since s = o(
√
n) < 1

4
n, the probability of a RG(s) being periodic p2 is bounded

by

p2 ≤
1

2

(
n
n
2

)
·
N(n

2
, s)

N ′(n, s)

=
1

2

n!(
n
2
!
)2 ·

(
ns
2

)
!
(
ns
2

)
! · 2ns

2 (s!)n

(s!)n · (ns)!
exp

[
−(s− 1)2

2
+O

(
s3

n

)
+
s2

4
− 1

4

]

=

√
2πn · nnen

2 · enπn
(
n
2

)n ·
[(

ns
2

)
!
]2
· 2ns

2

(ns)!
exp

[
−1

4
s2 + s+O

(
s3

n

)
− 3

4

]

=
2n+ 1

2
ns

√
2πn

·
πns ·

(
1
2
ns
)ns

ens

ens(ns)ns
√

2πns
exp

[
−1

4
s2 + s+O

(
s3

n

)
− 3

4

]

=2−
1
2
ns+n−1 ·

√
s · exp

[
−1

4
s2 + s+O

(
s3

n

)
− 3

4

]

When s = ω(1) and s = o(
√
n), p2 goes to 0 exponentially fast because O

(
s3

n

)
=
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o(s). When s = O(1) and s ≥ 3, −1
2
s+ 1 < 0 and p2 goes to 0 exponentially fast as

well, which completes the proof. �

The fast convergence argument for RG(s) can be proved using the same proof

for RDG(s). The only difference is that P is symmetric and 1
2
(P + P>) = P so

|λ1(L)| ≥ |1− λP | > 2
s(n−1)

.

5.3 Reconstructing random regular graphs from

random paths

The positive theoretical results in Section 5.2 establish the generalization of our

learning algorithm in Chapter 4 to learning random regular graphs. Because the

nature of the algorithm requires the graph to be out-regular, we only apply this al-

gorithm to the models with fixed out-degree s, namely RMG+(s), RSG+(s), RDG(s)

and RG(s).

5.3.1 Preliminaries

In this section we study the problem of learning regular graphs in the statistical

query model. In a typical label-guided graph exploration setting [FIP+04, Rei05,

BS94, BFR+98], in a regular graph with fixed out-degree s, the s edges incident

from a node are associated with s distinct port numbers in Σ = {1, 2, . . . , s}, in a

one-to-one manner. Each edge of a node is labeled with the associated port number.

Note that port numbering is local, i.e., there is no relation between port numbers

at u and at v. In the undirected case RG(s), every undirected edge (u, v) has two

labels corresponding to its port numbers at u and at v respectively, which are not

183



necessarily identical. A path on the graph is a sequence of edge labels. The input

data to the statistical query oracle are path-destination pairs of the form (x, v) where

x ∈ Σt is a random uniform path and v is the vertex on the graph reached on the

path x starting from a particular start vertex v0. Here t = poly(n, s) is the length of

the example paths. The learner has access to the oracle STAT and algorithms are

designed to reconstruct the graph (or the unique closed irreducible component for

RMG+(s) and RSG+(s)) from statistical queries.

5.3.2 The learning algorithm

A uniform path x ∈ Σt corresponds to a random walk of length t on the graph

G starting from the start vertex v0. Since all these four types of random regular

graphs have been proved to have one unique closed irreducible component with high

probability and due to the main theorem, the walk will converge to the stationary

distribution pλ polynomially fast, with any start vertex. Define a collection of n× n

binary matrices Mσ indexed by labels σ ∈ Σ as follows. For each pair of vertices

u and v, the element Mσ(u, v) is 1 if (u, v) ∈ E and is labeled with σ at vertex

u, and 0 otherwise. For a path y = y1y2 . . . ym of length m, define My to be the

matrix product My = My1 ·My2 . . .Mym . Also define the distribution vector py over

V obtained by starting with the stationary distribution pλ and walking along the

path y on the graph. That is, py = pλMy. Let z be the i-th column of matrix Mσ,

PA be the sD×n coefficient matrix whose rows are {py | y ∈ ΣD} and b be the vector

consisting of {pyσ(i) | y ∈ ΣD} corresponding to each y in PA. Here D is an upper

bound on the diameter. From Theorem 5.2 we have D = Θ(logs n) and the concrete

constant can be inferred from the proof, which depends on s and approaches unity

with increasing s. The algorithm recovers the structure of the strongly connected

component by solving the linear equation system PAz = b for each column z in each
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Mσ.

By setting k = log 2
τ

in the main theorem, after t0 steps the random walk con-

verges to the stationary distribution pλ within χ-square distance τ
2

with high prob-

ability. Observe that 2‖φt − φ‖TV ≤ ∆χ2(t), where φt is the distribution vector over

V after t steps of random walk. We can estimate the stationary distribution for a

vertex i by the fraction of examples (x, v) such that v = i. In general, for any path

y, we can estimate the value of py for a vertex i as the ratio between the number of

pairs (x, v) such that y is a suffix of x and v = i and the number of examples (x, v)

where y is a suffix of x. In the statistical query model this is done with a conditional

statistical query χy,i(x, v) = 1{v = i | y is a suffix of x} at tolerance τ
2
, where 1 is

the boolean indicator function. Denote by vector p̂y the query result returned by

oracle STAT where p̂y(i) is the estimated Eχy,i, and by P̂A and b̂ the estimates for

PA and b respectively. We have ‖py − p̂y‖∞ ≤ τ for any path y. The algorithm ap-

proximates z by solving the perturbed linear least squares problem: minz ‖P̂Az− b̂‖2.

Let vector ẑ be the solution. Then from Chapter 4 we have

Lemma 5.12 If PA has full rank with high probability, for all columns z in all ma-

trices Mσ, ‖z − ẑ‖∞ ≤ ‖z‖1‖|P †A|‖∞τ +O(τ 2) with probability 1− o(1).

For RMG+(s), it is proved in Chapter 4 with high probability ‖z‖1 ≤ (1+ε) logns
log logns

for any constant ε > 0. We show this also holds for RSG+(s). For RDG(s) and

RG(s), we have ‖z‖1 = s.

Theorem 5.5 If PA has full rank with high probability,

1. for RMG+(s) and RSG+(s), ‖z − ẑ‖∞ ≤ (1+ε) logns
log logns

‖|P †A|‖∞τ + O(τ 2) for any

constant ε > 0

2. for RDG(s) and RG(s), ‖z − ẑ‖∞ ≤ s‖|P †A|‖∞τ +O(τ 2)
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holds for all columns z in all matrices Mσ with probability 1− o(1).

Proof The RMG+(s) case has been proved in Chapter 4 and the RSG+(s) case can

be proved in a similar way too. Here we provide a quick proof based on our proof in

Chapter 4 to bypass the lengthy algebra.

Let θ be the largest 1-norm of the columns in Mσ. According to the properties

of a RSG+(s), the probability of θ > n − 1 is 0 and P(θ = n) ≤ n · (n − 1)−(n−1) is

exponentially small. For any k < n− 1,

P(θ ≥ k) ≤ n · P(a particular column has 1-norm at least k)

≤n ·
(
n− 1

k

)(
1

n− 1

)k
≤ 2(n− 1) ·

(
n− 1

k

)(
1

n− 1

)k

In Chapter 4 we proved when k = (1+ε) logns
log logns

, n ·
(
n
k

) (
1
n

)k
= 1

s
· o(1). Thus, in our

case when k = (1+ε) log(n−1)s
log log(n−1)s

≤ (1+ε) logns
log logns

, we have (n− 1) ·
(
n−1
k

) (
1

n−1

)k
= 1

s
· o(1) so

that P(θ ≥ k) ≤ 1
s
· o(1). There are in total s matrices {Mσ | σ ∈ Σ}. Using a union

bound we have ‖z‖1 ≤ (1+ε) logns
log logns

for all columns in all Mσ with probability 1−o(1). �

This further implies that if we set the tolerance τ = log logns

3‖|P †A|‖∞ logns
for RMG+(s) and

RSG+(s), and τ = 1

3s‖|P †A|‖∞
for RDG(s) and RG(s), the solution error ‖z− ẑ‖∞ < 1

2

with high probability. Based on the prior knowledge we have for z, we could refine

ẑ by rounding up ẑ to a binary vector z̃, i.e., for each 1 ≤ i ≤ n, z̃(i) = 1 if ẑ(i) > 1
2

and 0 otherwise, whereby we will have z̃(v) = z(v) for any vertex v. We provide a

toy example here to demonstrate how the learning algorithm works on a concrete

regular graph.
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Figure 5.1: A 2-regular digraph with 4 vertices

A toy example

Suppose we consider the 2-regular digraph in Figure 5.1 whose transition matrices

are

M0 =



0 1 0 0

1 0 0 0

0 0 0 1

0 1 0 0


and M1 =



0 0 0 1

0 0 1 0

1 0 0 0

0 0 1 0


For any regular digraph, the stationary distribution pλ is always the uniform

distribution. As logs n = log2 4 = 2, the coefficient matrix PA is

PA =



p00

p01

p10

p11


=



0.5 0.5 0 0

0 0 0.75 0.25

0 0.5 0 0.5

0.5 0 0.25 0.25



Denote by z = (M0(1, 1),M0(2, 1),M0(3, 1),M0(4, 1))> the the first column of

matrix M0. Let vector b be (p000(1), p010(1), p100(1), p110(1))> = (0.5, 0, 0.5, 0)> as

defined in the algorithm. The algorithm recovers z by solving the equation system
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PAz = b, that is, solving



0.5M0(1, 1) + 0.5M0(2, 1) + 0M0(3, 1) + 0M0(4, 1) = 0.5

0M0(1, 1) + 0M0(2, 1) + 0.75M0(3, 1) + 0.25M0(4, 1) = 0

0M0(1, 1) + 0.5M0(2, 1) + 0M0(3, 1) + 0.5M0(4, 1) = 0.5

0.5M0(1, 1) + 0M0(2, 1) + 0.25M0(3, 1) + 0.25M0(4, 1) = 0

Similarly the algorithm recovers all columns in M0 and M1 and reconstructs the

target graph. Note that in the statistical query model the above equation system is

perturbed but we showed the algorithm is robust to statistical query noise.

5.3.3 Experiments and empirical results

In this section we present experimental results to illustrate the empirical performance

of the learning algorithm. To be more robust against fluctuation from randomness,

each test was run for 20 times and the medians were taken. The graphs are gener-

ated uniformly at random as defined and the algorithm solves the equation system

{pyMσ = pyσ | y ∈ Σ≤dlogs ne} using the built-in linear least squares function in

MATLAB. We simulate the statistical query oracle with uniform additive noise from

[−τ, τ ]. Since Chapter 4 already included experiments on learning a random DFA,

whose underlying graph is exactly RMG+(s), we don’t duplicate the experiments for

RMG+(s).

The generating procedure of a RSG+(s) is standard. Each node v ∈ V indepen-

dently chooses s neighbors from {V \ v} without replacement uniformly at random.

However, to the best of our knowledge, there is no algorithm that efficiently gener-

ates a RDG(s) or a RG(s). In our experiments, we use the celebrated pairing model

first introduced by Bollobás [Bol80]. In an undirected regular graph, each vertex has
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Figure 5.2: ‖|P †A|‖∞ of RSG+(s), versus n with fixed s = 2

s ports associated to its s edges. It is well known that the necessary and sufficient

conditions for an s-regular graph with n vertices to exist are that n ≥ s + 1 and

that ns is even. To generate a RG(s), we uniformly pick a perfect matching of the

ns ports into 1
2
ns pairs. Adding an edge between each pair of ports gives a (not

necessarily simple) regular graph. Repeat this procedure until it produces a simple

graph. Likewise we generate a RDG(s) by uniformly matching ns out-ports (cor-

responding to outgoing edges) with ns in-ports (corresponding to incoming edges)

until we get a regular digraph with no parallel edges. This method is not efficient

owing to the unbounded number of repetitions, especially when s grows. Hence, with

large s this generating method is extremely slow. Note that this limitation comes

from the existing generating methods. Our learning algorithm is efficient.

The experiments start with an empirical estimate for the norm ‖|P †A|‖∞. For

RSG+(s) we first vary the graph size n from 32 to 4300 with fixed out-degree s =

2. Figure 5.2 shows the curve of ‖|P †A|‖∞ versus n with fixed s. Notice that the

threshold phenomenon in the plot comes from the ceiling operation in the algorithm

configuration. When n is much smaller than the threshold sdlogs ne, the system is
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Figure 5.3: ‖|P †A|‖∞ of RSG+(s), versus s with fixed n = 256

overdetermined with many extra equations. Thus it is robust to perturbation and

well-conditioned. When n approaches the threshold sdlogs ne, the system has fewer

extra equations and becomes relatively more sensitive to perturbations, for which the

condition number increases until the graph size reaches n = si for the next integer i.

One can avoid this threshold phenomenon by making the size of the equation system

grow smoothly as n increases. We then fix n to be 256 and vary s from 2 to 75, as

shown in Figure 5.3. Similarly there is the threshold phenomenon resulting from the

ceiling strategy. All peaks where n = si are included and plotted. Meanwhile the

rank of the coefficient matrix PA is measured to support the full-rank assumption.

Both figures suggest an upper bound ns log s for ‖|P †A|‖∞ of RSG+(s). Figures 5.8

and 5.9 demonstrate the experimental results for the maximum absolute error. Along

with the error curve a function is plotted to approximate the behavior of the error.

An empirical error bound is O(log−1 n) with fixed s and O(1/
√
s) with fixed n.

Because generating a RDG(s) and generating a RG(s) are extremely slow with

large s, the range of s where we can efficiently conduct the experiments is very

limited. For RDG(s) we first vary n from 32 to 4300 with fixed s = 2 (Figure 5.4) as
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Figure 5.4: ‖|P †A|‖∞ of RDG(s), versus n with fixed s = 2

before but with fixed n = 256 we vary s from 2 to 6 (Figure 5.5). The norm ‖|P †A|‖∞

of RDG(s) is bounded by n log3(ns) and an empirical error bound is O(log−1 n) with

fixed s (Figure 5.10) and O(1/s) with fixed n (Figure 5.11). For RG(s) we vary n

from 26 to 3000 with fixed s = 3 (Figure 5.6) and vary s from 3 to 8 with fixed

n = 242 (Figure 5.7). As the existence of a regular undirected graph requires even

ns and s is fixed to be 3 when varying n, we only run experiments with even n. For

critical points where n = 3i, experiments are run with n = 3i − 1 and n = 3i + 1.

This explains why we start with n = 26 instead of n = 27 with fixed s = 3, and

also why we fix n = 242 rather than n = 243 when varying s. The norm ‖|P †A|‖∞ of

RG(s) is bounded by sn1.6 and an empirical error bound is O(log n/
√
n) with fixed

s (Figure 5.12) and O(1/s) with fixed n (Figure 5.13).

5.4 Other applications and discussion

With the broad applications of regular graphs in computer science and machine learn-

ing, our theoretical results can be applied to other research areas such as distributed
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Figure 5.5: ‖|P †A|‖∞ of RDG(s), versus s with fixed n = 256

networks and social network graphs. Performing random walks on distributed net-

works is an active area of research (see [BBSB06] for a comprehensive survey). High

connectivity, bounded degree and low diameter are very common properties of (well

designed) distribution network models. Theorem 4.3 explicitly provides fast conver-

gence for random walks on these models. For instance, Pandurangan et al. [PRU03]

proposed a protocol which ensures that the network is connected and has logarithmic

diameter with high probability, and has always bounded degree. A simpler, fully de-

centralized model named SWAN was proposed by Bourassa and Holt [BH03] based

on random walks, which produces a random regular graph. In another direction,

random walks have proven to be a simple, yet powerful mathematical tool for ex-

tracting information from large scale and complex social networks (see [SM11] for a

comprehensive survey). Social network graphs also have the above properties (high

connectivity, small degree and low diameter) so that the random walks will converge

fast as we proved. One application of fast convergence is the capability of uniformly

sampling the graph, which is very important in many graph learning problems.

In this chapter we have shown positive theoretical results on random walks on
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Figure 5.6: ‖|P †A|‖∞ of RG(s), versus n with fixed s = 3

random regular graphs, and generalized our algorithm in Chapter 4 to learning ran-

dom regular graphs from random paths. One technical question concerning the fast

convergence result is whether it can be generalized to weighted random walks on

random regular graphs. An immediate benefit from this generalization is the release

from the requirement of uniform paths in the learning algorithm. However, we con-

jecture this requires a polynomial lower bound on the edge weights in the graph, to

avoid exponentially small nonzero elements in the walk matrix P . Another potential

future work is to apply this algorithm to learning a more general class of graphs.

Note that any generalization of the algorithm needs not only fast convergence, but

also asymmetry of the target graph. The class of permutation automata [Thi68] is

one example that has symmetric graph structure and degenerate PA. Also, there

is possibility of relaxing the constraint on s in the RG(s) case if advances in the

enumeration of regular undirected graphs are made.
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Figure 5.7: ‖|P †A|‖∞ of RG(s), versus s with fixed n = 242

Figure 5.8: Maximum absolute error for learning a RSG+(s), versus n with fixed
s = 2
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Figure 5.9: Maximum absolute error for learning a RSG+(s), versus s with fixed
n = 256

Figure 5.10: Maximum absolute error for learning a RDG(s), versus n with fixed
s = 2
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Figure 5.11: Maximum absolute error for learning a RDG(s), versus s with fixed
n = 256

Figure 5.12: Maximum absolute error for learning a RG(s), versus n with fixed s = 3
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Figure 5.13: Maximum absolute error for learning a RG(s), versus s with fixed
n = 242
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[BE76] Béla Bollobás and Paul Erdös. Cliques in random graphs. Mathematical

Proceedings of the Cambridge Philosophical Society, 80:419–427, Novem-

ber 1976.

[Ben74] Edward A. Bender. The asymptotic number of non-negative integer ma-

trices with given row and column sums. Discrete Mathematics, 10(2):217

– 223, 1974.

[BFR+98] Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil

Vadhan. The power of a pebble: Exploring and mapping directed graphs.

In Proceedings of the thirtieth annual ACM symposium on Theory of

computing, pages 269–278. Association for Computing Machinery, 1998.

[BGPS06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah.

Randomized gossip algorithms. IEEE/ACM Transactions on Networking

(TON), 14(SI):2508–2530, 2006.

[BH03] Virgil Bourassa and Fred Holt. Swan: Small-world wide area networks.

In Proceeding of International Conference on Advances in Infrastructures

(SSGRR 2003w), LAquila, Italy, 2003.
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[Bol80] Béla Bollobás. A probabilistic proof of an asymptotic formula for the

number of labelled regular graphs. European Journal of Combinatorics,

1(4):311 – 316, 1980.

[Bol88] Béla Bollobás. The chromatic number of random graphs. Combinatorica,

8(1):49–55, 1988.

[BS94] Michael A. Bender and Donna K Slonim. The power of team explo-

ration: Two robots can learn unlabeled directed graphs. In Foundations

of Computer Science, 1994 Proceedings., 35th Annual Symposium on,

pages 75–85. IEEE, 1994.

[Bsh97] Nader H. Bshouty. Exact learning of formulas in parallel. Machine

Learning, 26(1):25–41, January 1997.

[CCN12] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes

approximate majority. Scientific reports, 2, 2012.

[CF05] Colin Cooper and Alan Frieze. The cover time of random regular graphs.

SIAM Journal on Discrete Mathematics, 18(4):728–740, 2005.

[CF08] Colin Cooper and Alan Frieze. The cover time of the giant component of

a random graph. Random Structures & Algorithms, 32(4):401–439, 2008.

201



[CF09] Colin Cooper and Alan Frieze. Random walks on random graphs. In

Maggie Cheng, editor, Nano-Net, volume 3 of Lecture Notes of the Insti-

tute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pages 95–106. Springer Berlin Heidelberg, 2009.

[CFR02] Colin Cooper, Alan Frieze, and Bruce Reed. Random regular graphs

of non-constant degree: connectivity and hamiltonicity. Combinatorics,

Probability & Computing, 11(03):249–261, 2002.

[Che14] Dongqu Chen. Learning shuffle ideals under restricted distributions.

In Advances in Neural Information Processing Systems, pages 757–765,

2014.

[Che15] Dongqu Chen. Learning random regular graphs. Yale University Tech-

nical Report YALEU/DCS/TR-1518, September 2015.

[Cho81] Noam Chomsky. Principles and parameters in syntactic theory I. In

Norbert Hornstein and David Lightfoot (red.), editors, Explanation in

Linguistics: the Logical Problem of Language Acquisition. London: Long-

man, 1981.

[Cho93] Noam Chomsky. Lectures on Government and Binding: The Pisa Lec-

tures. Studies in generative grammar. Mouton de Gruyter, 1993.

[Chu97] Fan-Rong King Chung. Spectral Graph Theory. Number no. 92 in CBMS

Regional Conference Series. Conference Board of the Mathematical Sci-

ences, 1997.

[Chu05] Fan Chung. Laplacians and the Cheeger inequality for directed graphs.

Annals of Combinatorics, 9(1):1–19, 2005.

202



[CM05] Rodney E. Canfield and Brendan D. McKay. Asymptotic enumeration

of dense 0-1 matrices with equal row sums and equal column sums. The

Electronic Journal of Combinatorics [electronic only], 12(1):null, 2005.

[CS10] Marie Coppola and Ann Senghas. The emergence of deixis in nicaraguan

signing. Sign languages: A Cambridge language survey, pages 543–569,

2010.

[DLH05] Colin De La Higuera. A bibliographical study of grammatical inference.

Pattern recognition, 38(9):1332–1348, September 2005.
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