
Abstract

Formal End-to-End Verification of

Information-Flow Security for Complex Systems

David Costanzo

2016

Protecting the confidentiality of information manipulated by a computing system is

one of the most important challenges facing today’s cybersecurity community. Many

complex systems, such as operating systems, hypervisors, web browsers, and dis-

tributed systems, require a user to trust that private information is properly isolated

from other users. Real-world systems are full of bugs, however, so this assumption of

trust is not reasonable.

The goal of this dissertation is to apply formal methods to complex security-

sensitive systems, in such a way that we can guarantee to users that these systems re-

ally are trustworthy. Unfortunately, there are numerous prohibitive challenges stand-

ing in the way of achieving this goal.

One challenge is how to specify the desired security policy of a complex system. In

the real world, pure noninterference is too strong to be useful. It is crucial to support

more lenient security policies that allow for certain well-specified information flows

between users, such as explicit declassifications. Furthermore, the specified policy

must be comprehensible to users at a high level of abstraction, but also must apply

to the low-level system implementation.

A second challenge is that real-world systems are usually written in low-level lan-

guages like C and assembly, but these languages are traditionally difficult to reason

about. Additionally, even if we successfully verify individual C and assembly func-

tions, how do we go about linking them together? The obvious answer is to do the

linking after the C code gets compiled into assembly, but this requires trusting that

the compiler did not accidentally or maliciously introduce security bugs. This is a

very difficult problem, especially considering that a compiler may fail to preserve

security even when it correctly preserves functional behavior.

A third challenge is how to actually go about conducting a security proof over

low-level code. Traditional security type systems do not work well since they require

a strongly-typed language, so how can a security violation be detected in untyped C

or assembly code? In fact, it is actually common for code to temporarily violate a

security policy, perhaps for performance reasons, but then to not actually perform

any observable behavior influenced by the violation; how can we reason that this kind

of code is acceptably secure? Finally, how do we conduct the proof in a unified way

that allows us to link everything together into a system-wide guarantee?

In this dissertation, we make two major contributions that achieve our goal by

overcoming all of these challenges. The first contribution is the development of a novel

methodology allowing us to formally specify, prove, and propagate information-flow

security policies using a single unifying mechanism, called the “observation function”.

A policy is specified in terms of an expressive generalization of classical noninterfer-

ence, proved using a general method that subsumes both security-label proofs and

information-hiding proofs, and propagated across layers of abstraction using a special

kind of simulation that is guaranteed to preserve security.

To demonstrate the effectiveness of our new methodology, our second major con-

tribution is an actual end-to-end security proof, fully formalized and machine-checked

in the Coq proof assistant, of a nontrivial operating system kernel. Our artifact is

the first ever guaranteed-secure kernel involving both C and assembly code, including

compilation from the C code into assembly. Our final result guarantees the following

notion of isolation: as long as direct inter-process communication is not used, user

processes executing over the kernel cannot influence each others’ executions in any

way. During the verification effort, we successfully discovered and fixed some inter-

esting security holes in the kernel, such as one that exploits child process IDs as a

side channel for communication.

We also demonstrate the generality and extensibility of our methodology by ex-

tending the kernel with a virtualized time feature allowing user processes to time their

own executions. With a relatively minor amount of effort, we successfully prove that

this new feature obeys our isolation policy, guaranteeing that user processes cannot

exploit virtualized time as an information channel.

Formal End-to-End Verification of

Information-Flow Security for Complex

Systems

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
David Costanzo

Dissertation Director: Zhong Shao

December 2016

Copyright c© 2016 by David Costanzo

All rights reserved.

ii

Contents

Acknowledgements viii

1 Introduction 1

1.1 Challenges in Security Reasoning . 1

1.2 Contributions . 4

1.3 Principals and Policies . 6

1.4 Chapter Organization . 10

2 Locality and Behavior Preservation 12

2.1 Local Reasoning and the Frame Rule 12

2.2 Impact on a Concrete Separation Logic 17

2.3 The Abstract Logic . 26

2.4 Applications of Behavior Preservation 34

2.4.1 Footprints and Smallest Safe States 34

2.4.2 Data Refinement . 36

2.4.3 Relational Separation Logic 40

2.4.4 Finite Memory . 43

2.4.5 Security . 43

3 Security via Program Logic 45

3.1 Program Logic Overview . 45

iii

3.1.1 Security Formulation . 47

3.2 Language and Semantics . 49

3.3 The Program Logic . 55

3.4 Example: Alice’s Calendar . 58

3.5 Noninterference . 61

3.6 Problems with the Program Logic Approach 65

4 Security Reasoning over Specifications 70

4.1 A New Methodology for Security Verification 70

4.1.1 High-Level Security Policies 71

4.1.2 Security Formulation . 73

4.1.3 Security-Preserving Simulation 77

4.2 Representing Intricate Security Policies 79

4.2.1 Declassify Parity . 79

4.2.2 Event Calendar Objects . 81

4.2.3 Security Labels and Dynamic Tainting 83

5 Simulations and Security Propagation 86

5.1 Machines with Observations . 86

5.2 High-Level Security . 88

5.3 Low-Level Security . 89

5.4 Simulation . 90

5.5 End-to-End Security . 92

6 Security Overview of mCertiKOS 99

6.1 mCertiKOS Overview . 99

6.2 Security Overview . 105

iv

7 Proving Security of mCertiKOS 110

7.1 Conducting the TSysCall-local Security Proof 111

7.2 End-to-End Process Isolation . 116

8 New Feature: Virtualized Time 118

8.1 Specification and Implementation of Timing 118

8.2 Security of Virtualized Time . 121

9 Assumptions, Limitations, and Future Work 124

10 Related Work and Conclusions 130

10.1 Locality in Separation Logic . 130

10.2 Security-Aware Program Logic . 132

10.3 Security Verification over Specifications 135

10.4 Security Verification of mCertiKOS 137

10.5 Conclusions . 142

v

List of Figures

1.1 An end-to-end software system that consists of both OS modules (in C and

assembly) and user processes. 2

1.2 Using an observation function to verify end-to-end security. 4

2.1 Assertion and Program Syntax . 18

2.2 Satisfaction of Assertions . 19

2.3 Small-Step Operational Semantics . 20

2.4 Some Separation Logic Inference Rules 22

2.5 Command Definition and Denotational Semantics 31

2.6 Inference Rules . 32

3.1 Security-Aware Operational Semantics 51

3.2 Standard Operational Semantics . 54

3.3 Assertion Syntax and Semantics . 55

3.4 Selected Inference Rules for the Logic 57

3.5 Example: Alice’s Private Calendar 59

3.6 Calendar Example Verification . 60

4.1 Security-Violating Simulation. The shaded part of state is unobservable,

while the unshaded part is observable. 79

vi

5.1 Basic Setup — Many simulations are chained together to incrementally re-

fine a top-level specification semantics into a concrete implementation exe-

cuting over a low-level assembly machine model. 87

6.1 Simulation between adjacent layers. Layer L contains primitives spawn and

yield, with the former implemented in ClightX(L′) and the latter imple-

mented in LAsm(L′). 101

6.2 The TSysCall-local semantics, defined by taking big steps over the inactive

parts of the TSysCall semantics. 106

6.3 Pseudocode of the load primitive specification. 108

7.1 Approximate Coq LOC of proof effort. 111

7.2 Using child process IDs to as a side channel. 113

7.3 Applying the three lemmas to prove the security property of TSysCall-local

yielding. 114

8.1 A sample usage of the gettime feature. 119

8.2 Illustration and implementation of local timelines. 120

vii

Acknowledgements

I owe thanks to many people for supporting me throughout my particularly lengthy

graduate school endeavor. First and foremost, my advisor Zhong Shao, who has

worked diligently to keep me on the graduating track. Whenever I became discouraged

or disillusioned with my work, he would always have fresh ideas on how to make

it more exciting. He has a remarkable ability to visualize the ideal destination of

where research should be heading; this was extremely helpful whenever I found myself

bogged down in gory technical details and Coq proofs.

I am thankful to all of my friends throughout grad school, both for being colleagues

to discuss research with, and for being companions to relax and play games with. I

especially thank my friend and officemate Shu-Chun Weng, who always seemed to

have a clean solution every time I ran into difficulty with Coq proofs.

I am also grateful to my loving family: my parents, siblings, nieces, and nephew,

who have always been supportive of my decision to pursue graduate school — despite

the fact that it requires me being on the opposite side of the country. I look forward

to finally joining you all in California!

Finally, I thank all of the colleagues in Yale’s FLINT group that I have had

the pleasure of working with throughout the years. I am particularly thankful to

Ronghui Gu and Newman Wu, who conducted the bulk of the effort in getting an

initial verified version of the mCertiKOS kernel up and running. This initial version

was a crucial testbed for demonstrating the applicability and usability of my new

viii

security verification framework; without it, I would only be able to hope that my

theory works well in practice.

ix

Chapter 1

Introduction

1.1 Challenges in Security Reasoning

Information-flow security is highly desirable in today’s real-world software. Hackers

often exploit software bugs to obtain information about protected secrets, such as

user passwords or private keys. Security issues have become even more of a concern

in recent times with the advent of cloud computing and distributed architecture, since

many mutually-distrusting users execute over the same physical hardware.

It is extremely difficult to justify that a piece of software protects users’ secrets.

Virtually any bug could lead to an exploitable security hole, and reasoning about

security is still difficult even when software is known to be functionally correct. It

is therefore logical to look to formal methods for providing a foundation for complex

security reasoning. There have been many diverse attempts in the literature, espe-

cially over the last two decades, at formally guaranteeing software security. These

attempts include techniques like adding dynamic security monitors to runtime envi-

ronments (e.g., [4, 22, 53, 56]), statically bounding software with security-aware type

systems or logics (e.g., [5, 24, 27, 41]), and reasoning about the implications of various

kinds of high-level security policies (e.g., [42, 50]). The state-of-the-art is not entirely

1

x86 Assembly Machine Model

User
Process

P1

OS Syscall Spec

CModules

Asm.s

Compiler

CMods.s

AsmSpec

primitive &
function calls

“implements”

“lifting”

User
Process

P2

High-level information-flow security policy specification

Low-level
end-to-end
security
guarantee

Figure 1.1: An end-to-end software system that consists of both OS modules (in C and
assembly) and user processes.

satisfactory, however, as each of these individual security-reasoning methodologies is

relatively limited in scope. Our ultimate goal in this dissertation is to demonstrate

the possibility of a highly general methodology, that allows for both formally spec-

ifying any desired information-flow security policy, as well as formally guaranteeing

that the low-level code of a complex system conforms to this high-level policy.

There are all kinds of challenges that we must overcome to achieve such a lofty

goal. Consider the example setup of Figure 1.1, where a large operating system kernel

consists of many separate functions (e.g., system call primitives) written in either C

or assembly. Each primitive has a high-level specification, and there is a compiler

that converts all C code into assembly. User processes execute arbitrary assembly

code over the kernel, and they may occasionally invoke the kernel system calls. In

order to achieve our desired goal, we must be able to clearly and formally specify a

high-level security policy over this entire system, and we must be able to provide an

end-to-end guarantee that all of the code, when linked together and executed over

the x86 machine model, conforms to the security policy. We now describe the major

challenges involved, contextualized with the help of this example.

2

Challenge 1: Policy Specification How do we specify a clear and precise security

policy, describing how information is allowed to flow between various users? If we

express the policy in terms of the high-level syscall specifications, then what will this

imply for the whole-program assembly execution? We need some way of interpreting

and enforcing policies at different levels of abstraction. Furthermore, it is crucial

that the high-level policy language is expressive enough to handle more than just

pure isolation. In the real world, users often wish to communicate with each other in

certain ways; thus we must support policies which allow certain well-specified forms

of communication, including controlled declassifications of data from a high security

level to a lower one.

Challenge 2: Reasoning About Low-Level Code Assuming we can specify a

security policy at a low level of abstraction, how should we go about proving that some

low-level C or assembly code conforms to the policy? Security-aware type systems

like Jif [41] do not work well for untyped languages, while dynamic security monitors

incur undesirable execution overhead. Incompleteness is also problematic: a low-level

program may execute an action that temporarily violates a security policy, but then

the program does not end up producing any observable behaviors influenced by the

violation. For example, for performance reasons, a program might read an entire

block of a file into memory, despite not actually needing to know any secret data

stored within that block. The end-to-end behavior of such a program is secure, but

many line-by-line security enforcement mechanisms will deem it insecure.

Challenge 3: Linking Everything Together Multiple aspects of Figure 1.1 re-

quire linking: C code must be linked with assembly code within the kernel, low-level

C and assembly code must be linked with their high-level specifications, and user

code must be linked with kernel code. Even if we manage to prove security of each

of the individual pieces (kernel C functions, kernel assembly functions, arbitrary user

3

Security Policy

Proof: spec secure wrt policy

End-to-End Guarantee

Observation
Function

x86 Machine Model

Security-
Preserving
Simulation V

e
ri

fi
e
d

Figure 1.2: Using an observation function to verify end-to-end security.

code, and high-level specifications), how are we going to guarantee end-to-end se-

curity when all of these pieces are combined together? Simulations or refinements

are generally used to link low-level code with high-level specifications, but it is well

known [29, 36] that these may not soundly propagate security properties like non-

interference. Furthermore, linking C code with assembly code requires compilation;

modern C compilers usually have bugs causing program functionality to not be cor-

rectly preserved, and they certainly do not make any attempts to preserve security.

1.2 Contributions

In this dissertation, we successfully achieve our goal by showing how all of the chal-

lenges mentioned above can be cleanly handled. We make two major contributions:

we design a novel methodology that achieves our goal, and we apply the methodology

to guarantee security of an actual system.

Contribution 1: Novel Methodology The first contribution is the development

of a novel and highly-general methodology allowing us to formally specify, verify,

4

and link security policies. Figure 1.2 gives a broad overview of our design. We

first require that functional correctness is verified independently from security: all of

the code must be shown to conform to the high-level specifications. Then, for the

security verification, we begin by defining an “observation function”, which essentially

describes each user’s view of program state. This observation function automatically

induces a high-level security policy. Next, the system’s high-level specification is

verified to conform to the induced security policy. Finally, this high-level security

property is automatically propagated down to a low-level, end-to-end guarantee by

exploiting a special kind of simulation that soundly preserves security.

Contribution 2: Applying the Methodology We demonstrate the effective-

ness of this novel methodology by applying it to real operating system kernel, called

mCertiKOS. As described in [21], mCertiKOS is already fully verified to be func-

tionally correct with respect to high-level specifications; thus our security verification

effort does not require the first step described in Figure 1.2. Our resulting artifact,

called mCertiKOS-secure, is the first ever guaranteed-secure kernel involving both C

and assembly code, including compilation from the C code into assembly (which is

handled by the CompCert verified compiler [33]). Our final result guarantees the fol-

lowing notion of isolation: as long as direct inter-process communication is not used,

user processes executing over the kernel cannot influence each others’ executions in

any way. During the verification effort, we successfully discovered and fixed some

interesting security holes in the kernel, such as one that exploits child process IDs as

a side channel. After completing the verification, we tested the extensibility of our

methodology by adding a new feature to the kernel providing users with a notion of

time. With relatively little effort we were able to prove security of the new feature,

guaranteeing the absence of any timing-based information-flow side channel.

5

Previous Efforts While the most important contributions in this dissertation are

the two just described, we spent multiple years trying other strategies before arriving

at our new methodology. We will devote two chapters to describing these earlier

efforts, as they illustrate numerous important concepts that are used as stepping

stones toward developing our ultimate contribution. The first of these chapters de-

scribes our work published in APLAS [12], in which we argue that systems should

enforce a strong notion of locality, guaranteeing that unused resources never affect

program behaviors. While we did not have security in mind at the time, it turns

out that this strong locality has close ties with composability of secure systems. The

second chapter describes our work published in POST [14], in which we present a new

program logic that allows one to specify and prove very general security policies over

C-like code. The program logic only applies to code written in the C-like language,

so it only solves a small portion of the challenges described in Section 1.1.

Machine-Checked Verification All of the work throughout this dissertation is

fully formalized and verified in the Coq proof assistant [55]. This means that all proofs

are machine-checked, and therefore bug-free. The Coq formalizations, including the

entirety of the secure mCertiKOS kernel, can be found online at this dissertation’s

companion website [11].

1.3 Principals and Policies

In this section, we informally introduce some basic terminology that will be heavily

used throughout the dissertation. We also describe some motivating example security

policies that will occasionally be revisited in later chapters.

Assume we have a complex system like the one from Figure 1.1, which is composed

of many lines of both C and assembly code. As described previously, we wish to

prove the end-to-end property that, when the C code is compiled into assembly and

6

linked with the existing assembly code, the resulting system executes securely. More

specifically, we will prove that a system executes securely with respect to a particular

principal’s point-of-view; this particular principal is called the observer. Principals

represent actors or users of the system (e.g., processes P1 and P2 are principals of

the system in Figure 1.1), and we will assume they come from some abstract set P .

For each potential observer p, we will specify a security policy describing precisely

how information can flow to p. A system is then deemed secure if and only if it

obeys all observers’ policies. As described in Section 1.1 above, exact formalization

of a security policy represents a major challenge in any information-flow system. To

support real-world systems, it is crucial that policies allow for certain well-specified

flows of information (e.g., declassifications); however, it is in general not obvious how

to define an end-to-end security guarantee with respect to such lenient policies. To

develop some intuition regarding this challenge, we will now consider some example

security policies that are important to support.

Public Parity Suppose principal Alice owns some secret value v. Alice wishes to

release only a single bit of her secret publicly, the parity v%2. Describing this as

a somewhat more formal security policy, we say that the observations made by any

observer p (excluding Alice) must not be influenced by anything relating to v other

than its parity. This statement can be clearly expressed as a noninterference-like

property: if we were to hypothetically change Alice’s secret from v to any other value

w with the same parity as v, then observer p must make identical observations over

the system executing with secret w as it does over the execution with secret v.

Notice that there is some implicit subtlety in the described policy: if an ob-

server can learn the value v%2, then clearly he can also learn, for example, the value

(v + 1)%2. This implicitly-derived kind of information flow can become difficult to

understand for extremely complex policies; we will assume throughout the disserta-

7

tion that it is the system specifier’s burden to write a policy that is simple enough

for users of the system to fully comprehend.

Public Average Suppose Alice runs a company and stores all employees’ salaries

in a database. One reasonable security policy is to publicly release only the average

of these salaries. That is, there should be no flow of information from the salaries

to public observers other than the value of the average salary. As a noninterference

statement, this means that if we were to change the values of any subset of salaries in

such a way that the overall average remains the same, then a public observer must not

see any change in observation. Furthermore, one might reasonably extend the policy

to apply to an employee p of the company by allowing p to learn information only

about p’s own salary, in addition to the average salary. Note that, once again, there

is some implicit information embedded in this policy: if, for example, p happens to

know that there are only two employees in total at the company, then he can learn the

exact value of the other employee’s salary just by looking at his own salary along with

the average. Thus this policy would only be a reasonable one for security purposes if

there were many employees at the company.

Shared Calendar As a more intricate example, suppose Alice owns a calendar on

which she marks down the details of various events occurring at various time slots.

Further suppose that Alice wishes to expose an API for her calendar that allows other

principals to schedule a meeting with her at an open time slot. What kind of security

policy might Alice wish to enforce over her calendar? An initial guess might be that

Alice should not release any information about her calendar; this is incompatible

with the desired API, however, since a principal who successfully schedules a meeting

with Alice will obviously learn that the scheduled time was available in her calendar.

Instead, a more reasonable policy is that a caller of Alice’s API can learn which

time slots are available/unavailable in the calendar, but cannot learn any information

8

about the events contained within the unavailable slots.

In terms of noninterference, this policy says that if we were to arbitrarily change

the events within Alice’s calendar without changing any times at which those events

occur, then a caller of Alice’s API would not observe any difference. One example

implementation that clearly satisfies this security policy is for Alice to always schedule

the meeting at the first available time slot.

Dynamic Label Tainting One common and important example involves attach-

ing security labels to principals and data within a system, and then dynamically

propagating (“tainting”) these labels as the system executes. Many existing security

frameworks are based upon this scheme (e.g., [4, 25, 31, 60, 61]). Security labels are

arranged into a lattice structure where, for example, L1 v L2 means that the security

level L2 is “at least as secure as” level L1. An element of this lattice is assigned to

each principal and each piece of data within the system. The standard security policy

is then that information is only allowed to flow up this lattice — that is, an observer

p with label Lp can only learn information about data with label less than or equal

to Lp in the lattice. As a noninterference statement, this means that changing any

data with a label L 6v Lp will not affect p’s observation.

A simple method for enforcing this security policy is to dynamically taint data as

it propagates during an execution. For example, if the program z = x + y executes,

then the resulting security label of z will be assigned the least upper bound (t) of

the labels of x and y. In this way, the system can automatically guarantee that the

resulting value of z can flow to some principal p (i.e., Lx tLy v Lp) if and only if the

values of x and y can also flow to p (i.e., Lx v Lp and Ly v Lp).

Aside on Declassification Terminology Traditionally, declassification is a term

used in a context like the dynamic label tainting just described, where the security

label of a piece of data is explicitly changed from some L to some L′ with L 6v L′.

9

Declassifications may violate the policy that information can only flow up the lattice,

and therefore many systems must carefully specify precise conditions under which

declassifications are allowed to occur. Throughout this dissertation, we will refer

to this concept as an “explicit declassification”. One thesis of our work is that it

is generally difficult to express a formal end-to-end security property for a system

that allows such explicit declassifications. In this work, we instead support what we

call “implicit declassifications” — a concept which we will show yields a clean and

descriptive end-to-end security property. For example, in the public parity example

described above, we say that Alice is “implicitly declassifying” the value v%2 from

secret to public. That example is not an explicit declassification because there are no

explicit labels attached to the data.

In general, it is not possible to give any kind of formal definition to our notion

of implicit declassification. As described above, an implicit declassification of v%2

automatically implies implicit declassification of (v+ 1)%2. Furthermore, we will see

an example later in the dissertation, relating to the mCertiKOS security verification,

where a policy seems to describe an implicit declassification, but actually does not

allow information to flow from high security to lower security. In other words, there

is no clear relationship between implicit declassifications and the allowed information

flows. As a result, all uses of the term “declassification” in this dissertation should

be interpreted in an informal context; our security policies will formally and pre-

cisely specify how information is allowed to flow between principals, but they will not

formally specify whether or not declassifications are allowed.

1.4 Chapter Organization

The rest of this dissertation is organized as follows. Chapter 2 is an abridged ver-

sion of our work published in [12], and discusses strong locality. There are some

10

interesting connections between locality and security, but overall the chapter is fairly

orthogonal to the rest of the dissertation. Chapter 3 is an abridged version of our

work from [14], and attempts to tackle security verification by using a program logic.

The chapter finishes with a discussion regarding the various limitations of using a

specific program logic; this leads directly into Chapter 4, where we move away from a

specific program logic and informally describe our novel and more general methodol-

ogy for security verification. Chapter 5 then completely formalizes the methodology

and proves the main theorem that security can be automatically propagated across

simulations from a high-level specification to a low-level implementation. Chapter 6

then introduces mCertiKOS and its security policy specification, and Chapter 7 con-

tinues with many technical details about the security verification effort. Chapter 8

presents our new mCertiKOS feature implementing virtualized time, and shows how

we prove the feature secure. Chapter 9 discusses various assumptions and limitations

of our methodology, and mentions how these open up opportunities for future work.

Finally, Chapter 10 concludes with an in-depth discussion of related work.

11

Chapter 2

Locality and Behavior Preservation

In this chapter, we present our work published in APLAS 2012 [12]. In the context

of Separation Logic [9, 28, 46, 58], we define and defend a strong notion of locality,

deemed “behavior preservation”. Locality concerns the relationship between a pro-

gram’s execution over a small footprint state and its execution over a larger state

containing unused resources. Our key idea is to require a behavior-preserving formu-

lation of locality, where the program’s behavior is completely unchanged by the extra

unused resources.

We describe here (and in the paper) how behavior preservation simplifies numerous

metatheoretical difficulties in Separation Logic. This is mostly orthogonal to the rest

of the dissertation, as it does not concern security. However, we will discuss some

interesting connections to security at the end of the chapter, by relating behavior

preservation with classical noninterference.

2.1 Local Reasoning and the Frame Rule

Separation Logic is a program logic that allows for formal reasoning about the be-

havior of heap-manipulating C-like programs. The most important concept is the

separating conjunction — the assertion P ∗Q holds on a program state if that state

12

can be separated into two disjoint portions, one satisfying P and the other satisfying

Q. The following frame rule is used to facilitate local reasoning:

` {P}C {Q}

` {P ∗R}C {Q ∗R}

That is, if a program C is verified to satisfy a pre/post condition pair (P,Q), then we

can automatically infer that it also satisfies the pair (P ∗R,Q∗R), where R describes

program state that is disjoint from both P and Q. Intuitively, this seems to indicate

that the unused resources in R do not affect C’s behavior. Formally, however, the

notion of locality required by the frame rule is actually weaker than this intuition.

There are three locality-related properties that together imply soundness of the frame

rule, commonly called Safety Monotonicity, the Frame Property, and Termination

Monotonicity (the latter is only needed for termination-sensitive reasoning).

To describe these properties more formally, we first introduce some notations for

combining disjoint program states. We define states σ to be members of an abstract

set Σ. We assume that whenever two states σ0 and σ1 are “disjoint,” written σ0#σ1,

they can be combined to form the larger state σ0 • σ1. Intuitively, two states are

disjoint when their heaps occupy disjoint areas of memory.

We represent the semantic meaning of a program C by a binary relation JCK,

indicating all possible whole-execution behaviors of C. We use the common notational

convention aRb for a binary relation R to denote (a, b) ∈ R. Intuitively, σJCKσ′ means

that, when executing C on initial state σ, it is possible to terminate in state σ′. Note

that if σ is related by JCK to more than one state, this simply means that C is a

nondeterministic program. We also define two special behaviors fault and div:

• σJCKfault means that C can crash or get stuck when executed on σ

• σJCKdiv means that C can diverge (execute forever) when executed on σ

13

As a notational convention, we use τ to range over elements of Σ ∪ {fault, div}.

We require that for any state σ and program C, there is always at least one τ such

that σJCKτ . In other words, every execution must either crash, go on forever, or

terminate in some state.

Now we define the properties mentioned above. Following are definitions of Safety

Monotonicity, the Frame Property, and Termination Monotonicity, respectively (when

not explicitly mentioned, assume all variables are universally quantified):

1.) ¬σ0JCKfault ∧ σ0#σ1 =⇒ ¬(σ0 • σ1)JCKfault

2.) ¬σ0JCKfault ∧ (σ0 • σ1)JCKσ′ =⇒ ∃σ′0 . σ′ = σ′0 • σ1 ∧ σ0JCKσ′0

3.) ¬σ0JCKfault ∧ ¬σ0JCKdiv ∧ σ0#σ1 =⇒ ¬(σ0 • σ1)JCKdiv

Safety Monotonicity says that any time a program executes safely in a certain state,

the same program must also execute safely in any larger state — in other words,

unused resources cannot cause a program to crash. The Frame Property says that

if a program executes safely on a small state, then any terminating execution of the

program on a larger state can be tracked back to some terminating execution on the

small state by assuming that the extra added state has no effect and is unchanged.

Termination Monotonicity says that if a program executes safely and never diverges

on a small state, then it cannot diverge on any larger state.

In standard Separation Logic, these three properties are required to hold for

all programs C, and the frame rule is then automatically guaranteed to be sound.

The properties represent the minimum requirement needed to make the frame rule

sound — they are as weak as they can possibly be without breaking the logic. They

are not defined to correspond with any intuitive notion of locality. As a result, there

are two subtleties in the definition that might seem a bit odd. We will now de-

scribe these subtleties and the changes we make to get rid of them. Note that we

14

are not arguing in this section that there is any benefit to changing locality in this

way (other than the arguably vacuous benefit of corresponding to our “intuition” of

locality) — the benefit will become clear when we discuss how our change simplifies

the metatheory in Section 2.4.

The first subtlety is that Termination Monotonicity only applies in one direction.

This means that we could have a program C that runs forever on a state σ, but when

we add unused state, we suddenly lose the ability for that infinite execution to occur.

We can easily get rid of this subtlety by replacing Termination Monoticity with the

following Termination Equivalence property:

¬σ0JCKfault ∧ σ0#σ1 =⇒ (σ0JCKdiv ⇐⇒ (σ0 • σ1)JCKdiv)

The second subtlety is that locality gives us a way of tracking an execution on a

large state back to a small one, but it does not allow for the other way around. This

means that there can be an execution on a state σ that becomes invalid when we add

unused state. This subtlety is a little trickier to remedy than the other. If we think

of the Frame Property as really being a “Backwards Frame Property,” in the sense

that it only works in the direction from large state to small state, then we clearly

need to require a corresponding Forwards Frame Property. We would like to say that

if C takes σ0 to σ′0 and we add the unused state σ1, then C takes σ0 • σ1 to σ′0 • σ1:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ (σ0 • σ1)JCK(σ′0 • σ1)

Unfortunately, there is no guarantee that σ′0 • σ1 is defined, as the states might

not occupy disjoint areas of memory. In fact, if C causes our initial state to grow, say

by allocating memory, then there will always be some σ1 that is disjoint from σ0 but

not from σ′0 (e.g., take σ1 to be exactly that allocated memory). Therefore, it seems

as if we are doomed to lose behavior in such a situation upon adding unused state.

There is, however, a solution worth considering: we could disallow programs from

15

ever increasing state. In other words, we can require that whenever C takes σ0 to σ′0,

the area of memory occupied by σ′0 must be a subset of that occupied by σ0. In this

way, anything that is disjoint from σ0 must also be disjoint from σ′0, so we will not

lose any behavior. Formally, we express this property as:

σ0JCKσ′0 =⇒ (∀σ1 . σ0#σ1 ⇒ σ′0#σ1)

We can conveniently combine this property with the previous one to express the

Forwards Frame Property as the following condition:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 • σ1)JCK(σ′0 • σ1)

At first glance, it may seem imprudent to impose this requirement, as it ap-

parently disallows memory allocation. However, it is in fact still possible to model

memory allocation — we just have to be a little clever about it. Specifically, we

can include a set of memory locations in our state that we designate to be the “free

list”. When memory is allocated, all allocated cells must be taken from the free list.

Because the free list is represented explicitly in program state, any extra unused re-

sources must be disjoint not only from the heap, but also from the free list. Contrast

this to standard Separation Logic, in which newly-allocated heap cells are taken from

outside the program state. In the next section, we will show that we can add a free

list in this way to the model of Separation Logic without requiring a change to any

of the inference rules.

We conclude this section with a brief justification of the term “behavior preserva-

tion.” Given that C runs safely on a state σ0, we think of a behavior of C on σ0 as

a particular execution, which can either diverge or terminate at some state σ′0. The

Forwards Frame Property tells us that execution on a larger state σ0 • σ1 simulates

execution on the smaller state σ0, while the Backwards (standard) Frame Property

says that execution on the smaller state simulates execution on the larger one. Since

16

standard locality only requires simulation in one direction, it is possible for a program

to have fewer valid executions, or behaviors, when executing on σ0 •σ1 as opposed to

just σ0. Our stronger locality disallows this from happening, enforcing a bisimulation

under which all behaviors (including divergence) are preserved when extra resources

are added.

2.2 Impact on a Concrete Separation Logic

In this section, we will demonstrate how behavior-preserving locality can be enforced

in a standard model of Separation Logic without any negative impact on using the

program logic. In the standard Reynolds’ Separation Logic model [46], a program

state consists of two components: a variable store and a heap. When new memory

is allocated, the memory is taken from outside the state and added into the heap.

As mentioned in Section 2.1, this notion of memory allocation violates our Forwards

Frame Property, so we will instead include an explicit free list inside the program

state. Thus a state is now is a triple (s, h, f) consisting of a store, a heap, and a free

list, with the heap and free list occupying disjoint areas of memory. Newly-allocated

memory always comes from the free list, while deallocated memory goes back into the

free list. Since the standard formulation of Separation Logic assumes that memory

is infinite and hence that allocation never fails, we similarly require the free list to

be infinite. More specifically, we require that there is some location n such that all

locations above n are in the free list. Formally, states are defined as follows:

Var V
4
= {x, y, z, . . .} Store S

4
= V → Z Heap H

4
= N⇀

fin
Z

Free List F
4
= {N ∈ P(N) | ∃n . ∀k ≥ n . k ∈ N}

State Σ
4
= {(s, h, f) ∈ S ×H × F | dom(h) ∩ f = ∅}

As a point of clarification, we are not claiming here that including the free list

in the state model is a novel idea. Other systems (e.g., [45]) have made use of a

17

E ::= E + E ′ | E − E ′ | . . . | −1 | 0 | 1 | . . . | x | y | . . .
B ::= E = E ′ | false | B ⇒ B′

P,Q ::= B | false | emp | E 7→ E ′ | P ⇒ Q | P ∗Q
C ::= skip | x := E | x := [E] | [E] := E ′

| x := cons(E1, . . . , En) | free (E) | C;C ′

| ifB thenC elseC ′ | whileB doC

Figure 2.1: Assertion and Program Syntax

very similar idea. The two novel contributions that we will show in this section are:

(1) that a state model which includes an explicit free list can provide a behavior-

preserving semantics, and (2) that the corresponding program logic can be made to

be completely backwards-compatible with standard Separation Logic (meaning that

any valid Separation Logic derivation is also a valid derivation in our logic).

We adopt the following standard notations: bhc is the domain of the heap h;

s[x 7→ v] is the store which is identical to s, except that the value of variable x is

updated to v; h[l 7→ v] is the heap which is identical to h, except that location l is

either added to h with value v if it does not exist in h, or updated with value v if it

does exist; h\l is the heap resulting from removing location l from h; h0#h1 is true

just when bh0c and bh1c do not overlap; h0 • h1 is equal to the union of h0 and h1

if h0#h1, and is undefined otherwise. We also overload the disjointness (#) operator

to work with free lists — e.g., h#f says that bhc and f are disjoint.

Assertion syntax and program syntax are given in Figure 2.1, and are exactly the

same as in the standard model for Separation Logic. This syntax includes expressions

E and boolean expressions B, both of which can be evaluated under a given variable

store, without any knowledge of the heap. These valuations are denoted by JEKs and

JBKs for a given store s; the former evaluates to an integer, while the latter evaluates

to a boolean. Their formal definitions are omitted here, but are straightforward and

standard in the literature.

Our satisfaction judgement (s, h, f) |= P for an assertion P is defined by ig-

18

(s, h) |= B ⇐⇒ JBKs = true

(s, h) |= false ⇐⇒ never

(s, h) |= emp ⇐⇒ bhc = ∅
(s, h) |= E 7→ E ′ ⇐⇒ bhc = {JEKs} ∧ h(JEKs) = JE ′Ks
(s, h) |= P ⇒ Q ⇐⇒ if (s, h) |= P , then (s, h) |= Q

(s, h) |= P ∗Q ⇐⇒

(
∃h0, h1 . h0#h1 ∧ h0 • h1 = h ∧

(s, h0) |= P ∧ (s, h1) |= Q

)

Figure 2.2: Satisfaction of Assertions

noring the free list and only considering whether (s, h) satisfies P . The definition of

(s, h) |= P is identical to that of standard Separation Logic, and is given in Figure 2.2.

The most important cases are E 7→ E ′ and P ∗Q. E 7→ E ′ says that the current heap

consists only of the memory cell at address JEKs, and that the cell at that address

maps to the value JE ′Ks. P ∗Q says that we can separate the current heap into two

disjoint subheaps h0 and h1, with h0 satisfying P and h1 satisfying Q. We also define

the standard syntactic sugars E 7→ E0, . . . , En to be (E 7→ E0) ∗ . . . ∗ (E + n 7→ En),

and E 7→ − to be ∃x.E 7→ x (where x is not free in E).

Figure 2.3 defines the small-step operational semantics for our machine. x := [E]

and [E] := E ′ correspond to reading from and writing to the heap, respectively.

x := cons(E1, . . . , En) allocates a nondeterministically-chosen contiguous block of n

heap cells from the free list. The most interesting rules are those for allocation and

deallocation, since they make use of the free list. Note that none of the operations

make use of any memory existing outside the program state — this is the key for

obtaining behavior-preservation.

To see how out state model fits into the structure defined in Section 2.1, we need

to define the state combination operator. Given two states σ1 = (s1, h1, f1) and σ2 =

(s2, h2, f2), the combined state σ1 • σ2 is equal to (s1, h1] h2, f1) if s1 = s2, f1 = f2,

and the domains of h1 and h2 are disjoint; otherwise, the combination is undefined.

19

σ, skip;C −→ σ,C
(SKIP)

(s, h, f), x := E −→ (s[x 7→ JEKs], h, f), skip
(ASSGN)

JEKs ∈ bhc
(s, h, f), x := [E] −→ (s[x 7→ h(JEKs)], h, f), skip

(HEAP-READ)

JEKs ∈ bhc
(s, h, f), [E] := E ′ −→ (s, h[JEKs 7→ JE ′Ks], f), skip

(HEAP-WRITE)

∀i ∈ [1, n] . l + i− 1 ∈ f
(s, h, f), x := cons(E1, . . . , En) −→

(s[x 7→ l], h[l 7→ JE1Ks] . . . [l + n− 1 7→ JEnKs], f − {l, . . . , l + n− 1}), skip

(CONS)

JEKs ∈ bhc
(s, h, f), free (E) −→ (s, h\JEKs, f ∪ {JEKs}), skip

(FREE)

σ,C −→ σ′, C ′

σ,C;C ′′ −→ σ′, C ′;C ′′
(SEQ)

JBKs = true

σ, ifB thenC1 elseC2 −→ σ,C1

(IF-TRUE)

JBKs = false

σ, ifB thenC1 elseC2 −→ σ,C2

(IF-FALSE)

JBKs = true

σ, whileB doC −→ σ,C; whileB doC
(WHILE-TRUE)

JBKs = false

σ, whileB doC −→ σ, skip
(WHILE-FALSE)

Figure 2.3: Small-Step Operational Semantics

20

Note that this combined state satisfies the requisite condition dom(h1] h2) ∩ f1 = ∅

because h1, h2, and f1 are pairwise disjoint by assumption. The most important aspect

of this definition of state combination is that we can never change the free list when

adding extra resources. This guarantees behavior preservation of the nondeterministic

memory allocator because the allocator’s set of possible behaviors is precisely defined

by the free list.

In order to formally compare our logic to standard Separation Logic, we need

to provide the standard version of the small-step operational semantics, denoted as

(s, h), C (s′, h′), C ′. This definition is nearly identical to Figure 2.3, except that

all free lists are removed from program state, and the (CONS) rule precondition is

modified to only require that the newly-allocated locations are not in bhc. It is then

possible to show the following relationship between the two operational semantics

(note that the full proofs for all of the following lemmas and theorems can be found

in our Coq implementation [11]):

Lemma 1.

(s, h), C
n
 (s′, h′), C ′ ⇐⇒ ∃f, f ′ . (s, h, f), C

n−→ (s′, h′, f ′), C ′

Proof. The backwards direction is a straightforward proof by induction. For the

forwards direction, we actually prove a stronger statement by picking our f and f ′ to

be exactly N − bhc and N − bh′c, respectively. The proof of this stronger statement

is then straightforward by induction. Picking the free lists in this way showcases

how the Separation Logic model can be interpreted as having an implicit free list

containing everything not in the heap.

The inference rules in the form ` {P}C {Q} for our logic are exactly the same

as those used in standard Separation Logic. We give many of these inference rules in

Figure 2.4; the reader may refer to [46] for more.

21

` {emp} skip {emp}
(SKIP)

` {x = y ∧ emp}x := E {x = E[y/x] ∧ emp}
(ASSGN)

` {x = y ∧ E 7→ z}x := [E] {x = z ∧ E[y/x] 7→ z}
(HEAP-READ)

` {E 7→ −} [E] := E ′ {E 7→ E ′}
(HEAP-WRITE)

` {x = y ∧ emp}x := cons(E1, . . . , Ek) {x 7→ E1[y/x], . . . , Ek[y/x]}
(CONS)

` {E 7→ −} free (E) {emp}
(FREE)

` {P}C1 {Q} ` {Q}C2 {R}
` {P}C1;C2 {R}

(SEQ)

` {B ∧ P}C1 {Q} ` {¬B ∧ P}C2 {Q}
` {P} ifB thenC1 elseC2 {Q}

(IF)

` {B ∧ P}C {P}
` {P} whileB doC {¬B ∧ P}

(WHILE)

P ′ ⇒ P Q⇒ Q′ ` {P}C {Q}
` {P ′}C {Q′}

(CONSEQ)

` {P1}C {Q1} ` {P2}C {Q2}
` {P1 ∧ P2}C {Q1 ∧Q2}

(CONJ)

` {P1}C {Q1} ` {P2}C {Q2}
` {P1 ∨ P2}C {Q1 ∨Q2}

(DISJ)

` {P}C {Q} modifies(C) ∩ vars(R) = ∅
` {P ∗R}C {Q ∗R}

(FRAME)

Figure 2.4: Some Separation Logic Inference Rules

22

We next define safe execution and semantic triples. A configuration (σ,C) is safe

if it can never get stuck in a non-halting state:

safe(σ,C)
4
= ∀σ′, C ′ . σ, C ∗−→ σ′, C ′ ∧ C ′ 6= skip =⇒ ∃σ′′, C ′′ . σ′, C ′ −→ σ′′, C ′′

A triple |= {P}C {Q} is then semantically valid when, for all σ, σ′:

1.) if σ |= P , then safe(σ,C)

2.) if σ |= P and σ,C
∗−→ σ′, skip, then σ′ |= Q

Semantic validity of standard Separation Logic triples is defined in the same way,

but using the operational semantics for Separation Logic. We will write this as

|=SL {P}C {Q}. Note that we are only considering a partial correctness definition of

validity here, meaning that programs are not required to terminate.

We now formally relate semantic validity of our logic with standard Separation

Logic, with the help of a minor technical lemma:

Lemma 2.

(s, h),C (s′, h′), C ′ =⇒ ∀f . (f#h⇒ ∃σ . (s, h, f), C −→ σ,C ′)

Proof. Straightforward by induction on the rules for stepping.

Theorem 1 (Equivalence of Semantic Validity).

|=SL {P}C {Q} ⇐⇒ |= {P}C {Q}

Proof. First, suppose that |=SL {P}C {Q}. To prove the first property of semantic

validity, suppose that (s, h, f) |= P , and consider some execution (s, h, f), C
∗−→

(s′, h′, f ′), C ′ with C ′ 6= skip. Then we need to show that (s′, h′, f ′), C ′ can take

23

another step. By Lemma 1, we have that (s, h), C
∗
 (s′, h′), C ′. Since (s, h) |= P ,

we know that safe((s, h), C), and so (s′, h′), C ′ (s′′, h′′), C ′′ for some s′′, h′′, C ′′.

Therefore Lemma 2 tells us that (s′, h′, f ′), C ′ can indeed take a step. For the second

property, suppose that (s, h, f) |= P and (s, h, f), C
∗−→ (s′, h′, f ′), skip. Then

Lemma 1 tells us that (s, h), C
∗
 (s′, h′), skip, meaning that (s′, h′) |= Q, and so

(s′, h′, f ′) |= Q.

Now suppose that |= {P}C {Q}. For the first property, suppose that (s, h) |=

P and (s, h), C
∗
 (s′, h′), C ′ with C ′ 6= skip. Lemma 1 gives us (s, h, f), C

∗−→

(s′, h′, f ′), C ′ for some f and f ′, which means that (s′, h′, f ′), C ′ −→ (s′′, h′′, f ′′), C ′′

for some s′′, h′′, f ′′, C ′′ (since (s, h, f) |= P). Therefore Lemma 1 gives us (s′, h′), C ′

(s′′, h′′), C ′′, as desired. For the second property, suppose (s, h) |= P and (s, h), C
∗

(s′, h′), skip. By Lemma 1, we have

(s, h, f), C
∗
 (s′, h′, f ′), skip

for some f and f ′. Since (s, h, f) |= P , this means that (s′, h′, f ′) |= Q, and so

(s′, h′) |= Q.

Theorem 2 (Soundness and Completeness).

` {P}C {Q} ⇐⇒ |= {P}C {Q}

Proof. Note that ` {P}C {Q} has the same definition in both our logic and in Sep-

aration Logic, since we use the same assertion language and inference rules. There-

fore, because Separation Logic is known to be sound and complete, we have that

` {P}C {Q} ⇐⇒ |=SL {P}C {Q}. Applying Theorem 1 gives the desired result.

We have thus shown that our new model does not cause any complications in the

usage of Separation Logic. Any specification that can be proved using the standard

24

model can also be proved using our model, with the exact same application of inference

rules (since they completely ignore the free list within program state). We now

only need to show that our model enjoys the stronger, behavior-preserving notion of

locality. As described in Section 2.1, this locality is composed of Safety Monotonicity,

Termination Equivalence, and the Forward and Backwards Frame Properties. We first

prove that the two frame properties hold:

Theorem 3 (Frame Properties).

1.) (s, h0, f), C
n−→ (s′, h′0, f

′), C ′ ∧ h0#h1 ∧ f#h1 =⇒

h′0#h1 ∧ (s, h0 • h1, f), C
n−→ (s′, h′0 • h1, f

′), C ′

2.) safe((s, h0, f), C) ∧ (s, h0 • h1, f), C
n−→ (s′, h′, f ′), C ′ =⇒

∃h′0 . h′ = h′0 • h1 ∧ (s, h0, f), C
n−→ (s′, h′0, f

′), C ′

Proof. Straightforward by induction on the derivation rules for stepping. For details,

see the Coq implementation.

It is then easy to show that these Frame Properties imply both Safety Monotonic-

ity and Termination Equivalence.

Lemma 3 (Safety Monotonicity).

safe((s, h0, f), C) ∧ h0#h1 ∧ f#h1 =⇒ safe((s, h0 • h1, f), C)

Proof. Suppose that safe((s, h0, f), C), and consider an execution on the large state

(s, h0 •h1, f), C
n−→ (s′, h′, f ′), C ′ with C ′ 6= skip. Then the Backwards Frame Prop-

erty tells us that h′ = h′0•h1 and (s, h0, f), C
n−→ (s′, h′0, f

′), C ′. Since safe((s, h0, f), C)

and C ′ 6= skip, we see that (s′, h′0, f
′), C ′ −→ (s′′, h′′0, f

′′), C ′′ for some s′′, h′′0, f ′′, C ′′.

Thus we can now use the Forwards Frame Property (clearly h1#f ′ since (s′, h′0•h1, f
′)

25

is a well-typed state) to obtain (s′, h′0 • h1, f
′), C ′ −→ (s′′, h′′0 • h1, f

′′), C ′′, and so

safe((s, h0 • h1, f), C) does indeed hold.

In order to define Termination Equivalence, we first need to define divergence.

We say that σ diverges on C, written σ,C ↑, if there exists an infinite path of steps

starting from σ,C. More formally:

σ,C ↑ 4= ∀n . ∃σ′, C ′ . σ, C n−→ σ′, C ′

Lemma 4 (Termination Equivalence).

safe((s, h0, f), C) ∧ h0#h1 ∧ f#h1 ⇒ ((s, h0, f), C ↑ ⇐⇒ (s, h0 • h1, f), C ↑)

Proof. First, suppose (s, h0, f), C ↑, and pick any n. Then there are some s′, h′0,

f ′, C ′ such that (s, h0, f), C
n−→ (s′, h′0, f

′), C ′. Thus the Forwards Frame Property

tells us that h′0#h1 and (s, h0 • h1, f), C
n−→ (s′, h′0 • h1, f

′), C ′, as desired. For the

other direction, suppose (s, h0 • h1, f), C and pick any n. Then (s, h0 • h1, f), C
n−→

(s′, h′, f ′), C ′ for some s′, h′, f ′, C ′. Since safe((s, h0, f), C), the Backwards Frame

Property tells us that h′ = h′0 • h1 for some h′0, and (s, h0, f), C
n−→ (s′, h′0, f

′), C ′, as

desired.

2.3 The Abstract Logic

The previous section demonstrated how we can impose behavior preservation in the

context of Separation Logic, without making Separation Logic any more difficult to

use or any less powerful. We next need to show how behavior preservation can provide

benefits over the standard, weaker notion of locality. In order to do this, it will help

to have a formal, abstract view of behavior-preserving Separation Logic. This section

will describe how our strong locality fits into a context similar to that of Abstract

26

Separation Logic [9]. With a minor amount of work, the logic of Section 2.2 can be

molded into a particular instance of the abstract logic presented here.

We define a separation algebra to be a set of states Σ, along with a partial asso-

ciative and commutative operator • : Σ → Σ ⇀ Σ. The disjointness relation σ0#σ1

holds iff σ0 • σ1 is defined, and the substate relation σ0 � σ1 holds iff there is some

σ′0 such that σ0 • σ′0 = σ1. A particular element of Σ is designated as a unit state,

denoted u, with the property that for any σ, σ#u and σ • u = σ. We require the •

operator to be cancellative, meaning that σ • σ0 = σ • σ1 ⇒ σ0 = σ1.

An action is a set of pairs of type Σ ∪ {fault, div} × Σ ∪ {fault, div}. We

require the following two properties: (1) actions always relate fault to fault and

div to div, and never relate fault or div to anything else; and (2) actions are

total, in the sense that for any τ , there exists some τ ′ such that τ [A] τ ′ (recall from

Section 2.1 that we use τ to range over elements of Σ ∪ {fault, div}). Note that

these two requirements are preserved over the standard composition of relations, as

well as over both finitary and infinite unions. We write Id to represent the identity

action {(τ, τ) | τ ∈ Σ ∪ {fault, div}}.

Note that it is more standard in the literature to have the domain of actions

range only over Σ — we use Σ∪ {fault, div} here because it has the pleasant effect

of making JC1;C2K correspond precisely to standard composition. Intuitively, once

an execution goes wrong, it continues to go wrong, and once an execution diverges,

it continues to diverge.

A local action is an action A that satisfies the following four properties, which re-

spectively correspond to Safety Monotonicity, Termination Equivalence, the Forwards

27

Frame Property, and the Backwards Frame Property from Section 2.1:

1.) ¬σ0 [A] fault ∧ σ0#σ1 =⇒ ¬(σ0 • σ1) [A] fault

2.) ¬σ0 [A] fault ∧ σ0#σ1 =⇒ (σ0 [A] div ⇐⇒ (σ0 • σ1) [A] div)

3.) σ0 [A]σ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 • σ1) [A] (σ′0 • σ1)

4.) ¬σ0 [A] fault ∧ (σ0 • σ1) [A]σ′ =⇒ ∃σ′0 . σ′ = σ′0 • σ1 ∧ σ0 [A]σ′0

We denote the set of all local actions by LocAct. We now show that the set

of local actions is closed under composition and (possibly infinite) union. We use

the notation A1;A2 to denote composition, and
⋃
A to denote union (where A is

a possibly infinite set of actions). The formal definitions of these operations follow.

Note that we require that A be non-empty. This is necessary because
⋃
∅ is ∅, which

is not a valid action. Unless otherwise stated, whenever we write
⋃
A, there will

always be an implicit assumption that A 6= ∅.

τ [A1;A2] τ ′ ⇐⇒ ∃τ ′′ . τ [A1] τ ′′ ∧ τ ′′ [A2] τ ′

τ
[⋃
A
]
τ ′ ⇐⇒ ∃A ∈ A . τ [A] τ ′ (A 6= ∅)

Lemma 5. If A1 and A2 are local actions, then A1;A2 is a local action.

Proof. It will be useful to first note that σ [A1;A2] fault iff either σ [A1] fault or

there exists some σ′ such that σ [A1]σ′ and σ′ [A2] fault. This is due to the fact

that we know fault [A2] fault and ¬div [A2] fault. Similarly, it is also the case

that σ [A1;A2] div iff either σ [A1] div or there exists some σ′ such that σ [A1]σ′ and

σ′ [A2] div.

For Safety Monotonicity, suppose that σ0#σ1 and ¬σ0 [A1;A2] fault. Suppose

by way of contradiction that (σ0 • σ1) [A1;A2] fault. Since ¬σ0 [A1;A2] fault and

fault [A2] fault, we have ¬σ0 [A1] fault. Thus by Safety Monotonicity of A1, ¬(σ0 •

28

σ1) [A1] fault. By our note above, we see that there must be some σ such that

(σ0•σ1) [A1]σ and σ [A2] fault. By the Backwards Frame Property of A1, there must

be a σ′0 such that σ = σ′0 • σ1 and σ0 [A1]σ′0. Thus we have that (σ′0 • σ1) [A2] fault,

and so Safety Monotonicity of A2 tells us that σ′0 [A2] fault. Hence σ0 [A1;A2] fault,

which is a contradiction.

For Termination Equivalence, suppose that σ0#σ1 and ¬σ0 [A1;A2] fault. Then

we also have ¬σ0 [A1] fault, since we have fault [A2] fault.

For the forward direction, suppose that σ0 [A1;A2] div. By the note above, there

are two possible situations. In the first situation, we have σ0 [A1] div. By Termination

Equivalence of A1, this implies that (σ0 •σ1) [A1] div, and so (σ0 •σ1) [A1;A2] div, as

desired. In the second situation, there is a state σ such that σ0 [A1]σ and σ [A2] div.

By the Forwards Frame Property of A1, we see that σ#σ1 and (σ0 • σ1) [A1] (σ •

σ1). Now note that we must have ¬σ [A2] fault, because otherwise we would be

able to derive σ0 [A1;A2] fault, which is a contradiction. Therefore, by Termination

Equivalence of A2, we have (σ • σ1) [A2] div. Hence we get (σ0 • σ1) [A1;A2] div, as

desired.

For the backward direction, suppose that (σ0 • σ1) [A1;A2] div. Again by the

note above, there are two possible situations. In the first situation, we have (σ0 •

σ1) [A1] div. By Termination Equivalence of A1, this implies that σ0 [A1] div, and

so σ0 [A1;A2] div, as desired. In the second situation, there is a state σ such that

(σ0•σ1) [A1]σ and σ [A2] div. By the Backwards Frame Property of A1, there must be

a σ′0 such that σ = σ′0•σ1 and σ0 [A1]σ′0. Now note that we must have ¬σ′0 [A2] fault,

because otherwise we would be able to derive σ0 [A1;A2] fault, which is a contradic-

tion. Therefore, by Termination Equivalence of A2, we have σ′0 [A2] div. Hence we

get σ0 [A1;A2] div, as desired.

For the Forwards Frame Property, suppose that σ0#σ1 and σ0 [A1;A2]σ′0. Then

there exists a τ such that σ0 [A1] τ and τ [A2]σ′0. Furthermore, τ cannot be fault or

29

div since τ [A2]σ′0 — thus let τ be σ′′0 . By the Forwards Frame Property of A1, we have

σ′′0#σ1 and (σ0 •σ1) [A1] (σ′′0 •σ1). Therefore, by the Forwards Frame Property of A2,

we have σ′0#σ1 and (σ′′0 •σ1) [A2] (σ′0•σ1). Hence σ′0#σ1 and (σ0•σ1) [A1;A2] (σ′0•σ1),

as desired.

For the Backwards Frame Property, suppose that ¬σ0 [A1;A2] fault and (σ0 •

σ1) [A1;A2]σ′. Then, repeating some reasoning from earlier in this proof, we have

¬σ0 [A1] fault, and there exists a σ such that (σ0 • σ1) [A1]σ and σ [A2]σ′. By the

Backwards Frame Property of A1, we get σ = σ′0 • σ1 and σ0 [A1]σ′0. Now note

that ¬σ′0 [A2] fault, because otherwise we would be able to derive σ0 [A1;A2] fault,

which is a contradiction. Therefore, by the Backwards Frame Property of A2, we get

σ′ = σ′′0 • σ1 and σ′0 [A2]σ′′0 . Hence σ′ = σ′′0 • σ1 and σ0 [A1;A2]σ′′0 , as desired.

Lemma 6. If every A in the set A is a local action, then
⋃
A is a local action.

Proof. For Safety Monotonicity, suppose σ0#σ1 and ¬σ0 [
⋃
A] fault. Suppose by

way of contradiction that (σ0 • σ1) [
⋃
A] fault. Then there is some A ∈ A such that

(σ0•σ1) [A] fault. By Safety Monotonicity of A, we get σ0 [A] fault. But this means

that σ0 [
⋃
A] fault, which is a contradiction.

For Termination Equivalence, suppose that σ0#σ1 and ¬σ0 [
⋃
A] fault. This

means that for every A ∈ A, ¬σ0 [A] fault. For the forward direction, suppose that

σ0 [
⋃
A] div. Then σ0 [A] div for some A ∈ A. Thus Termination Equivalence of

A gives us (σ0 • σ1) [A] div, and so we get the desired (σ0 • σ1) [
⋃
A] div. For the

backward direction, suppose that (σ0 • σ1) [
⋃
A] div. Then (σ0 • σ1) [A] div for some

A ∈ A. Thus Termination Equivalence of A gives us σ0 [A] div, and so we get the

desired σ0 [
⋃
A] div.

For the Forwards Frame Property, suppose that σ0#σ1 and σ0 [
⋃
A]σ′0. Then

σ0 [A]σ′0 for some A ∈ A, and so by the Forwards Frame Property of A, we have

σ′0#σ1 and (σ0 • σ1) [A] (σ′0 • σ1), which in turn implies the desired result.

For the Backwards Frame Property, suppose that ¬σ0 [
⋃
A] fault and (σ0 •

30

C ::= c | C1;C2 | C1 + C2 | C∗

∀c . JcK ∈ LocAct JC1;C2K
4
= JC1K; JC2K

JC1 + C2K
4
= JC1K ∪ JC2K JC∗K 4=

⋃
n∈N

JCKn

JCK0 4= Id JCKn+1 4= JCK; JCKn

Figure 2.5: Command Definition and Denotational Semantics

σ1) [
⋃
A]σ′. Then (σ0 • σ1) [A]σ′ for some A ∈ A, and for all A ∈ A we have

¬σ0 [A] fault. Hence the Backwards Frame Property of A tells us that σ′ = σ′0 • σ1

and σ0 [A]σ′0, which implies the desired result.

Figure 2.5 defines our abstract program syntax and semantics. The language

consists of primitive commands, sequencing (C1;C2), nondeterministic choice (C1 +

C2), and finite iteration (C∗). The semantics of primitive commands are abstracted —

the only requirement is that they are local actions. Therefore, from the two previous

lemmas and the trivial fact that Id is a local action, it is clear that the semantics of

every program is a local action.

Note that our concrete language in Section 2.2 used if statements and while loops.

As shown in [9], it is possible to represent if and while constructs with finite iteration

and nondeterministic choice by including a primitive command assume(B), which

does nothing if the boolean expression B is true, and diverges otherwise. Given this

setup, we can define the primitive command assume(B) as follows:

Jassume(B)K 4= {(fault, fault), (div, div)} ∪

{(σ, σ) | JBKσ = true} ∪ {(σ, div) | JBKσ = false} ∪

{(σ, fault) | JBKσ undefined}

It is a simple matter to show that this is a local action. We can then syntactically

31

¬σJcKfault
` {{σ}} c {{σ′ | σJcKσ′}}

(PRIM)
` {P}C1 {Q} ` {Q}C2 {R}

` {P}C1;C2 {R}
(SEQ)

` {P}C1 {Q} ` {P}C2 {Q}
` {P}C1 + C2 {Q}

(PLUS)
` {P}C {P}
` {P}C∗ {P}

(STAR)

` {P}C {Q}
` {P ∗R}C {Q ∗R}

(FRAME)
P ′ ⊆ P ` {P}C {Q} Q ⊆ Q′

` {P ′}C {Q′}
(CONSEQ)

∀i ∈ I . ` {Pi}C {Qi}
` {
⋃

Pi}C {
⋃

Qi}
(DISJ)

∀i ∈ I . ` {Pi}C {Qi} I 6= ∅
` {
⋂

Pi}C {
⋂

Qi}
(CONJ)

Figure 2.6: Inference Rules

define if and while statements as follows:

ifB thenC1 elseC2
4
= (assume(B);C1) + (assume(¬B);C2)

whileB doC
4
= (assume(B);C)∗; assume(¬B)

Technically, these definitions only correctly implement if and while statements in

terms of which states they can terminate at — they do not correctly implement

divergence behavior since they allow for arbitrary divergence. Thus these definitions

should only be used if we do not care about divergence behavior. It is certainly still

possible to define fully correct if and while statements, but the technical details are

outside the scope of this work.

Now that we have defined the interpretation of programs as local actions, we can

talk about the meaning of a triple {P}C {Q}. We define an assertion P to be a set

of states, and we say that a state σ satisfies P iff σ ∈ P . We can then define the

separating conjunction as follows:

P ∗Q 4
= {σ ∈ Σ | ∃σ0 ∈ P, σ1 ∈ Q . σ = σ0 • σ1}

32

Given an assignment of primitive commands to local actions, we say that a triple

is valid, written |= {P}C {Q}, just when the following two properties hold for all

states σ and σ′:

1.) σ ∈ P =⇒ ¬σJCKfault

2.) σ ∈ P ∧ σJCKσ′ =⇒ σ′ ∈ Q

The inference rules of the logic are given in Figure 2.6. Note that we are taking

a significant presentation shortcut here in the inference rule for primitive commands.

Specifically, we assume that we know the exact local action JcK of each primitive com-

mand c. This assumption makes sense when we define our own primitive commands,

as we do in the logic of Section 2.2. However, in a more general setting, we might

be provided with an opaque function along with a specification (precondition and

postcondition) for the function. Since the function is opaque, we must consider it

to be a primitive command in the abstract setting. Yet we do not know how it is

implemented, so we do not know its precise local action. In [9], the authors provide

a method for inferring a “best” local action from the function’s specification. With

a decent amount of technical development, we can do something similar here, using

our stronger definition of locality. These details can be found in the technical report

of our APLAS publication [13].

Given this setup, we can now prove soundness and completeness of our abstract

logic. The details of the proof can be found in our Coq implementation [11].

Theorem 4 (Soundness and Completeness).

` {P}C {Q} ⇐⇒ |= {P}C {Q}

33

2.4 Applications of Behavior Preservation

Now that we have an abstracted formalism of our behavior-preserving local actions,

we can demonstrate some ways in which behavior preservation yields significant bene-

fits and simplifications. We will first present four Separation Logic metatheory issues

which are greatly simplified by enforcing behavior preservation; these four issues are

described in full detail (including proofs) in the technical report of our APLAS pub-

lication [13]. Then we will conclude by connecting this chapter to the dissertation’s

main contributions, with a discussion of how behavior preservation is important for

security verification.

2.4.1 Footprints and Smallest Safe States

Consider a situation in which we are handed a program C along with a specification

of what this program does. The specification consists of a set of axioms; each axiom

has the form {P}C {Q} for some precondition P and postcondition Q. A common

question to ask would be: is this specification complete? In other words, if the triple

|= {P}C {Q} is valid for some P and Q, then is it possible to derive ` {P}C {Q}

from the provided specification?

In standard Separation Logic, it can be extremely difficult to answer this question.

In [45], the authors conduct an in-depth study of various conditions and circumstances

under which it is possible to prove that certain specifications are complete. However,

in the general case, there is no easy way to prove this.

We can show that under our assumption of behavior preservation, there is a very

easy way to guarantee that a specification is complete. In particular, a specification

that describes the exact behavior of C on all of its smallest safe states is always

complete. Formally, a smallest safe state is a state σ such that ¬σJCKfault and, for

all σ′ ≺ σ, σ′JCKfault.

34

To see that such a specification may not be complete in standard Separation

Logic, we borrow an example from [45]. Consider the program C, defined as x :=

cons(0); free(x). This program simply allocates a single cell and then frees it. Under

the standard model, the smallest safe states are those of the form (s, ∅) for any store

s. For simplicity, assume that the only variables in the store are x and y. Define the

specification to be the infinite set of triples that have the following form, for any a, b

in Z, and any a′ in N:

{x = a ∧ y = b ∧ emp}C {x = a′ ∧ y = b ∧ emp}

Note that a′ must be in N because only valid unallocated memory addresses can be

assigned into x. It should be clear that this specification describes the exact behavior

on all smallest safe states of C. Now we claim that the following triple is valid, but

there is no way to derive it from the given specification.

{x = a ∧ y = b ∧ y 7→ −}C {x = a′ ∧ y = b ∧ y 7→ − ∧ a′ 6= b}

The triple is clearly valid because a′ must be a memory address that was initially

unallocated, while address b was initially allocated. Nevertheless, there will not be

any way to derive this triple, even if we come up with new assertion syntax or inference

rules. The behavior of C on the larger state is different from the behavior on the small

one, but there is no way to recover this fact once we make C opaque. It can be shown

(see [45]) that if we add triples of the above form to our specification, then we will

obtain a complete specification for C. Yet there is no straightforward way to see that

such a specification is complete.

When behavior preservation is enforced, there is a clean canonical form for com-

plete specification. We say that a specification Ψ is complete for C if, whenever

|= {P}C {Q} is valid, the triple ` {P}C {Q} is derivable using only the inference

35

rules that are not specific to the structure of C (i.e., the frame, consequence, disjunc-

tion, and conjunction rules), plus the following axiom rule:

{P}C {Q} ∈ Ψ

` {P}C {Q}

For any σ, let σJCK denote the set of all σ′ such that σJCKσ′. For any set of states S, we

define a canonical specification on S as the set of triples of the form {{σ}}C {σJCK}

for any state σ ∈ S. If there exists a canonical specification on S that is complete for

C, then we say that S forms a footprint for C.

Theorem 5. For any program C, the set of all smallest safe states of C forms a

footprint for C.

Note that while this theorem guarantees that the canonical specification is com-

plete, we may not actually be able to write down the specification simply because

the assertion language is not expressive enough. This would be the case for the

behavior-preserving nondeterministic memory allocator if we used the assertion lan-

guage presented in Section 2.2. We could, however, express canonical specifications

in that system by extending the assertion language to talk about the free list.

2.4.2 Data Refinement

In [18], the goal is to formalize the concept of having a concrete module correctly

implement an abstract one, within the context of Separation Logic. Specifically, the

authors prove that as long as a client program “behaves nicely,” any execution of the

program using the concrete module can be tracked to a corresponding execution using

the abstract module. The client states in the corresponding executions are identical,

so the proof shows that a well-behaved client cannot tell the difference between the

concrete and abstract modules.

36

To get their proof to work out, the authors require two somewhat odd properties to

hold. The first is called contents independence, and is an extra condition on top of the

standard locality conditions. The second is called a growing relation — it refers to the

relation connecting a state of the abstract module to its logically equivalent state(s)

in the concrete module. All relations connecting the abstract and concrete modules

in this way are required to be growing, which means that the domain of memory used

by the abstract state must be a subset of that used by the concrete state. This is a

somewhat unintuitive and restrictive requirement which is needed for purely technical

reasons. It turns out that behavior preservation completely eliminates the need for

both contents independence and growing relations.

We now provide a formal setting for the data refinement theory. This formal

setting is similar to the one in [18], but we will make some minor alterations to

simplify the presentation. The programming language is defined as:

C ::= skip | c | m | C1;C2 | ifB thenC1 elseC2

| whileB doC

c is a primitive command (sometimes referred to as “client operation” in this context).

m is a module command taken from an abstracted set MOp (e.g., a memory manager

might implement the two module commands cons and free).

The primitive client and module commands are assumed to have a semantics

mapping them to particular local actions. We of course use our behavior-preserving

notion of “local” here, whereas in [18], the authors use the three properties of safety

monotonicity, the (backwards) frame property, and a new property called contents

independence. It is trivial to show that behavior preservation implies contents inde-

pendence, as contents independence is essentially a forwards frame property that can

only be applied under special circumstances.

A module is a pair (p, η) representing a particular implementation of the module

37

commands in MOp; the state predicate p describes the module’s invariant (e.g., that

a valid free list is stored starting at a location pointed to by a particular head pointer),

while η is a function mapping each module command to a particular local action. The

predicate p is required to be precise [44], meaning that no state can have more than

one substate satisfying p (if a state σ does have a substate satisfying p, then we refer

to that uniquely-defined state as σp). Additionally, all module operations are required

to preserve the invariant p:

¬σ [ηm] fault ∧ σ ∈ p ∗ true ∧ σ [ηm]σ′ =⇒ σ′ ∈ p ∗ true

We define a big-step operational semantics parameterized by a module (p, η). This

semantics is fundamentally the same as the one defined in [18]; the full details can

be found in the APLAS technical report [13]. The only aspect that is important to

mention here is that the semantics is equipped with a special kind of faulting called

“access violation.” Intuitively, an access violation occurs when a client operation’s

execution depends on the module’s portion of memory. More formally, it occurs when

the client operation executes safely on a state where the module’s memory is present

(i.e., a state satisfying p ∗ true), but faults when that memory is removed.

The main theorem that we get out of this setup is a refinement simulation between

a program being run in the presence of an abstract module (p, η), and the same

program being run in the presence of a concrete module (q, µ) that implements the

same module commands (i.e., bηc = bµc, where the floor notation indicates domain).

Suppose we have a binary relation R relating states of the abstract module to those

of the concrete module. For example, if our modules are memory managers, then R

might relate a particular set of memory locations available for allocation to all lists

containing that set of locations in some order. To represent that R relates abstract

module states to concrete module states, we require that whenever σ1Rσ2, σ1 ∈ p

38

and σ2 ∈ q. Given this relation R, we can make use of the separating conjunction of

Relational Separation Logic [57] and write R∗Id to indicate the relation relating any

two states of the form σp • σc and σq • σc, where σpRσq.

Now, for any module (p, η), let C[(p, η)] be notation for the program C whose

semantics have (p, η) filled in for the parameter module. Then our main theorem

says that, if η(f) simulates µ(f) under relation R ∗ Id for all f ∈ bηc, then for any

program C, C[(p, η)] also simulates C[(q, µ)] under relation R ∗ Id. More formally,

say that C1 simulates C2 under relation R (written R;C2 ⊆ C1;R) when, for all σ1,

σ2 such that σ1Rσ2:

1.) σ1JC1Kfault ⇐⇒ σ2JC2Kfault, and

2.) ¬σ1JC1Kfault =⇒ (∀σ′2 . σ2JC2Kσ′2 ⇒ ∃σ′1 . σ1JC1Kσ′1 ∧ σ′1Rσ′2)

Theorem 6. Suppose we have modules (p, η) and (q, µ) with bηc = bµc and a re-

finement relation R as described above, such that R ∗ Id;µ(f) ⊆ η(f);R ∗ Id for all

f ∈ bηc. Then, for any program C, R ∗ Id;C[(q, µ)] ⊆ C[(p, η)];R ∗ Id.

While the full proof can be found in [13], we will semi-formally describe here the

one case that highlights why behavior preservation eliminates the need for contents

independence and growing relations: when C is simply a client command c.

We wish to prove that C[(p, η)] simulates C[(q, µ)], so suppose we have related

states σ1 and σ2, and executing c on σ2 results in σ′2. Since σ1 and σ2 are related by

R ∗ Id, we have that σ1 = σp • σc and σ2 = σq • σc. We know that (1) σq • σc
c→ σ′2,

(2) c is local, and (3) c runs safely on σc because the client operation’s execution

must be independent of the module state σq (i.e., there is no access violation); thus

the backwards frame property tells us that σ′2 = σq • σ′c and σc
c→ σ′c. Now, if c is

behavior-preserving, then we can simply apply the forwards frame property, framing

39

on the state σp, to get that σp#σ
′
c and σp • σc

c→ σp • σ′c, completing the proof

for this case. However, without behavior preservation, contents independence and

growing relations are used in [18] to finish the proof. Specifically, because we know

that σq • σc
c→ σq • σ′c and that c runs safely on σc, contents independence says that

σ • σc
c→ σ • σ′c for any σ whose domain is a subset of the domain of σq. Therefore,

we can choose σ = σp because R is a growing relation.

2.4.3 Relational Separation Logic

Relational Separation Logic [57] allows for simple reasoning about the relationship

between two executions. Instead of deriving triples {P}C {Q}, a user of the logic

derives quadruples of the form:

{R}
C

C ′
{S}

R and S are binary relations on states, rather than unary predicates. Semantically,

a quadruple says that if we execute the two programs in states that are related by R,

then both executions are safe, and any final states will be related by S. Furthermore,

we want to be able to use this logic to prove program equivalence, so we also require

that initial states related by R have the same divergence behavior. Formally, we say

that the above quadruple is valid if, for any states σ1, σ2, σ′1, σ′2:

1.) σ1Rσ2 =⇒ ¬σ1JCKfault ∧ ¬σ2JC ′Kfault

2.) σ1Rσ2 =⇒ (σ1JCKdiv ⇐⇒ σ2JC ′Kdiv)

3.) σ1Rσ2 ∧ σ1JCKσ′1 ∧ σ2JC ′Kσ′2 =⇒ σ′1Sσ
′
2

Relational Separation Logic extends the separating conjunction to work for rela-

40

tions, breaking related states into disjoint, correspondingly-related pieces:

σ1(R ∗ S)σ2 ⇐⇒ ∃ σ1r, σ1s, σ2r, σ2s .

σ1 = σ1r • σ1s ∧ σ2 = σ2r • σ2s ∧ σ1rRσ2r ∧ σ1sSσ2s

Just as Separation Logic has a frame rule for enabling local reasoning, Relational

Separation Logic has a frame rule with the same purpose. This frame rule says that,

given that we can derive the quadruple above involving R, S, C, and C ′, we can also

derive the following quadruple for any relation T :

{R ∗ T}
C

C ′
{S ∗ T}

In [57], it is shown that the frame rule is sound when all programs are deterministic

but it is unsound if nondeterministic programs are allowed, so this frame rule cannot

be used when we have a nondeterministic memory allocator.

To deal with nondeterministic programs, a solution is proposed in [57], in which the

interpretation of quadruples is strengthened. The new interpretation for a quadruple

containing R, S, C, and C ′ is that, for any σ1, σ2, σ′1, σ′2, σ, σ′:

1.) σ1Rσ2 =⇒ ¬σ1JCKfault ∧ ¬σ2JC ′Kfault

2.) σ1Rσ2 ∧ σ1#σ ∧ σ2#σ′ =⇒ ((σ1 • σ)JCKdiv ⇐⇒ (σ2 • σ′)JC ′Kdiv)

3.) σ1Rσ2 ∧ σ1JCKσ′1 ∧ σ2JC ′Kσ′2 =⇒ σ′1Sσ
′
2

Note that this interpretation is the same as before, except that the second property

is strengthened to say that divergence behavior must be equivalent not only on the

initial states, but also on any larger states. It can be shown that the frame rule

becomes sound under this stronger interpretation of quadruples.

41

In our behavior-preserving setting, it is possible to use the simpler interpretation

of quadruples without breaking soundness of the frame rule. We could prove this by

directly proving frame rule soundness, but instead we will take a shorter route in which

we show that, when actions are behavior-preserving, a quadruple is valid under the

first interpretation above if and only if it is valid under the second interpretation —

i.e., the two interpretations are the same in our setting.

Clearly, validity under the second interpretation implies validity under the first,

since it is a direct strengthening. To prove the inverse, suppose we have a quadruple

(involving R, S, C, and C ′) that is valid under the first interpretation. Properties 1

and 3 of the second interpretation are identical to those of the first, so all we need to

show is that Property 2 holds. Suppose that σ1Rσ2, σ1#σ, and σ2#σ′. By Property 1

of the first interpretation, we know that ¬σ1JCKfault and ¬σ2JC ′Kfault. Therefore,

Termination Equivalence tells us that σ1JCKdiv ⇐⇒ (σ1 • σ)JCKdiv, and that

σ2JC ′Kdiv ⇐⇒ (σ2 • σ′)JC ′Kdiv. Furthermore, we know by Property 2 of the first

interpretation that σ1JCKdiv ⇐⇒ σ2JC ′Kdiv. Hence we obtain our desired result.

Note In case the reader is curious, the reason that the frame rule under the first

interpretation is sound when all programs are deterministic is simply that determinism

(along with standard locality) implies Termination Equivalence. To see this, we only

need to check the forwards direction, since standard locality requires the backwards

one. Consider a situation where σ0 [A] div, σ0#σ1, and ¬σ0 [A] fault. By Safety

Monotonicity, we have ¬(σ0 • σ1) [A] fault. Furthermore, suppose there is some σ

such that (σ0 •σ1) [A]σ. Then by the Backwards Frame Property, we have σ = σ′0 •σ1

and σ0 [A]σ′0. But we already know that σ0 [A] div, so this contradicts the fact that

A is deterministic. Therefore, A does not relate σ0 • σ1 to fault or to any state σ.

Since A is required to be total, we conclude that (σ0 • σ1) [A] div.

42

2.4.4 Finite Memory

Since standard locality allows the program state to increase during execution, it does

not play nicely with a model in which memory is finite. Consider any command

that grows the program state in some way. Such a command is safe on the empty

state but, if we extend this empty state to the larger state consisting of all available

memory, then the command becomes unsafe. Hence such a command violates Safety

Monotonicity.

There is one commonly-used solution for supporting finite memory without en-

forcing behavior preservation: say that, instead of faulting on the state consisting of

all of memory, a state-growing command diverges. Furthermore, to satisfy Termina-

tion Monotonicity, we also need to allow the command to diverge on any state. The

downside of this solution, therefore, is that it is only reasonable when we are not

interested in the termination behavior of programs.

When behavior preservation is enforced, we no longer have any issues with finite

memory models because program state cannot increase during execution. The initial

state is obviously contained within the finite memory, so all states reachable through

execution must also be contained within memory.

2.4.5 Security

Although we did not have security in mind at the time of our APLAS publication, it

turns out that behavior preservation has some close ties with security reasoning. In

particular, both behavior preservation and noninterference are properties regarding

equality of a program’s behaviors. The former relates executions on a small state

with those on a larger state, while the latter relates executions on some state with

those for which the values of high-security data have been altered.

More formally, let the notation JCK(σ) represent the set of possible behaviors when

executing C on initial state σ (in the context of earlier discussion, this behavior set

43

could include final states or the special behaviors fault or div). Suppose that our

program state can be represented as σH•σL, where σH contains high-security data and

σL contains low-security data. Then classical noninterference says that changing the

values within σH will not influence the possible behaviors: JCK(σH•σL) = JCK(σ′H•σL)

(where σH and σ′H have equal domains). Consider what happens if we prove that C

satisfies this property, and then execute C in a larger context with extra unused

resources. We will now have behavior sets JCK(σ • σH • σL) and JCK(σ • σ′H • σL);

standard locality will not guarantee these sets are equal. This means that seemingly-

unused resources could maliciously reveal information about the secrets in σH ! Thus

standard local reasoning is fundamentally incompatible with noninterference.

If we enforce behavior preservation, however, then this incompatibility disappears.

Behavior preservation guarantees that a program will exhibit exactly the same set of

behaviors when extra resources are added to state, so the two sets JCK(σ • σH • σL)

and JCK(σ•σ′H •σL) will be equal in the example above. In Chapter 3, we will present

a security-aware program logic that guarantees a certain notion of noninterference.

This program logic is based on Separation Logic and thus has a frame rule for local

reasoning. Given the insight above, it should not be surprising that we found behavior

preservation to be extremely important for soundness of the security-aware program

logic. Indeed, inspecting the Coq proofs of that program logic at the dissertation’s

companion website [11], one will notice the lemmas hstep ff and lstep ff are ex-

actly the Forwards Frame property presented in this chapter; one will also notice that

these lemmas are used in the proof of soundness of the frame rule.

44

Chapter 3

Security via Program Logic

Our work published in POST 2014 [14] presents a program logic for proving that code

is secure with respect to a general, expressive security policy. This chapter will present

the formalization of this program logic, and will show how a particular nontrivial

program is verified secure using the logic. However, after considering the implications

of using the logic, as well as its relative incompleteness, we will arrive at a crucial

conclusion: it would be far more ideal to verify security in a way that is not specific to

a particular program logic. Later chapters then demonstrate that this ideal is in fact

achievable. Hence this chapter should be taken with a grain of salt; it is important

for developing a solid understanding of formal security verification (especially with

respect to policy specification), but this dissertation ultimately advocates against

relying upon any specific program logic such as the one presented here.

3.1 Program Logic Overview

The ultimate goal of our security-aware program logic is to verify interesting security

policies over low-level systems code. For convenience we will use a toy C-like language

here that supports heap manipulation and pointer arithmetic; it should generally be

clear how to extend the toy language with other C features. The language will not

45

support unstructured control flow (e.g., “goto”), however, so it is not designed for

directly reasoning about assembly code. This is one reason why we will eventually

decide to move away from a specific program logic and instead design a more general

methodology that works for any code written in any language.

Our program logic will perform security reasoning by directly modeling dynamic

label tainting (as described in Section 1.3). For simplicity, we will use a label lattice

consisting only of the two labels Lo and Hi, with Lo v Hi. This lattice can easily be

mapped to a more intricate one, however: for a given observer principal p with label

Lp, the Lo label represents all labels in the more intricate lattice which are equal to

or below Lp, while Hi represents all other labels.

Label propagation is done in a mostly obvious way. All values in the variable

store and the global memory heap are associated with a label (Lo or Hi). If we have

a direct assignment such as x := y, then the label of y’s data propagates into x

along with the data itself. We compute the composite label of an expression such as

2 ∗ x + z to be the least upper bound of the labels of its constituent parts (for the

two-element lattice of Lo and Hi, this will be Lo if and only if each constituent label

is Lo). For the heap-read command x := [E], we must propagate both the label of E

and the label of the data located at heap address E into x. In other words, if we read

some low-security data from the heap using a high-security pointer, the result must

be tainted as high security in order for our information flow tracking to be accurate.

Similarly, the heap-write command [E] := E ′ must propagate both the label of E ′

and the label of pointer E into the location E in the heap. As a general rule for any

of these atomic commands, we compute the composite label of the entire read-set,

and propagate that into all locations in the write-set.

46

3.1.1 Security Formulation

Our security guarantee is based on pure noninterference, which says that the initial

values of Hi data have no effect on the “observable behavior” of a program’s execution.

We choose to define observable behavior in terms of a special output channel. We

include an output command in our language, and an execution’s observable behavior

is defined to be exactly the sequence of values that the execution outputs.

The standard way to express this noninterference property formally is in terms

of two executions: a program is deemed to be noninterfering if two executions of the

program from observably equivalent initial states always yield identical outputs. Two

states are defined to be observably equivalent when only their high-security values

differ. Thus this property describes what one would expect: changing the value of any

high-security data in the initial state will cause no change in the program’s output.

As hinted at during the examples of Section 1.3, we will actually use a weaker version

of noninterference to allow for security policies with certain well-specified flows from

high security to low (e.g., declassification).

We accomplish this weakening of noninterference by requiring a precondition to

hold on the initial state of an execution. That is, we alter the noninterference property

to say that two executions will yield identical outputs if they start from two observably

equivalent states that both satisfy some state predicate P . This weakening is inter-

esting for two reasons. First, it provides a clean interface between information-flow

reasoning and Hoare Logic (a program logic that derives pre/postconditions as state

predicates). Second, this weaker property describes a certain level of dependency

between high-security inputs and low-security outputs, rather than the complete in-

dependence of pure noninterference. This is key for allowing interesting, real-world

security policies. To better understand this property, let us revisit the examples of

Section 1.3.

47

Public Parity Suppose we have a variable x that contains Alice’s secret value v,

and Alice wishes to only publicly release the parity of v. We can prove that some

program C obeys this security policy by verifying it using our program logic, with

respect to a precondition P saying “x contains high data, y contains low data, and

y = x%2”. Our weakened noninterference property described above says that if we

have an execution from some initial state satisfying this P , then changing the value of

x will not affect the program’s output as long as the new state also satisfies P . Since

y’s value is v%2 and is unchanged in the two executions, this means that as long as

we change x’s value to something with the same parity, the output will be unchanged.

Indeed, this is exactly the desired property for enforcing Alice’s security policy. In

this way, the precondition P used for verifying C serves as a formal description of the

security policy.

Public Average Suppose we have n salaries stored in variables x1 through xn, and

we are only willing to release their average as public. This is similar to the previous

example, except that we now have multiple secrets. The precondition P says that

x1 through xn all contain Hi data, a contains Lo data, and a = (Σ xi)/n. In this

situation, noninterference of a verified program C says that we can change any of the

values contained within the set of variables {x1, ..., xn} in any way, and C’s output

will be unaffected as long as the average of all the values is unchanged.

Shared Calendar Suppose Alice has a calendar represented as an array of n time

slots at heap locations l through l + n − 1. Each time slot may either contain a

value of 0 if Alice has not scheduled an event at that time, or some nonzero value

encoding the details of an event. The precondition P says that, for each time slot t

in the calendar, either the value at t is 0 and the label is Lo, or the value is not 0 and

the label is Hi. This is an example of what we call a conditional label : a label that

is dependent on values within the program state (notice that the previous examples

48

did not use conditional labels). Interpreting this precondition as our security policy,

noninterference of a program C says that changing any nonzero (i.e., high security)

values within the calendar will not have any effect on the output produced by C as

long as P still holds; in order for P to still hold, we must be changing these values

into other nonzero values. Hence we get exactly the desired policy: the observable

behavior is independent from the details of any scheduled events (i.e., we cannot

distinguish one nonzero value from another, but we can determine which time slots

contain 0 and which do not). Conditional labels are a novelty of our program logic;

they allow for highly expressive security policies, and we will show below how they

can be a useful and powerful tool in conducting the security verification.

Dynamic Label Tainting We can trivially represent standard dynamic label taint-

ing, since our program logic is based upon directly modeling labels and their propa-

gation throughout an execution. It is important to note, however, that this modeling

of labels is purely logical. The labels are there to help specify the security policy and

to help conduct the security verification; when the actual program executes, no labels

exist within the machine state, and no computations occur for propagating labels. We

enforce this formally by defining two different machine operational semantics. The

low-level, “true” semantics is completely unaware of security labels, while the higher

level instrumented semantics deals with labels and propagation. We prove standard

theorems to relate the two semantics together, so that our final end-to-end security

guarantee applies to the true semantics of execution.

3.2 Language and Semantics

We can now get into the formal definitions of our program logic. The entire program

logic, along with its theorems, have been encoded in the Coq proof assistant language

and can be found at the companion website [11]. Our simple, C-like toy programming

49

language is defined as follows:

(Exp) E ::= x | c | E + E | · · ·

(BExp) B ::= false | E = E | B ∧B | · · ·

(Cmd) C ::= skip | outputE | x := E | x := [E] | [E] := E
| C;C | ifB thenC elseC | whileB doC

Valid code includes variable assignment, heap load/store, if statements, while loops,

and output. Our model of a program state, consisting of a variable store and a heap,

is given by:

(Lbl) L ::= Lo | Hi

(Val) V ::= Z× Lbl

(Store) s ::= Var→ option Val

(Heap) h ::= N→ option Val

(State) σ ::= Store× Heap

Given a variable store s, we define a denotational semantics JEKs that evaluates an

expression to a pair of integer and label, with the label being the least upper bound

of the labels of the constituent parts. The denotation of an expression also may

evaluate to None, indicating that the program state does not contain the necessary

resources to evaluate. We have a similar denotational semantics for boolean expres-

sions. The formal definitions of these semantics are omitted here as they are standard

and straightforward. Note that we will sometimes write JEKσ as shorthand for JEK

applied to the store of state σ.

Figure 3.1 defines our instrumented operational semantics. The semantics is

security-aware, meaning that it keeps track of security labels on data and propa-

gates these labels throughout execution in order to track which values might have

been influenced by some high-security data. The semantics operates on machine con-

50

JEKs = Some (n, l)

〈(s, h), x := E, K〉 −→
l′
〈(s[x 7→ (n, l t l′)], h), skip, K〉

(ASSGN)

JEKs = Some (n1, l1) h(n1) = Some (n2, l2)

〈(s, h), x := [E], K〉 −→
l′
〈(s[x 7→ (n2, l1 t l2 t l′)], h), skip, K〉

(READ)

JEKs = Some (n1, l1) h(n1) 6= None JE′Ks = Some (n2, l2)

〈(s, h), [E] := E′, K〉 −→
l′
〈(s, h[n1 7→ (n2, l1 t l2 t l′)]), skip, K〉

(WRITE)

JEKσ = Some (n, Lo)

〈σ, outputE, K〉 [n]−→
Lo
〈σ, skip, K〉

(OUTPUT)

JBKσ = Some (true, l) l v l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C1, K〉

(IF-TRUE)

JBKσ = Some (false, l) l v l′

〈σ, ifB thenC1 elseC2, K〉 −→
l′
〈σ, C2, K〉

(IF-FALSE)

JBKσ = Some (, Hi)
〈mark vars(σ, ifB thenC1 elseC2), ifB thenC1 elseC2, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, ifB thenC1 elseC2, K〉 −→
Lo
〈σ′, skip, K〉

(IF-HI)

JBKσ = Some (true, l) l v l′

〈σ, whileB doC, K〉 −→
l′
〈σ, C; whileB doC, K〉

(WHILE-TRUE)

JBKσ = Some (false, l) l v l′

〈σ, whileB doC, K〉 −→
l′
〈σ, skip, K〉

(WHILE-FALSE)

JBKσ = Some (, Hi)
〈mark vars(σ, whileB doC), whileB doC, []〉 −→n

Hi
〈σ′, skip, []〉

〈σ, whileB doC, K〉 −→
Lo
〈σ′, skip, K〉

(WHILE-HI)

〈σ, C1;C2, K〉 −→
l
〈σ, C1, C2 :: K〉

(SEQ)
〈σ, skip, C :: K〉 −→

l
〈σ, C, K〉

(SKIP)

〈σ, C, K〉 −→0
l
〈σ, C, K〉

(ZERO)

〈σ, C, K〉 o−→
l
〈σ′, C ′, K ′〉 〈σ′, C ′, K ′〉 o′−→n

l
〈σ′′, C ′′, K ′′〉 n > 0

〈σ, C, K〉 o++o′−→n+1
l

〈σ′′, C ′′, K ′′〉
(SUCC)

Figure 3.1: Security-Aware Operational Semantics
51

figurations, which consist of program state, code, and a list of commands called the

continuation stack (we use a continuation-stack approach solely for the purpose of

simplifying some proofs). The transition arrow of the semantics is annotated with

a program counter label, which is a standard IFC construct used to keep track of

information flow resulting from the control flow of the execution. Whenever an exe-

cution enters a conditional construct, it raises the pc label by the label of the boolean

expression evaluated; the pc label then taints any assignments made within the con-

ditional construct (see variable l′ in the (ASSGN), (READ), and (WRITE) rules).

The transition arrow is also annotated with a list of outputs (equal to the empty list

when not explicitly written) and the number of steps (equal to 1 when not explicitly

written). We sometimes annotate the arrow with an asterisk (−→∗) to indicate zero

or more steps.

Two of the rules for conditional constructs make use of a function called mark vars.

mark vars(σ,C) alters σ by setting the label of each variable in modifies(C) to Hi,

where modifies(C) is a syntactic function returning an overapproximation of the

store variables that may be modified by C. Thus, whenever we raise the pc label to

Hi, our semantics taints all store variables that appear on the left-hand side of an

assignment or heap-read command within the conditional construct, even if some of

those commands do not actually get executed. Note that regardless of which branch

of an if statement is taken, the semantics taints all the variables in both branches.

This is required for noninterference, due to the well-known fact that the lack of as-

signment in a branch of an if statement can leak information about the branching

expression. Consider, for example, the following program:

1 y := 1;

2 if (x = 0) then y := 0 else skip;

3 if (y = 0) then skip else output 1;

Suppose x contains Hi data initially, while y contains Lo data. If x is 0, then y will

52

be assigned 0 at line 2 and tainted with a Hi label (by the pc label). Then nothing

happens at line 3, and the program produces no output. If x is nonzero, however,

nothing happens at line 2, so y still has a Lo label at line 3. Thus the output command

at line 3 executes without issue. Therefore the output of this program depends on

the Hi data in x, even though our instrumented semantics executes safely. We choose

to resolve this issue by using the mark vars function in the semantics. Then y will

be tainted at line 2 regardless of the value of x, and so the semantics will get stuck at

line 3 when x is nonzero. In other words, we would only be able to verify this program

with a precondition saying that x = 0 — the program is indeed noninterfering with

respect to this degenerate security policy.

The operational semantics presented here is mixed-step and manipulates security

labels directly. As mentioned above, we need to relate it to a more standard semantics

that does not make use of security labels. A standard, single-step semantics is defined

in Figure 3.2. This semantics operates on states without labels, and it does not use

continuation stacks. Given a state σ with labels, we write σ̄ to represent the same

state with all labels erased from both the store and heap. We will also use τ to range

over states without labels. Then the following two theorems hold:

Theorem 7. Suppose 〈σ, C, []〉 o−→∗
Lo
〈σ′, skip, []〉 in the instrumented semantics.

Then there exists τ such that 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics.

Theorem 8. Suppose 〈σ̄, C〉 o−→∗ 〈τ, skip〉 in the standard semantics, and sup-

pose 〈σ, C, []〉 never gets stuck when executed in the instrumented semantics. Then

there exists σ′ such that σ̄′ = τ and 〈σ, C, []〉 o−→∗
Lo
〈σ′, skip, []〉 in the instrumented

semantics.

These theorems together guarantee that the two semantics produce identical ob-

servable behaviors (outputs) on terminating executions, as long as the instrumented

semantics does not get stuck. Our program logic will of course guarantee that the

53

JEKs = Some n

〈(s, h), x := E〉 −→ 〈(s[x 7→ n], h), skip〉
(ASSGN)

JEKs = Some n1 h(n1) = Some n2

〈(s, h), x := [E]〉 −→ 〈(s[x 7→ n2], h), skip〉
(READ)

JEKs = Some n1 h(n1) 6= None JE ′Ks = Some n2

〈(s, h), [E] := E ′〉 −→ 〈(s, h[n1 7→ n2]), skip〉
(WRITE)

JEKτ = Some n

〈τ, outputE〉 [n]−→ 〈τ, skip〉
(OUTPUT)

JBKτ = Some true

〈τ, ifB thenC1 elseC2〉 −→ 〈τ, C1〉
(IF-TRUE)

JBKτ = Some false

〈τ, ifB thenC1 elseC2〉 −→ 〈τ, C2〉
(IF-FALSE)

JBKτ = Some true

〈τ, whileB doC〉 −→ 〈τ, C; whileB doC〉
(WHILE-TRUE)

JBKτ = Some false

〈τ, whileB doC〉 −→ 〈τ, skip〉
(WHILE-FALSE)

〈τ, C1〉
o−→ 〈τ ′, C ′1〉

〈τ, C1;C2〉
o−→ 〈τ ′, C ′1;C2〉

(SEQ)
〈τ, skip;C〉 −→ 〈τ, C〉

(SKIP)

〈τ, C〉 −→0 〈τ, C〉
(ZERO)

〈τ, C〉 o−→ 〈τ ′, C ′〉 〈τ ′, C ′〉 o′−→n 〈τ ′′, C ′′〉 n > 0

〈τ, C〉 o++o′−→n+1 〈τ ′′, C ′′〉
(SUCC)

Figure 3.2: Standard Operational Semantics

54

P,Q ::= emp | E 7→ | E 7→ (n, l) | B | x.lbl = l | x.lbl v l
| lbl(E) = l | ∃X . P | P ∧Q | P ∨Q | P ∗Q

JP K : P(state)

(s, h) ∈ JempK ⇐⇒ h = ∅
(s, h) ∈ JE 7→ K ⇐⇒ ∃a, n, l . JEKs = Some a ∧ h = [a 7→ (n, l)]

(s, h) ∈ JE 7→ (n, l)K ⇐⇒ ∃a . JEKs = Some a ∧ h = [a 7→ (n, l)]

(s, h) ∈ JBK ⇐⇒ JBKs = Some true

(s, h) ∈ Jx.lbl = lK ⇐⇒ ∃n . s(x) = Some (n, l)

(s, h) ∈ Jx.lbl v lK ⇐⇒ ∃n, l′ . s(x) = Some (n, l′) and l′ v l

(s, h) ∈ Jlbl(E) = lK ⇐⇒
⊔

x∈vars(E)

snd(s(x)) = l

(s, h) ∈ J∃X . P K ⇐⇒ ∃v ∈ Z + Lbl . (s, h) ∈ JP [v/X]K
(s, h) ∈ JP ∧QK ⇐⇒ (s, h) ∈ JP K ∩ JQK
(s, h) ∈ JP ∨QK ⇐⇒ (s, h) ∈ JP K ∪ JQK

(s, h) ∈ JP ∗QK ⇐⇒

∃h0, h1 . h0] h1 = h

∧ (s, h0) ∈ JP K
∧ (s, h1) ∈ JQK


Figure 3.3: Assertion Syntax and Semantics

instrumented semantics does not get stuck in any execution satisfying the precondi-

tion.

3.3 The Program Logic

We next present the formal inference rules used for verifying the security of a pro-

gram. A logic judgment takes the form l ` {P}C {Q}. P and Q are the pre- and

postconditions, C is the program to be executed, and l is the pc label under which

the program is verified. P and Q are state assertions, whose syntax and semantics

are given in Figure 3.3.

55

Note We allow assertions to contain logical variables, but we elide the details here

to avoid complicating the presentation. In Figure 3.3, we claim that the type of JP K

is a set of states — in reality, the type is a function from logical variable environments

to sets of states. In an assertion like E 7→ (n, l), the n and l may be logical variables

rather than constants.

Definition 1 (Sound judgment). We say that a judgment l ` {P}C {Q} is sound

if, for any state σ ∈ JP K, the following two properties hold:

1. The operational semantics cannot get stuck when executed from initial configu-

ration 〈σ, C, []〉 with pc label l.

2. If the operational semantics executes from initial configuration 〈σ, C, []〉 with

pc label l and terminates at state σ′, then σ′ ∈ JQK.

Selected inference rules for our logic are shown in Figure 3.4. The rules make use

of two auxiliary syntactic functions, P\x and P\x.lbl (read the backslash operator

as “delete”). P\x replaces any atomic assertions within P referring to x by the

assertion true. Similarly, P\x.lbl replaces atomic assertions referring to x.lbl by

true. We also sometimes abuse notation and write P\S or P\S.lbl, where S is

a set of variables, to indicate the iterative folding of these functions over the set

S. The important fact about these auxiliary functions is that, if P holds on some

state and we perform an assigment into x, then P\x will hold on the resulting state.

Furthermore, if we change only the label of x without touching its data (this is done

by the mark vars function described in Section 3.2), then P\x.lbl will hold on the

resulting state.

Here are a few interesting points to note about these inference rules:

• While the rules shown here mostly involve detailed reasoning about label prop-

agation, we can also prove the soundness of simpler versions of the rules that

56

mark vars(P, S, l, l′)
4
=


P , if l v l′

P\S.lbl ∧

(∧
x∈S

l t l′ v x.lbl

)
, otherwise

l ` {P} skip {P}
(SKIP)

P ⇒ lbl(E) = Lo

Lo ` {P} outputE {P}
(OUTPUT)

P ⇒ lbl(E) = l

l′ ` {P}x := E {(P\x)[E/x] ∧ x.lbl = l t l′}
(ASSIGN)

P ⇒ lbl(E) = l1 P ⇒ E 7→ (n, l2)

l ` {P}x := [E] {P\x ∧ x = n ∧ x.lbl = l1 t l2 t l}
(READ)

P ⇒ lbl(E) = l1 P ⇒ lbl(E ′) = l2 P ⇒ E 7→
l ` {P} [E] := E ′ {P ∧ ∃n . E 7→ (n, l1 t l2 t l) ∧ E ′ = n}

(WRITE)

P ⇒ B ∨ ¬B B ∧ P ⇒ lbl(B) = lt
¬B ∧ P ⇒ lbl(B) = lf S = modifies(ifB thenC1 elseC2)

lt t l′ ` {B ∧ mark vars(P, S, lt, l
′)}C1 {Q}

lf t l′ ` {¬B ∧ mark vars(P, S, lf , l
′)}C2 {Q}

l′ ` {P} ifB thenC1 elseC2 {Q}
(IF)

P ⇒ lbl(B) = l S = modifies(whileB doC)
l t l′ ` {B ∧ mark vars(P, S, l, l′)}C {mark vars(P, S, l, l′)}

l′ ` {P} whileB doC {¬B ∧ mark vars(P, S, l, l′)}
(WHILE)

l ` {P}C1 {Q} l ` {Q}C2 {R}
l ` {P}C1;C2 {R}

(SEQ)

P ′ ⇒ P Q⇒ Q′ l ` {P}C {Q}
l ` {P ′}C {Q′}

(CONSEQ)

l ` {P1}C {Q1} l ` {P2}C {Q2}
l ` {P1 ∧ P2}C {Q1 ∧Q2}

(CONJ)

l ` {P}C {Q} modifies(C) ∩ vars(R) = ∅
l ` {P ∗R}C {Q ∗R}

(FRAME)

Figure 3.4: Selected Inference Rules for the Logic

57

do not reason about labels and, consequentially, do not have any label-related

proof obligations.

• The (IF) and (WHILE) rules may look rather complex, but almost all of that

is just describing how to reason about the mark vars function that gets applied

at the beginning of a conditional construct when the pc label increases.

• An additional complexity present in the (IF) rule involves the labels lt and lf .

In fact, these labels describe a novel and interesting feature of our system: when

verifying an if statement, it might be possible to reason that the pc label gets

raised by lt in one branch and by lf in the other, based on the fact that B holds

in one branch but not in the other. This is interesting if lt and lf are different

labels. In every other static-analysis IFC system we are aware of, a particular

pc label must be determined at the entrance to the conditional, and this pc

label will propagate to both branches. We will see an example program shortly

that illustrates this novelty.

Given our logic inference rules, the following theorem holds:

Theorem 9 (Soundness). If l ` {P}C {Q} is derivable according to our inference

rules, then it is a sound judgment, as defined in Definition 1.

3.4 Example: Alice’s Calendar

Before we delve into the noninterference guarantee provided by the inference rules,

let us first see how the inference rules can be used to verify an interesting example.

Consider the calendar example discussed previously. Figure 3.5 shows a program that

we would like to prove is secure with respect to Alice’s policy. Suppose Alice owns

a calendar with 64 time slots beginning at some location designated by constant A.

Each time slot is either 0 if she is free at that time, or some nonzero value representing

58

1 i := 0;

2 while (i < 64) do

3 x := [A+i];

4 if (x = 0)

5 then

6 output i

7 else

8 skip;

9 i := i+1

Figure 3.5: Example: Alice’s Private Calendar

an event if she is busy. Alice does not want to reveal any details about her scheduled

events; this policy still allows for others to schedule a meeting time with her, as they

can determine when she is available. Indeed, the example program shown here simply

prints out all free time slots.

Figure 3.6 gives an overview of the verification, omitting a few trivial details. In

between each line of code, we show the current pc label and a state predicate that

currently holds. The program is verified with respect to Alice’s policy, described by

the precondition P defined in the figure. This precondition is the iterated separating

conjunction of 64 calendar slots; each slot’s label is Lo if its value is 0 and Hi otherwise.

A major novelty of this verification regards the conditional statement at lines 4-8. As

mentioned earlier, in other IFC systems, the label of the boolean expression “x = 0”

would have to be determined at the time of entering the conditional, and its label

would then propagate into both branches via the pc label. In our system, however,

we can reason that the expression’s label (and hence the resulting pc label) will be

different depending on which branch is taken. If the “true” branch is taken, then we

know that x is 0, and hence we know from the state assertion that its label is Lo.

This means that the pc label is Lo, and so the output statement within this branch

will not leak high-security data. If the “false” branch is taken, however, then we can

reason that the pc label will be Hi, meaning that an output statement could result in

59

P
4
=

63∗
i=0

(A+ i 7→ (ni, li) ∧ ni = 0 ⇐⇒ li = Lo)

Lo ` {P}
1 i := 0;

Lo ` {P ∧ 0 ≤ i ∧ i.lbl = Lo}
2 while (i < 64) do

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
3 x := [A+i];

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
(x = 0 ⇐⇒ x.lbl = Lo)}

4 if (x = 0)

5 then

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

6 output i

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x = 0 ∧ x.lbl = Lo}

Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
7 else

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x 6= 0 ∧ x.lbl = Hi}

8 skip;

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo ∧
x 6= 0 ∧ x.lbl = Hi}

Hi ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}
Lo ` {P ∧ 0 ≤ i < 64 ∧ i.lbl = Lo}

9 i := i+1

Lo ` {P ∧ 0 ≤ i ∧ i.lbl = Lo}
Lo ` {P ∧ i ≥ 64 ∧ 0 ≤ i ∧ i.lbl = Lo}

Figure 3.6: Calendar Example Verification

60

a leaky program (e.g., if the value of x were printed). This program does not attempt

to output anything within this branch, so it is still valid.

Since the program is verified with respect to precondition P , the noninterference

guarantee for this example says that if we change any high-security event in Alice’s

calendar to any other high-security event (i.e., nonzero value), then the output will

be unaffected. In other words, an observer cannot infer any information about the

scheduled events in Alice’s calendar.

3.5 Noninterference

Finally, we can now discuss how we formally prove our program logic’s security guar-

antee. Much of the work has already been done through careful design of the security-

aware semantics and the inference rules of the program logic. The fundamental idea

is that we can find a bisimulation relation for our Lo-context (i.e., pc label is Lo)

instrumented semantics. This relation will guarantee that two executions operate in

lock-step, always producing the same program continuation and output.

The bisimulation relation we will use is called observable equivalence. It intuitively

says that the low-security portions of two states are identical; the relation is commonly

used in many IFC systems as a tool for proving noninterference. In our system, states

σ1 and σ2 are observably equivalent if: (1) they contain equal values at all locations

that are present and Lo in both states; and (2) the presence and labels of all store

variables are the same in both states. This may seem like a rather odd notion of

equivalence (in fact, it is not even transitive, so “equivalence” is a misnomer here) —

two states can be observably equivalent even if some heap location contains Hi data

in one state and Lo data in the other. To see why we need to define observable

equivalence in this way, consider a heap-write command [x] := E where x is a Hi

pointer. If we vary the value of x, then we will end up writing to two different

61

locations in the heap. Suppose we write to location 100 in one execution and location

200 in the other. Then location 100 will contain Hi data in the first execution (as the

Hi pointer taints the value written), but it may contain Lo data in the second since

we never wrote to it. Thus we design observable equivalence so that this situation is

allowed.

The following definitions describe observable equivalence formally:

Definition 2 (Observable Equivalence of Stores). Suppose s1 and s2 are variable

stores. We say that they are observably equivalent, written s1 ∼ s2, if, for all program

variables x:

• If s1(x) = None, then s2(x) = None.

• If s1(x) = Some (v1, Hi), then s2(x) = Some (v2, Hi) for some v2.

• If s1(x) = Some (v, Lo), then s2(x) = Some (v, Lo).

Definition 3 (Observable Equivalence of Heaps). Suppose h1 and h2 are heaps. We

say that they are observably equivalent, written h1 ∼ h2, if, for all natural numbers

n:

• If h1(n) = Some (v1, Lo) and h2(n) = Some (v2, Lo), then v1 = v2.

We say that two states are observably equivalent (written σ1 ∼ σ2) when both

their stores and heaps are observably equivalent. Given this definition, we define a

convenient relational denotational semantics for state assertions as follows:

(σ1, σ2) ∈ JP K2 ⇐⇒ σ1 ∈ JP K ∧ σ2 ∈ JP K ∧ σ1 ∼ σ2

In order to state noninterference cleanly, it helps to define a “bisimulation se-

mantics” consisting of the following single rule (the side condition will be discussed

62

below):

〈σ1, C, K〉
o−→
Lo
〈σ′1, C ′, K ′〉 〈σ2, C, K〉

o−→
Lo
〈σ′2, C ′, K ′〉 (side condition)

〈σ1, σ2, C, K〉 −→ 〈σ′1, σ′2, C ′, K ′〉

Note that this bisimulation semantics operates on configurations consisting of a pair

of states and a program. With this definition, we can split noninterference into the

following progress and preservation properties.

Theorem 10 (Progress). Suppose we derive Lo ` {P}C {Q} using our program

logic. For any (σ1, σ2) ∈ JP K2, suppose we have

〈σ1, σ2, C, K〉 −→∗ 〈σ′1, σ′2, C ′, K ′〉,

where σ′1 ∼ σ′2 and (C ′, K ′) 6= (skip, []). Then there exist σ′′1 , σ′′2 , C ′′, K ′′ such that

〈σ′1, σ′2, C ′, K ′〉 −→ 〈σ′′1 , σ′′2 , C ′′, K ′′〉

Theorem 11 (Preservation). Suppose we have σ1 ∼ σ2 and 〈σ1, σ2, C, K〉 −→

〈σ′1, σ′2, C ′, K ′〉. Then σ′1 ∼ σ′2.

For the most part, the proofs of these theorems are relatively straightforward.

Preservation requires proving the following two simple lemmas about Hi-context ex-

ecutions:

1. Hi-context executions never produce output.

2. If the initial and final values of some location differ across a Hi-context execu-

tion, then the location must have a Hi label in the final state.

There is one significant difficulty in the proof that requires discussion. If C is a

heap-read command x := [E], then Preservation does not obviously hold. The reason

63

for this comes from our odd definition of observable equivalence; in particular, the

requirements for a heap location to be observably equivalent are weaker than those

for a store variable. Yet the heap-read command is copying directly from the heap

to the store. In more concrete terms, the heap location pointed to by E might have

a Hi label in one state and Lo label in the other; but this means x will now have

different labels in the two states, violating the definition of observable equivalence for

the store.

We resolve this difficulty via the side condition in the bisimulation semantics.

The side condition says that the situation we just described does not happen. More

formally, it says that if C has the form x := [E], then the heap location pointed to

by E in σ1 has the same label as the heap location pointed to by E in σ2.

This side condition is sufficient for proving Preservation. However, we still need

to show that the side condition holds in order to prove Progress. This fact comes

from induction over the specific inference rules of our logic. For example, consider

the (READ) rule from Section 3.3:

P ⇒ lbl(E) = l1 P ⇒ E 7→ (n, l2)

l ` {P}x := [E] {P\x ∧ x = n ∧ x.lbl = l1 t l2 t l}
(READ)

In order to use this rule, we are required to show that the precondition implies

E 7→ (n, l2). Since both states σ1 and σ2 satisfy the precondition, we see that the heap

locations pointed to by E both have label l2, and so the side condition holds. Note

that the side condition holds even if l2 is a logical variable rather than a constant.

In order to prove that the side condition holds for every verified program, we need

to show it holds for all inference rules involving a heap-read command. In particular,

this means that no heap-read rule in our logic can have a precondition that only

implies E 7→ .

64

Now that we have the Progress and Preservation theorems, we can easily combine

them to prove the overall noninterference theorem for our instrumented semantics:

Theorem 12 (Noninterference, Instrumented Semantics). Suppose we derive Lo `

{P}C {Q} using our program logic. Pick any state σ1 ∈ JP K, and consider changing

the values of any Hi data in σ1 to obtain some σ2 ∈ JP K. Suppose, in the instrumented

semantics, we have

〈σ1, C, []〉 o1−→∗
Lo
〈σ′1, skip, []〉

and

〈σ2, C, []〉 o2−→∗
Lo
〈σ′2, skip, []〉.

Then o1 = o2.

Finally, we can use the results from Section 3.2 along with the safety guaranteed

by our logic to prove the final, end-to-end noninterference theorem:

Theorem 13 (Noninterference, True Semantics). Suppose we derive Lo ` {P}C {Q}

using our program logic. Pick any state σ1 ∈ JP K, and consider changing the values

of any Hi data in σ1 to obtain some σ2 ∈ JP K. Suppose, in the true semantics, we

have

〈σ̄1, C〉
o1−→∗ 〈τ1, skip〉

and

〈σ̄2, C〉
o2−→∗ 〈τ2, skip〉.

Then o1 = o2.

3.6 Problems with the Program Logic Approach

The program logic presented in this chapter is a convenient tool for formally prov-

ing the security of a C-like program with respect to a detailed and general policy.

65

The calendar example program of Figure 3.6 shows that the logic is significantly

more powerful than many previous information-flow tracking frameworks, as it sup-

ports clean policy specification using conditional labels, and it exploits the power of

Hoare Logic to perform fine-grained reasoning on an if statement that branches upon

conditionally-labeled data.

The program logic approach is not perfect, however. In the following, we will

discuss various suboptimal aspects of using a program logic to verify security.

Language-Specific In order to define logical inference rules for a program, we must

have a clear, formal definition of the programming language being used. We choose a

toy C-like language here that is simple enough to formally specify, but general enough

to easily extend to handle many standard C features. Nevertheless, the language is

fundamentally bound to a C-level memory model consisting of program variable store

and global memory heap, as well as structured control flow (if-then-else statements

and while loops, as opposed to labels and goto statements). This means that there is

no easy way to adapt the program logic to support higher-level features such as high-

order functions, or lower-level features such as unstructured jumps in assembly code.

The latter problem is particularly of concern for the ultimate goal of this dissertation,

since real-world systems sometimes do require reasoning directly about assembly code.

For example, the context switch operation of an OS kernel must always be written

directly in assembly since, after restoring registers, it must long jump to the location

of a process’s saved code pointer. The C language and memory model are too high

level to directly write code that performs such a jump. Our program logic therefore

cannot be used to prove anything about the context switch implementation within

an OS kernel.

Access to Code Details As a prerequisite to using a program logic, one must of

course have direct access to the code in question. This could be a problem in real-

66

world systems if, for example, the creator of the system would like to outsource the

security verification to a third party. The creator would ideally wish to avoid leaking

company secrets by revealing all details of the system’s implementation. Instead, it

would be far more preferable to only provide the third party with a formal, high-level

specification of the system’s functionality. Furthermore, this strategy would have the

additional standard benefit of abstraction: if the low-level code of the system were

changed without affecting the high-level specification, then the security verification

would not need to be redone.

Functional Correctness vs Security Our program logic combines functional cor-

rectness verification with security verification. While this can certainly be viewed

positively, since it allows for security to be proved in a single pass through the code,

it also has the potential to conflate orthogonal aspects of the verification. For exam-

ple, we discussed above how we interpret the verified precondition P as a security

policy; the precondition also serves as a safety specification, however, saying on which

machine states the program executes without getting stuck. We cannot distinguish

between which aspects of P refer only to security, and which aspects refer only to

safety. For example, if P does not happen to mention anything about security labels,

then it really says nothing of interest regarding the program’s security. It might be

more desirable to completely separate the verification of the program’s functionality

from the verification of its security, as this could potentially yield a clearer and more

precise description of the program’s security policy.

Incompleteness While we proved that our program logic is sound with respect

to noninterference, it is certainly not complete — there are plenty of programs that

are noninterfering under some precondition, but cannot be verified in our logic using

that precondition. For example, if we slightly modify the program of Figure 3.5 by

changing line 8 to output i, then the program will always output all the numbers

67

from 0 to 63 in order, regardless of values of high-security data. We would not be

able to verify the program, however, because the pc label is Hi at line 8 and thus

disallows any output. In the POST paper [14], we mention an informal observation:

in our experience, it is always possible to rewrite a secure-but-unverifiable program in

such a way that it produces the same output and becomes verifiable. For the altered

calendar example just mentioned, it suffices to rewrite the program to simply print

out the numbers 0 through 63 (without branching on elements in Alice’s calendar).

A rather more complex example of this observation can be obtained by swapping

lines 6 and 8 in the code of Figure 3.5. This program prints out all the time slots

that are not free. Changing any (nonzero) event to any other (nonzero) event will

not change this output, so the program is still secure with respect to Alice’s policy.

It is not verifiable for the same reason as before — output is disallowed at line 8.

Nevertheless, this program can be rewritten in the following way (assume we add to

the precondition that we have allocated a 64-element array filled with Lo 0’s starting

at location B, which will be used for temporary scratch work):

1 i := 0;

2 while (i < 64) do

3 x := [A+i];

4 if (x = 0) then [B+i] := 1 else skip;

5 i := i+1;

6 i := 0;

7 while (i < 64) do

8 x := [B+i];

9 if (x = 0) then output i else skip;

10 i := i+1;

The ability to rewrite these safe-but-unverifiable programs leads to some interesting

ideas. The most direct idea is that it might be fruitful to pursue a formal proof

68

of semi-completeness of the program logic, saying that for any secure program C,

there exists a program C ′ with the same behavior (i.e., mapping from initial states

to output produced) as C, and C ′ can be verified secure using the inference rules

of our logic. An even more interesting idea, however, is to abstract away from the

individual programs C and C ′ entirely. Instead of using inference rules to verify C,

what if we could first formally abstract C into a specification of its behavior S, and

then simply prove that S is secure? If we could successfully accomplish this, then

this incompleteness issue would no longer be relevant.

Conclusion It should be clear by now that all of these problems are steering us

toward a particular solution. In the coming chapters, we will present a new method-

ology for security verification, where we first abstract a program into a high-level

specification, in a manner that is completely independent from security concerns.

Then we define and prove a security policy over the specification only. The method-

ology is fairly independent from program language specifics, it hides low-level details

of code, and it completely separates functional correctness concerns from security

concerns. Crucially (and perhaps surprisingly), our methodology successfully guar-

antees that if a program’s specification is proved secure, then the program itself (i.e.,

the implementation) will always execute in a secure fashion.

69

Chapter 4

Security Reasoning over

Specifications

4.1 A New Methodology for Security Verification

In this chapter, we discuss the main ideas and challenges for defining and proving

secure specifications, and for propagating security from a specification to its imple-

mentation. The fundamental idea is to connect everything using what we call an

observation function. Recalling Figure 1.2, we use the observation function to (1)

define a security policy at the specification level, (2) formalize and prove noninterfer-

ence with respect to the policy, (3) define the observable whole-execution behaviors

of a program, and finally (4) automatically propagate security from a high-level spec-

ification to a low-level implementation.

Intuitively, the observation function represents which parts of a program state are

observable (i.e., low security) to each principal. The observation being made by a

principal does not actually have to be a portion of the program state, however; it can

be of any type, and it can be any arbitrary transformation on the program state. For

a principal p and program state σ, we express the observation function notationally

70

as Op(σ). Occasionally, we will need to distinguish between observation functions of

different abstract machines — we use the notation OM ;p(σ) to refer to the observation

function of machine M .

Note that this chapter will only describe our methodology semiformally; full for-

malization of mathematical notations, definitions, and theorems will appear in Chap-

ter 5.

4.1.1 High-Level Security Policies

We use observation functions to express high-level policies. Consider the following C

function (assume variables are global for the purpose of presentation):

void add() {

a = x + y;

b = b + 2; }

Clearly, there are flows of information from x and y to a, but no such flows to b.

We express these flows in a policy induced by the observation function. Assume

that program state is represented as a partial variable store, mapping variable names

to either None if the variable is undefined, or Some v if the variable is defined and

contains integer value v. We will use the notation [x ↪→ 7; y ↪→ 5] to indicate the

variable store where x maps to Some 7, y maps to Some 5, and all other variables map

to None.

We consider the value of a to be observable to Alice (principal A), and the value

of b to be observable to Bob (principal B). Since there is information flow from x and

y to a in this example, we will also consider the values of x and y to be observable

to Alice. Hence we define the observation type to be partial variable stores (same as

71

program state), and the observation function is:

OA(σ)
4
= [a ↪→ σ(a); x ↪→ σ(x); y ↪→ σ(y)]

OB(σ)
4
= [b ↪→ σ(b)]

This observation function induces a policy over an execution, stating that for each

principal, the final observation is dependent only upon the contents of the initial

observation. This means that Alice can potentially learn anything about the initial

values of a, x, and y, but she can learn nothing about the initial value of b. Similarly,

Bob cannot learn anything about the initial values of a, x, or y. It should be fairly

obvious that the add function is secure with respect to this policy; we will discuss

how to prove this fact shortly.

Alternative Policies Since the observation function can be anything, we can ex-

press various intricate policies. For example, we might say that Alice can only observe

parities:

OA(σ)
4
= [a ↪→ σ(a)%2; x ↪→ σ(x)%2; y ↪→ σ(y)%2]

We also do not require observations to be a portion of program state, so we might

express that the average of x and y is observable to Alice:

OA(σ)
4
= (σ(x) + σ(y))/2

Notice how we use the observation function here to express a declassification policy.

This is similar to how we used the logical precondition in Chapter 3, but it is more

general since the observation can be of any type. In the program logic, the observation

was fixed to be the set of data within program state that has a label of Lo.

The generality of our observation function allows for the expression of many dif-

72

ferent kinds of security policies. While we have not exhaustively studied the extent of

policy expressibility, we have anecdotally found it to be similar to other frameworks

that express observational equivalence in a purely semantic fashion, e.g., Sabelfeld et

al.’s PER model [50] and Nanevski et al.’s Relational Hoare Type Theory [42]. Later

in this chapter, we will revisit the various desirable security policies mentioned in

Section 1.3, and show how each one can be expressed using an observation function.

Before delving into those examples, however, we will first explain how an observation

function induces a high-level security policy, as well as how the high-level policy can

then be propagated across a security-preserving simulation to apply to a low-level

implementation.

4.1.2 Security Formulation

High-Level Security We define our noninterference property over some specifi-

cation S exactly as one would expect given our discussions in Chapters 1 and 3.

Specifically, for a given principal p, the property says that observable equivalence, or

state indistinguishability, is preserved by the specification, where two states are said

to be indistinguishable just when their observations are equal:

σ1
p∼ σ2

4
= Op(σ1) = Op(σ2)

Intuitively, if a specification always preserves indistinguishability, then the final ob-

servation can never be influenced by changing unobservable data in the initial state

(i.e., high-security inputs cannot influence low-security outputs).

More formally, for any principal p and specification S expressed as a set of pairs

of initial and final states, we say that S is secure for p if the following property holds

73

for all states σ1, σ2, σ′1, and σ′2:

Op(σ1) = Op(σ2) ∧ (σ1, σ
′
1) ∈ S ∧ (σ2, σ

′
2) ∈ S

=⇒ Op(σ′1) = Op(σ′2)

Consider how this property applies to the specification of the add function above,

using the observation function where only the parities of a, x, and y are observable to

Alice. Two states are indistinguishable to Alice just when the parities of these three

variables are the same in the states. Taking the entire function as an atomic step, we

see that indistinguishability is indeed preserved since a gets updated to be the sum

of x and y, and addition is homomorphic with respect to parity. Hence the policy

induced by this observation function is provably secure.

Note that we will sometimes refer to this high-level security property as the “un-

winding condition”, since it is essentially the same as the standard unwinding con-

dition in the literature [19, 20]. The term comes from the fact that this property is

used to inductively prove end-to-end security for an entire execution.

Low-Level Security While the above property is used to prove security across

entire specifications of functions like add, we ultimately require a security guarantee

that applies to the small-step implementations of these specifications. Notice that

both lines of code in the implementation of add satisfy the unwinding condition, so

we could trivially apply transitivity to get noninterference of the implementation.

However, this is not true in general. Consider an alternative implementation of add

with the same specification:

void add() {

a = b;

a = x + y;

b = b + 2; }

74

The first line of this implementation may not preserve indistinguishability since the

unobservable value of b is directly written into a. Nevertheless, the second line im-

mediately overwrites a, reestablishing indistinguishability. This illustrates that we

cannot simply prove the unwinding condition for high-level atomic specifications, and

expect it to automatically propagate to each individual step of a small-step imple-

mentation. We therefore must use a different security definition for low-level imple-

mentations, one which considers observations of entire executions rather than just

single steps.

Intuitively, we will express low-level security as equality between the “whole-

execution observations” produced by two executions starting from indistinguishable

states. To formalize this intuition, we must address: (a) the meaning of state indis-

tinguishability at the implementation level; and (b) the meaning of whole-execution

observations.

Low-Level Indistinguishability For high-level security, we defined state indis-

tinguishability to be equality of the state-parameterized observation functions. This

definition may not work well at a lower level of abstraction, however, since security-

relevant logical state may be hidden by refinement. For example, suppose we attach

security labels to data in a high-level state, for the purpose of specifying the policy

based on label tainting described in Chapters 1 and 3. Further suppose that we treat

the labels as logical state, erasing them when simulating the high-level specification

with its implementation (i.e., the low-level machine model does not contain any phys-

ical representation of the security labels). This means that, at the implementation

level, we can no longer define the portion of program state belonging to a particular

principal. Hence it becomes unclear what state indistinguishability should mean.

We resolve this difficulty by defining low-level state indistinguishability in terms

of high-level indistinguishability and simulation. We say that, given a simulation

75

relation R connecting specification to implementation, two low-level states are indis-

tinguishable if there exist two indistinguishable high-level states that are related to

the low-level states by R. This definition will be fully formalized in Chapter 5.

Whole-Execution Observations We define the observations made by an entire

execution in terms of external events, which are in turn defined by a machine’s obser-

vation function. Many traditional automaton formulations define an external event as

a label on the step relation. Each individual step of an execution may or may not pro-

duce an event, and the whole-execution observation, or behavior, is the concatenation

of all events produced across the execution.

Instead of labeling the transition relation, we make use of the observation function

to model external events. The basic idea is to equate an event being produced by

a transition with the state observation changing across the transition. This idea by

itself does not work, however. When events are expressed externally on transitions,

they definitionally enjoy an important monotonicity property: whenever an event is

produced, that event cannot be “undone” or “forgotten” at any future point in the

execution (i.e., the event is actually observed). When events are expressed as changes

in state observation, this property is no longer guaranteed.

We therefore explicitly enforce a monotonicity condition on the observation func-

tion of an implementation. We require a partial order to be defined over the ob-

servation type of the low-level semantics, as well as a proof that every step of the

semantics respects this order. For example, our mCertiKOS security proof represents

the low-level observation as an output buffer (a Coq list). The partial order is defined

based on list prefix, and we prove that execution steps will always respect the order

by either leaving the output buffer unchanged or appending to the end of the buffer.

Note that we only enforce observation monotonicity on the implementation. It

is crucial that we do not enforce it on the high-level specification; doing so would

76

greatly restrict the high-level policies we could specify, and would potentially make

the unwinding condition of the high-level security proof unprovable. Intuitively, a non-

monotonic observation function expresses which portions of state could potentially

influence the observations produced by an execution, while a monotonic observation

function expresses which observations the execution has actually produced. We are

interested in the former at the specification level, and the latter at the implementation

level.

4.1.3 Security-Preserving Simulation

The previous discussion described how to use the observation function to express both

high-level and low-level security properties. With some care, we can automatically

derive the low-level security property from a simulation and a proof of the high-level

security property.

It is known that, in general, security is not automatically preserved across sim-

ulations. One potential issue, known as the refinement paradox [29, 36, 37], is that

a nondeterministic secure program can be refined into a more deterministic but in-

secure program. For example, suppose we have a secret boolean value stored in x,

and a program P that randomly prints either true or false based on an unbiased,

independent coin flip. P is obviously secure since its output has no dependency on

the secret value, but P can be refined by an insecure program Q that directly prints

the value of x. We avoid this issue by ruling out P as a valid secure program: despite

being obviously secure, it does not actually satisfy the unwinding condition defined

above and hence is not provably secure in our framework. Note that the seL4 se-

curity verification [39] avoids this issue in the same way. In that work, the authors

frame their solution as a restriction that disallows specifications from exhibiting any

domain-visible nondeterminism. Indeed, this can be seen clearly by specializing the

77

unwinding condition above such that states σ1 and σ2 are identical:

(σ, σ′1) ∈ S ∧ (σ, σ′2) ∈ S =⇒ Op(σ′1) = Op(σ′2)

The successful security verifications of both seL4 and mCertiKOS provide evidence

that this restriction on specifications is not a major hindrance for usability.

Unlike the seL4 verification, however, our framework runs into a second issue with

regard to preserving security across simulation. The issue arises from the fact that

both simulation relations and observation functions are defined in terms of program

state, and they are both arbitrarily general. This means that certain simulation

relations may, in some sense, behave poorly with respect to the observation function.

Figure 4.1 illustrates an example. Assume program state at both levels consists of

three variables x, y, and z. The observation function is the same at both levels:

x and y are unobservable while z is observable. Suppose we have a deterministic

specification of the swap primitive saying that the values of x and y are swapped,

and the value of z is unchanged. Also suppose we have a simulation relation R that

relates any two states where x and y have the same values, but z may have different

values. Using this simulation relation, it is easy to show that the low-level swap

implementation correctly simulates the high-level swap specification.

Since the swap specification is deterministic, this example is unrelated to the

issue described above, where domain-visible nondeterminism in the high-level program

causes trouble. Nevertheless, this example fails to preserve security across simulation:

the high-level program clearly preserves indistinguishability, while the low-level one

leaks the secret value of x into the observable variable z.

As mentioned above, the root cause of this issue is that there is some sort of

incompatibility between the simulation relation and the observation function. In

particular, security is formulated in terms of a state indistinguishability relation,

but the simulation relation may fail to preserve indistinguishability. Indeed, for the

78

42 27 0
swap(x,y)

 x y z

z = x; x = y; y = z

R R

42 27 0

27 42 0

27 42 42

 x y z

 x y z

 x y z

Figure 4.1: Security-Violating Simulation. The shaded part of state is unobservable, while
the unshaded part is observable.

example of Figure 4.1, it is easy to demonstrate two indistinguishable program states

that are related by R to two distinguishable ones (since R allows arbitrary change in

the observable variable z). Thus our solution to this issue is to restrict simulations to

require that state indistinguishability is preserved. More formally, given a principal

p, in order to show that machine m simulates M under simulation relation R, the

following property must be proved for all states σ1, σ2 of M , and states s1, s2 of m:

OM ;p(σ1) = OM ;p(σ2) ∧ (σ1, s1) ∈ R ∧ (σ2, s2) ∈ R

=⇒ Om;p(s1) = Om;p(s2)

4.2 Representing Intricate Security Policies

Now that we have described how observation functions induce a high-level security

policy and enforce a low-level security guarantee, let us revisit some of the interesting

example policies of Section 1.3.

4.2.1 Declassify Parity

As a simple starting example, recall the add function mentioned above, and suppose

we wish to enforce a security policy that declassifies the parity of secret data.

void add() {

a = x + y;

b = b + 2; }

79

We write the atomic specification as a relation between input state and output state:

(σ, σ′) ∈ Sadd ⇐⇒ σ′ = σ[a ↪→ σ(x) + σ(y); b ↪→ σ(b) + 2]

We specify Alice’s security policy as an observation function:

OA(σ)
4
= [a ↪→ σ(a)%2; x ↪→ σ(x)%2; y ↪→ σ(y)%2]

As explained previously, we prove security by showing that state indistinguishability

is preserved by the high-level semantics. In this example, we assume that the spec-

ification of add constitutes the entirety of the machine semantics. Hence we must

prove:

OA(σ1) = OA(σ2) ∧ (σ1, σ
′
1) ∈ Sadd ∧ (σ2, σ

′
2) ∈ Sadd

=⇒ OA(σ′1) = OA(σ′2)

This reduces to:

[a ↪→ σ1(a)%2; x ↪→ σ1(x)%2; y ↪→ σ1(y)%2] =

[a ↪→ σ2(a)%2; x ↪→ σ2(x)%2; y ↪→ σ2(y)%2]

=⇒

[a ↪→ (σ1(x) + σ1(y))%2; x ↪→ σ1(x)%2; y ↪→ σ1(y)%2] =

[a ↪→ (σ2(x) + σ2(y))%2; x ↪→ σ2(x)%2; y ↪→ σ2(y)%2]

Since (a+b)%2 = (a%2+b%2)%2, we see that the atomic specification of add is indeed

secure with respect to Alice’s observation function. Therefore, we are guaranteed that

add cannot leak any information about program state to Alice beyond the parities of

the values in variables a, x, and y.

80

4.2.2 Event Calendar Objects

The next example demonstrates modularity of the observation function. Suppose we

have a notion of calendar object where various events are scheduled at time slots num-

bered from 1 to N . At each time slot, the calendar contains either None representing

no event, or Some v representing an event whose details are encoded by integer v. A

program state consists of a calendar object for each principal:

calendar C 4
= N→ option Z

state Σ
4
= P → C

We define an observation function, parameterized by an observer principal, describing

the following policy:

1. Each principal can observe the entire contents of his or her own calendar.

2. Each principal can observe only whether or not time slots are free in other

principals’ calendars, and hence cannot be influenced by the details of others’

scheduled events.

For simplicity, we define the type of observations to be the same as the type for

program state (Σ). For readability, we write σ(p, n) to indicate the option event

located at slot n of p’s calendar in state σ.

Op(σ)
4
= λp′ . λn .


σ(p′, n), if p′ = p

None, if p′ 6= p ∧ σ(p′, n) = None

Some 0, if p′ 6= p ∧ σ(p′, n) 6= None

This observation function only reveals details of scheduled events in a calendar to

the calendar’s owner, and therefore allows a principal to freely modify his or her own

calendar securely. If different principals wish to collaborate in some way, we must

verify that such collaboration is secure with respect to this observation function. For

81

example, consider a function sched that attempts to schedule some common event

among a set of principals. Given a list of principals P and an event e, the function

will search for the earliest time slot n that is free for all principals in P . If such

a time slot is found, then all of the involved principals’ calendars are updated with

event e scheduled at slot n. Otherwise, all calendars are unchanged. The following is

pseudocode, and operates over a program state that contains an implementation of

the per-principal calendars (Σ) in the array cals:

void sched(list[int] P, int e) {

freeSlot = 0;

for i = 1 to N {

allFree = true;

for j = 1 to |P| {

if (cals[P[j]][i] != None) {

allFree = false;

break;

}

}

if (allFree) {

freeSlot = i;

break;

}

}

if (freeSlot != 0) {

for i = 1 to |P|

cals[P[i]][freeSlot] = Some e;

}

}

82

With some effort, one can verify that this implementation of sched satisfies the

high-level specification described above (i.e., the function schedules the new event

in the principals’ calendars if they all share an available time slot, or does nothing

otherwise). Once we have the atomic specification, we can verify that it is secure for

all principals, with respect to the observation function defined above. We will not go

through details of the security proof here, but the general intuition should be clear:

the behavior of sched is only dependent on the availability of time slots (i.e., the

None/Some status); the specific details of scheduled events are never used.

4.2.3 Security Labels and Dynamic Tainting

Our third example concerns dynamic labels and tainting, as described in Chapters 1

and 3. Even though the observation function is statically defined for an entire exe-

cution, we can exploit dynamic labels to change the observability of data during an

execution. Assume we have a lattice of security labels L, with the set of possible

labels being a superset of principals P . Let program state be a function mapping

variables to a pair (v, l) of integer value v and security label l. For a given principal

p, the observation function expresses the policy that all security labels are observable,

but values are only observable if they have a label less than or equal to p in the lattice:

Op(σ)
4
= λx .


(v, l), if σ(x) = (v, l) ∧ l v p

(0, l), if ∃v . σ(x) = (v, l) ∧ l 6v p

We can now consider primitives that dynamically change the observability of data

by propagating labels. For example, consider a function add that takes two parameters

a and b, and updates variable x to have a value equal to the sum of their values, and a

label equal to the least upper bound of their labels. Assuming a direct implementation

of labeled integers as objects, the pseudocode will look like:

83

void add(lbl_int a, lbl_int b) {

x.val = a.val + b.val;

x.lbl = a.lbl t b.lbl }

The atomic specification of add is:

(σ, σ′) ∈ Sadd ⇐⇒ σ′ = σ[x ↪→ (σ(a).1 + σ(b).1, σ(a).2 t σ(b).2)]

The security proof for add is straightforward. If two initial states σ1 and σ2

have equal observations for principal p, then there are two possibilities. First, if

both of the labels of a and b (in states σ1 and σ2) are less than or equal to p, then

indistinguishability tells us that σ1(a) = σ2(a) and σ1(b) = σ2(b). Hence the sum of

their values in the two executions will be the same, and so the resulting final states

are indeed indistinguishable. Second, if at least one of the labels is not less than or

equal to p, then the least upper bound of the labels is also not less than or equal to

p. Hence the observation of x on the final states will be a value of 0, and so the final

states are indistinguishable.

We could go further here and build an entire label-aware execution environment.

Proving security of the high-level specifications is a similar process to proving sound-

ness in other label-aware systems. We could then either treat the labels as purely

logical state (like many statically-typed security systems), erasing them with a sim-

ulation relation, or we could verify a refinement to a machine like the one used in

the SAFE system [10], where labels are actually implemented in the hardware and

the physical machine performs dynamic label checks and tainting. Regardless of

this choice of label representation, as long as we make sure our simulation relation

preserves indistinguishability (as defined earlier), the security of the high-level speci-

fications will automatically give us the whole-execution noninterference property for

the low-level machine.

84

Relation to Our Program Logic This example can be viewed as a generalization

of the strategy employed by the security-aware program logic of Chapter 3. The

program logic directly modeled dynamic label tainting using a machine semantics

instrumented with logical labels. There is, however, a significant difference: the small

steps of the program logic’s instrumented semantics do not satisfy the unwinding

condition noninterference property presented in this chapter. Specifically, recall from

Section 3.5 that the heap-read primitive instruction violates noninterference. Our

solution presented in that section was to exploit properties of the specific inference

rules of the program logic to establish a restriction on how the heap-read instruction

can be used in the semantics.

It turns out that there is actually a way to define the instrumented semantics such

that each step is automatically noninterfering, regardless of which particular inference

rules are used for program verification. We discovered this fact by attempting to prove

noninterference in Coq and figuring out precisely what goes wrong. We found that we

could fix the proof by adding a specific (but rather unintuitive) dynamic label check

to the instrumented heap-write instruction. The check uses the label of the old data

in the heap (l3 below) to enforce an upper bound:

JEKs = Some (n1, l1)

h(n1) = Some (, l3) JE′Ks = Some (n2, l2) l1 t l′ v l3

〈(s, h), [E] := E′, K〉 −→
l′
〈(s, h[n1 7→ (n2, l1 t l2 t l′)]), skip, K〉

(WRITE)

While adding this check could potentially reduce the set of verifiably-secure programs (i.e.,

reduce completeness of the logic), it allows for noninterference to be entirely separated from

the program logic inference rules. This key insight paved the way for us to develop the novel

methodology presented in this chapter. Interestingly, after coming up with this additional

label check, we later discovered that some other purely-dynamic (i.e., no program logic

involved) security systems in the literature use the exact same check ([4, 26, 61]), and refer

to it as the “no-sensitive-upgrade” requirement.

85

Chapter 5

Simulations and Security

Propagation

In this chapter, we completely formalize everything discussed in Section 4.1, showing how

security can be soundly propagated from a high-level specification to a low-level implemen-

tation. Figure 5.1 pictures the overall setup. We have many different machine semantics;

the bottom one represents our lowest-level model of the actual systems code executing over

physical hardware, while the top semantics represents our highest-level abstraction of the

system, complete with logical state. We connect all of these semantics together with formal

simulations, and show how the unwinding condition noninterference property at the highest

abstraction level automatically guarantees an end-to-end, whole-execution noninterference

property for the lowest level.

5.1 Machines with Observations

In the following, assume we have a set P of distinct principals or security domains.

Definition 4 (Machine). A state transition machine M consists of the following components

(assume all sets may be finite or infinite):

86

Mk – High Level Spec

Mk-1

⊑
 Rk

M1

⊑
 R1

⊑
 Rk-1

...

M0 – Base Machine Model

⊑
 R0

𝚺k 𝛀k

𝚺k-1 𝛀k-1

𝚺1 𝛀1

𝚺0 𝛀0

Machine Semantics
State
Type

Observation
Type

Figure 5.1: Basic Setup — Many simulations are chained together to incrementally refine a
top-level specification semantics into a concrete implementation executing over a low-level
assembly machine model.

• a type ΣM of program state

• a set of initial states IM and final states FM

• a transition (step) relation TM of type P(ΣM × ΣM)

• a type ΩM of observations

• an observation function OM ;p(σ) of type P × ΣM → ΩM

When the machine M is clear from context, we use the notation σ 7→ σ′ to mean (σ, σ′) ∈

TM . For multiple steps, we define σ 7→n σ′ in the obvious way, meaning that there exists

a chain of states σ0, ..., σn with σ = σ0, σ′ = σn, and σi 7→ σi+1 for all i ∈ [0, n). We then

define σ 7→∗ σ′ to mean that there exists some n such that σ 7→n σ′, and σ 7→+ σ′ to mean

the same but with a nonzero n.

Notice that our definition is a bit different from many traditional definitions of au-

tomata, in that we do not define any explicit notion of actions on transitions. In traditional

definitions, actions are used to represent some combination of input events, output events,

and instructions/commands to be executed. In our approach, we advocate moving all of

these concepts into the program state (which can contain both concrete and logical state) —

this simplifies the theory, proofs, and policy specifications.

87

Initial States vs Initialized States Throughout our formalization, we do not re-

quire anything regarding initial states of a machine. The reason is related to how we will

actually carry out security and simulation proofs in practice (described with respect to the

mCertiKOS security proof in Chapters 6 and 7). We never attempt to reason about the true

initial state of a machine; instead, we assume that some appropriate setup/configuration

process brings us from the true initial state to some properly initialized state, and then we

perform all reasoning under the assumption of proper initialization.

5.2 High-Level Security

As described in Chapter 4, we use different notions of security for the high level and the

low level. High-level security says that each individual step preserves indistinguishability.

It also requires a safety proof as a precondition, guaranteeing that the machine preserves

some initialization invariant I.

Definition 5 (Safety). We say that a machine M is safe under state predicate I, written

safe(M, I), when the following progress and preservation properties hold:

1.) ∀σ ∈ I − FM . ∃σ′ . σ 7→ σ′

2.) ∀σ, σ′ . σ ∈ I ∧ σ 7→ σ′ =⇒ σ′ ∈ I

Definition 6 (High-Level Security). Machine M is secure for principal p under invariant

I, written ∆M I
l , just when:

1.) safe(M, I)

2.) ∀σ1, σ2 ∈ I, σ′1, σ′2 .

Op(σ1) = Op(σ2) ∧ σ1 7→ σ′1 ∧ σ2 7→ σ′2 =⇒ Op(σ′1) = Op(σ′2)

3.) ∀σ1, σ2 ∈ I .

Op(σ1) = Op(σ2) =⇒ (σ1 ∈ FM ⇐⇒ σ2 ∈ FM)

88

The first property of this definition requires that we have already established safety before

considering security. The second property is the unwinding condition restricted to initial-

ization invariant I. The third property says that the finality of a state is observable to p

(again under invariant I); it is needed to close a potential termination-related security leak.

5.3 Low-Level Security

For low-level security, as discussed in Section 4.1, we first must define whole-execution

behaviors with respect to a monotonic observation function.

Definition 7 (Behavioral State). Given a machine M and a partial order � over the obser-

vation type ΩM , we say that a program state σ is behavioral for principal p, written [Mp(σ),

if all executions starting from σ respect the partial order; i.e., the following monotonicity

property holds:

∀σ′ . σ 7→∗ σ′ =⇒ Op(σ) � Op(σ′)

Definition 8 (Behavioral Machine). We say that a machine M is behavioral for principal

p, written [Mp, when the machine has the following components:

• a partial order � over the observation type ΩM

• a proof that all states of M are behavioral for p

We next give a semiformal definition of whole-execution behaviors. The formal Coq defini-

tion involves a combination of inductive and coinductive types (to handle behaviors of both

terminating and non-terminating executions). Note that our definition is quite similar to

the one used in CompCert [34], except that we use state observations as the basic building

block, while CompCert uses traces, which are input/output events labeled on transitions.

Definition 9 (Whole-Execution Behaviors). Given a machine M with a partial order de-

fined over ΩM , and a state σ that is behavioral for principal p, we write BM ;p(σ) to represent

the (potentially infinite) set of whole-execution behaviors that can arise from some execution

of M starting from σ. The behaviors (elements of this set) can be one of four kinds: fault,

89

termination, silent divergence, and reactive divergence. In the following, variable o ranges

over observations and os ranges over infinite streams of observations:

1. Fault(o) ∈ BM ;p(σ) indicates that there is an execution σ 7→∗ σ′ where σ′ is not a

final state, σ′ cannot take a step to any state, and o = Op(σ′).

2. Term(o) ∈ BM ;p(σ) indicates that there is an execution σ 7→∗ σ′ where σ′ is a final

state and o = Op(σ′).

3. Silent(o) ∈ BM ;p(σ) indicates that there is an execution σ 7→∗ σ′ where o = Op(σ′)

and there is an infinite execution starting from σ′ for which all states in that infinite

execution have identical observations (i.e., all observations are o).

4. React(os) ∈ BM ;p(σ) indicates that there is an infinite execution starting from σ that

“produces” each of the infinitely-many observations of os in order. An observation

o is “produced” in an execution when there exists some single step in the execution

σ′ 7→ σ′′ with o = Op(σ′′) and Op(σ′) 6= Op(σ′′).

We can now define whole-execution security of a behavioral machine as behavioral equality.

Note that, in our final end-to-end security theorem, the low-level executions in question

will be obtained from relating indistinguishable high-level states across simulation. We

hide this detail for now inside of an abstract indistinguishability relation ρ, and will revisit

the relation later in this section.

Definition 10 (Low-Level Security). Given a machine m that is behavioral for principal p,

we say that m is behaviorally secure for p under some indistinguishability relation ρ, written

∇mρ
p, just when:

∀σ1, σ2 . ρ(σ1, σ2) =⇒ Bm;p(σ1) = Bm;p(σ2)

5.4 Simulation

We next formalize our definition of simulation. It differs from standard simulations in two

primary aspects:

90

1. As explained above, we do not require any relationships to hold between initial states.

2. As described in Section 4.1.3, we require simulation relations to preserve state indis-

tinguishability.

Recall the indistinguishability preservation property from Section 4.1.3:

OM ;p(σ1) = OM ;p(σ2) ∧R(σ1, s1) ∧R(σ2, s2)

=⇒ Om;p(s1) = Om;p(s2)

One option would be to directly add this property into the definition of a simulation. For

reasons that will become clear later, however, we will actually take a more roundabout

path that defines simulations in such a way that the above property is implied rather

than explicitly required. Whenever we wish to show a simulation from machine M to

machine m, we require not only a simulation relation R that relates states of M to states

m, but also a function f that translates observations of M into observations of m. This

translation function will be useful later when we need to reason about the relationship

between simulations and whole-execution behaviors. A typical example of a translation

function can be seen in the mCertiKOS security proof presented in Chapter 6: an abstract

state observation contains many various parts including an output buffer, while a concrete

state observation contains only the output buffer; hence the function f simply returns the

output buffer from the high-level observation.

Definition 11 (Simulation). Given two machines M , m, a principal p, a relation R between

states of M and states of m, and a total function f from observations of M to observations

of m, we say that there is a simulation from M to m using R and f , written M vR;f ;p m,

91

when:

1.) ∀σ, σ′ ∈ ΣM , s ∈ Σm .

σ 7→ σ′ ∧R(σ, s) =⇒ ∃s′ ∈ Σm . s 7→∗ s′ ∧R(σ′, s′)

2.) ∀σ ∈ ΣM , s ∈ Σm .

σ ∈ FM ∧R(σ, s) =⇒ s ∈ Fm

3.) ∀σ ∈ ΣM , s ∈ Σm .

R(σ, s) =⇒ f(OM ;p(σ)) = Om;p(s)

The first property is the main simulation, the second relates final states, and the third con-

nects R with f in such a way that the indistinguishability preservation property from above

is automatically implied. For presentation purposes, we omit details regarding the well-

known “infinite stuttering” problem for simulations (described, for example, in [34]). Our

Coq definition of simulation includes a well-founded order that prevents infinite stuttering.

Notice that, contrary to our discussion earlier, we do not define simulations to be relative

to an initialization invariant. It would be completely reasonable to require safety of the

higher-level machine under some invariant, but this actually ends up being redundant.

Since R is an arbitrary relation, we can simply embed an invariant requirement within R.

In other words, one should think of R(σ, s) as saying not only that σ and s are related, but

also that σ satisfies an appropriate invariant.

5.5 End-to-End Security

We will now describe the main theorem of our framework: end-to-end security. There are

too many technical details to present the entire proof here; instead, we will only state the

primary lemmas involved, and then prove how these lemmas imply the main theorem. We

begin with two helpful definitions.

Definition 12 (Bisimulation). Given two machines M , m, a principal p, a relation R

between states of M and states of m, and an invertible function f from observations of

92

M to observations of m, we say that there is a bisimulation from M to m using R and f ,

written M ≡R;f ;p m, when M vR;f ;p m and m vR−1;f−1;p M .

Definition 13 (Invariant-Aware Indistinguishability).

ΘI
p(σ1, σ2)

4
= σ1 ∈ I ∧ σ2 ∈ I ∧ Op(σ1) = Op(σ2)

The following lemma turns a proof of high-level security into a bisimulation.

Lemma 7 (High-Level Security Bisimulation).

∀M, I, p . ∆M I
p =⇒M ≡ΘI

p;Id ;p M

The next two lemmas say, respectively, that executions must exhibit at least one behavior,

and that deterministic executions exhibit exactly one behavior.

Definition 14 (Determinism). We say that a machine M is deterministic, written ↓ M ,

when the following properties hold:

1.) ∀σ, σ′, σ′′ . σ 7→ σ′ ∧ σ 7→ σ′′ =⇒ σ′ = σ′′

2.) ∀σ ∈ FM . ¬∃σ′ . σ 7→ σ′

Lemma 8 (Behavior Exists).

∀M,p, σ . [Mp(σ) =⇒ BM ;p(σ) 6= ∅

Lemma 9 (Behavior Determinism).

∀M,p, σ . [Mp(σ)∧ ↓M =⇒ |BM ;p(σ)| = 1

The remaining lemmas convert simulations and bisimulations into behavior subset and

equality, respectively. There is one significant barrier to stating these lemmas, however:

behaviors are defined in terms of observations, and the types of observations of two different

93

machines may be different. Hence we technically cannot compare behavior sets directly

using standard subset or set equality, as the types may not match. To solve this problem,

we will exploit our observation translation function. This is, in fact, the reason we use a

translation function to define simulations instead of directly using the indistinguishability

preservation property.

In the following, we overload f to apply to individual behaviors in the obvious way

(e.g., f(Term(o)) = Term(f(o))). Given a simulation M vR;f ;p m, with both M and m

behavioral for p, we define the subset relation between sets of behaviors by applying f to

every element of the first set:

Definition 15 (Behavior Subset).

BM ;p(σ) vf Bm;p(s)
4
=

∀b . b ∈ BM ;p(σ) =⇒ f(b) ∈ Bm;p(s)

Similarly, for invertible f , we can define equality of behavior sets:

Definition 16 (Behavior Set Equality).

BM ;p(σ) ≡f Bm;p(s)
4
=

BM ;p(σ) vf Bm;p(s) ∧ Bm;p(s) vf−1 BM ;p(σ)

We now have the machinery to state the two remaining lemmas:

Lemma 10 (Simulation and Safety Imply Behavior Subset).

∀M,m, I,R, f, p, σ, s .

[Mp(σ) ∧ [mp(s) ∧ safe(M, I) ∧M vR;f ;p m ∧ σ ∈ I ∧R(σ, s)

=⇒ BM ;p(σ) vf Bm;p(s)

94

Lemma 11 (Bisimulation Implies Behavior Equality).

∀M,m,R, f, p, σ, s .

[Mp(σ) ∧ [mp(s) ∧M ≡R;f ;p m ∧R(σ, s)

=⇒ BM ;p(σ) ≡f Bm;p(s)

Technical Aside These two lemmas are not quite true as stated. If a single step in

machine M produces an event (i.e., changes the state observation) and is simulated by

multiple steps in m, it could be the case that those multiple steps produce multiple events.

In our Coq proof, we resolve this problem by defining a notion of “measure” that maps

observations to natural numbers, and by requiring that (1) single steps never increase mea-

sure by more than one; and that (2) the observation translation function preserves measure.

For example, the measure of an output buffer is defined to be its size, and no single step

is allowed to append more than one output to the buffer. This is sufficient for conducting

our mCertiKOS proof, but it is unfortunately a rather ad-hoc solution; we hope that future

work will yield a cleaner one.

We have now stated all the required lemmas, and can move on to our primary theorem

guaranteeing that simulations preserve security. As mentioned previously, low-level secu-

rity uses an indistinguishability relation derived from high-level indistinguishability and a

simulation relation:

Definition 17 (Low-Level Indistinguishability).

φ(M,p, I, R)
4
=

λs1, s2 . ∃σ1, σ2 ∈ I . OM ;p(σ1) = OM ;p(σ2) ∧R(σ1, s1) ∧R(σ2, s2)

Theorem 14 (End-to-End Security). Suppose we have two machines M and m, a principal

p, a high-level initialization invariant I, and a simulation M vR;f ;p m. Further suppose

95

that m is deterministic and behavioral for p. Let low-level indistinguishability relation ρ be

φ(M,p, I, R) from Definition 17. Then high-level security implies low-level security:

∆M I
p =⇒ ∇mρ

p

Proof. For the first part of the proof, we define a new machine N in between M and m, and

prove simulations from M to N and from N to m. N will mimic M in terms of program

states and transitions, while it will mimic m in terms of observations. More formally, we

define N to have the following components:

• program state ΣM

• initial states IM

• final states FM

• transition relation TM

• observation type Ωm

• observation function ON ;p(σ)
4
= f(OM ;p(σ))

First, we establish the simulation M vId ;f ;p N . Referring to Definition 11, the first

two properties hold trivially since N has the same transition relation and final state set as

M . The third property reduces to exactly our definition of ON ;p(−) given above.

Next, we establish the simulation N vR;Id ;p m. The first two properties of Definition 11

are exactly the same as the first two properties of the provided simulation M vR;f ;p m, and

thus they hold. For the third property, assuming we know R(σ, s), we have Id(ON ;p(σ)) =

ON ;p(σ) = f(OM ;p(σ)) = Om;p(s), where the final equality comes from the third property

of the provided simulation.

For the next part of the proof, we unfold the definition of what we are trying to prove,

96

∇mφ(M,p,I,R)
p . This yields:

∀s1, s2 . (∃σ1, σ2 ∈ I . OM ;p(σ1) = OM ;p(σ2) ∧R(σ1, s1) ∧R(σ2, s2))

=⇒ Bm;p(s1) = Bm;p(s2)

Pick any states s1, s2, σ1, σ2 such that σ1 ∈ I, σ2 ∈ I, OM ;p(σ1) = OM ;p(σ2), R(σ1, s1),

and R(σ2, s2). We will prove the desired Bm;p(s1) = Bm;p(s2) by relating the behaviors

of N with those of m. In order to do this, however, we first must show that N has well-

defined behaviors for executions starting from σ1 or σ2. In other words, we must prove

[Np(σ1) and [Np(σ2). We will focus on the proof for σ1; the other proof is analogous. We

use the same partial order as provided by the assumption [mp. Consider any execution

σ1 7→∗ σ′1 in N . Since R(σ1, s1), we can use the simulation N vR;Id ;p m established

above, yielding an execution s1 7→∗ s′1, for some s′1 (technically, the simulation property

only applies to single steps in the higher machine; however, it can easily be extended to

multiple steps through induction on the step relation). Additionally, we have R(σ1, s1)

and R(σ′1, s
′
1), implying by the third property of simulation that ON ;p(σ1) = Om;p(s1) and

ON ;p(σ
′
1) = Om;p(s

′
1). Since m is behavioral, we also have Om;p(s1) � Om;p(s

′
1). Hence

we conclude ON ;p(σ1) � ON ;p(σ
′
1), as desired.

We now know that [Np(σ1) and [Np(σ2). Notice that when f is Id , our definitions

of behavior subset and equality (Definitions 15 and 16) reduce to standard subset and set

equality. Therefore, applying Lemma 10 to the established simulation N vR;Id ;p m tells

us that BN ;p(σ1) ⊆ Bm;p(s1) and BN ;p(σ2) ⊆ Bm;p(s2) (note that the safety precondition

of Lemma 10 holds because M and N have the same state type and transition relation, and

high-level security of M implies safety). Furthermore, since m is deterministic, Lemma 9

gives us |Bm;p(s1)| = |Bm;p(s2)| = 1. Since Lemma 8 guarantees that neither BN ;p(σ1) nor

BN ;p(σ2) is empty, we conclude that BN ;p(σ1) = Bm;p(s1) and BN ;p(σ2) = Bm;p(s2).

To complete the proof, we now just need to show that BN ;p(σ1) = BN ;p(σ2). Ap-

plying Lemma 7 to our assumption of high-level security of M gives us the bisimula-

tion M ≡ΘI
p;Id ;p M . We would like to apply Lemma 11, but we first need to convert

97

this bisimulation into one on N , since M is not behavioral. Since M and N share pro-

gram state type, final states, and transition relation, it is not difficult to see that the

first two required properties of the simulation N vΘI
p;Id ;p N hold. If we can estab-

lish the third property, then we will obtain the desired bisimulation N ≡ΘI
p;Id ;p N

since Id is obviously invertible and ΘI
p is symmetric. The third property requires us to

prove that ΘI
p(σ1, σ2) =⇒ ON ;p(σ1) = ON ;p(σ2). By definition, ΘI

p(σ1, σ2) implies that

OM ;p(σ1) = OM ;p(σ2). Notice that ON ;p(σ1) = ON ;p(σ2) following from this fact is ex-

actly the indistinguishability preservation property we discussed earlier. Indeed, we have

ON ;p(σ1) = f(OM ;p(σ1)) = f(OM ;p(σ2)) = ON ;p(σ2).

Finally, we instantiate Lemma 11 with both machines being N . Notice that the re-

quired precondition ΘI
p(σ1, σ2) holds by assumption. Lemma 11 now gives us the conclusion

BN ;p(σ1) ≡Id BN ;p(σ2). As mentioned earlier, behavior equality reduces to standard set

equality when f is Id , and so we get the desired BN ;p(σ1) = BN ;p(σ2).

98

Chapter 6

Security Overview of mCertiKOS

We will now discuss how to apply the methodology of Chapters 4 and 5 to formally guarantee

end-to-end isolation between user processes running on top of the mCertiKOS kernel [21].

During the proof effort, we had to make some changes to the operating system to close

potential security holes. We refer to our secure variant of the kernel as mCertiKOS-secure.

6.1 mCertiKOS Overview

The starting point for our proof effort was the basic version of the mCertiKOS kernel,

described in detail in Section 7 of [21]. We will give an overview of the kernel here. It is

composed of 32 abstraction layers, which incrementally build up the concepts of physical

memory management, virtual memory management, kernel-level processes, and user-level

processes. Each layer L consists of the following components:

• a type ΣL of program state, separated into machine registers, concrete memory, and

abstract data of type DL

• a set of initial states IL and final states FL

• a set of primitives PL implemented by the layer

• for each f ∈ PL, a deterministic specification of type ΣL → option ΣL

99

• (if L is not the bottom layer) for each f ∈ PL, an implementation written in either

LAsm(L′) or ClightX(L′) (defined below), where L′ is the layer below L

• two special primitives called load and store that model access to global memory;

these primitives have no implementation as they are a direct model of how the x86

machine translates virtual addresses using page tables

The top layer is called TSysCall, and the bottom is called MBoot. MBoot describes

execution over the model of the actual hardware; the specifications of its primitives are

taken as axioms. Implementations of primitives in all layers are written in either a layer-

parameterized variant of x86 assembly or a layer-parameterized variant of C.

The assembly language, called LAsm(L), is an extension of CompCert’s [33] model of x86

assembly that allows primitives of layer L to be called atomically. When an atomic primitive

call occurs, the semantics consults that primitive’s specification to take a step. Note that

the load and store primitives are never called explicitly (as they have no implementation),

but instead are used to specify the semantics of x86 instructions that read or write memory

(e.g., movl %eax, 0(%ecx)).

The C variant, called ClightX(L), is an extension of CompCert’s Clight language [7]

(which is a slightly-simplified version of C). Like LAsm(L), the semantics is extended with

the ability to call the primitives of L atomically. ClightX(L) programs can be compiled

to LAsm(L) in a verified-correct fashion using the CompCertX compiler [21], which is an

extension of CompCert that supports per-function compilation.

Each layer L induces a machine ML of the kind described in Section 5.1. The state

type and initial/final states of ML come directly from L. The transition relation of type

P(ΣL ×ΣL) is precisely the operational semantics of LAsm(L). The machine’s observation

function will be discussed later, as it is an extension that we implemented over the existing

mCertiKOS specifically for the security proof.

Layer Simulation Figure 6.1 illustrates how machines induced by two consecutive layers

are connected via simulation. Each step of machine ML is either a standard assembly

command or an atomic primitive call. Steps of the former category are simulated in ML′ by

100

ML

ML’

spawn() yield()

ClightX(L’)

CompCertX

LAsm(L’) LAsm(L’)

Figure 6.1: Simulation between adjacent layers. Layer L contains primitives spawn

and yield, with the former implemented in ClightX(L′) and the latter implemented in
LAsm(L′).

exactly the same assembly command. Steps of the latter are simulated using the primitive’s

implementation, supplied by layer L. If the primitive is implemented directly in LAsm(L′)

(e.g., yield in Figure 6.1), then the simulation directly uses the small-step semantics of this

implementation. If the primitive is implemented in ClightX(L′) (e.g., spawn in Figure 6.1),

then CompCertX’s compilation is inserted into the simulation. CompCertX is verified

to provide a simulation from the ClightX(L′) execution to the corresponding LAsm(L′)

execution, so this is chained appropriately to get an end-to-end simulation from the ML

execution to the ML′ execution.

As a general convention, the simulation relation between consecutive machines only

represents an abstraction of some concrete memory into abstract data. In other words,

some portion of concrete memory in the lower-level machine is related to some newly-

introduced portion of abstract data in the higher-level machine. In this way, as we move

up the layers, concrete memory gets incrementally abstracted away in a monotonic fashion.

Once we reach the top layer, TSysCall, concrete memory has been fully abstracted away

from user-mode semantics; hence user processes have no mechanism for interacting with

the concrete memory directly. In fact, by convention, mCertiKOS actually requires that

primitive specifications at all layers do not interact with concrete memory. If a primitive

needs to access some portion of concrete memory, then a layer must first be introduced to

abstract that memory.

Once every pair of consecutive machines is connected with a simulation, they are com-

bined transitively to obtain a simulation from TSysCall to MBoot. Since the TSysCall layer

provides mCertiKOS’s system calls as primitives, user process execution is specified at the

101

TSysCall level. To get a better sense of user process execution, we will now describe the

abstract data and primitives of the TSysCall layer in mCertiKOS-secure.

TSysCall State The TSysCall abstract data is a Coq record consisting of 32 separate

fields. We list here those fields that will be relevant to our discussion later. In the following,

whenever a field name has a subscript of i, the field is a finite map from process ID to some

data type. Each user process running over the kernel has a unique, integer-valued process

ID, and IDs are never reused. From a security standpoint, one should think of each process

ID value as a unique principal or security domain.

• outi — The output buffer for process i, represented as a list of 32-bit integers. Note

that output buffers exist in all layers’ abstract data, including MBoot. They are never

actually implemented in memory; instead, they are assumed to be a representation

of some external method of output (e.g., a monitor or a network channel), and are

used to define the observable events of user-process execution.

• ikern — A global boolean flag stating whether the machine is currently in kernel

mode or user mode.

• HP — A global, flat view of the user-space memory heap (physical addresses between

230 and 3×230). A page is defined as the 4096-byte sequence starting from a physical

address that is divisible by 4096.

• AT — A global allocation table, represented as a bitmap indicating which pages in

the global heap have been allocated. Element n corresponds to the 4096-byte page

starting from physical address 4096n.

• pgmapi — A representation of the two-level page map for process i. The page map

tells the x86 machine how to translate virtual addresses between 0 and 232 − 1 into

physical addresses.

• containeri — Metadata for process i regarding spawned status, children, parents,

and resource quota. A container is itself a Coq record containing the following fields:

102

– used — A boolean indicating whether process i has been spawned.

– parent — The ID of the parent of process i (or 0 for root process 0).

– nchildren — The number of children of process i.

– quota — The maximum number of pages that process i is allowed to allocate.

– usage — The current number of pages that process i has allocated.

• ctxti — The saved register context of process i, containing the register values that

will need to be restored the next time process i is scheduled.

• cid — The currently-running process ID.

• rdyQ — An ordered list of process IDs that are ready to be scheduled (head of the

list is the next to be scheduled).

Note that process containers, which track parent/child relationships and dynamic resource

usage, did not exist in the initial version of mCertiKOS taken from [21]. Prior to conducting

our security proof, we realized that a lack of dynamic resource tracking would be extremely

problematic for security, since a user process could easily affect others via a denial-of-service

attack that repeatedly allocates pages until all of physical memory is exhausted. Therefore,

inspired by the concept of containers in the HiStar security-aware operating system [62],

we chose to implement a similar notion of container objects in mCertiKOS to preemptively

deal with this security issue. Containers not only enforce a quota on the number of memory

pages each process is allowed to dynamically allocate, but they also allow processes to

distribute some of their memory quota to children. In Chapter 7, we will illustrate how

containers and memory quotas are crucial to our security proof.

TSysCall Primitives There are 9 primitives in the TSysCall layer of mCertiKOS-

secure, including the load/store primitives. The primitive specifications operate over both

the TSysCall abstract data and the machine registers. Note that they do not interact with

concrete memory since all relevant portions of memory have already been abstracted into

the TSysCall abstract data.

103

• Initialization — proc init sets up the various kernel objects to get everything into

a working state. We never attempt to reason about anything that happens prior to

initialization; it is assumed that the bootloader will always call proc init.

• Load/Store — Since paging is enabled in all user-mode TSysCall states, the load

and store primitives walk the two-level page table of the currently-running process

to translate a virtual address into physical. If no physical address is found due to no

page being mapped, then the faulting virtual address is written into the CR2 control

register, the current register context is saved, and the instruction pointer register is

updated to point to the entry of the page fault handler primitive.

• Page Fault — pgf handler is called immediately after one of the load/store primitives

fails to resolve a virtual address. It reads the faulting virtual address from the CR2

register, allocates one or two new pages as appropriate, increases the current process’s

page usage (see the container description above), and plugs the page(s) into the

page table. It then restores the register context that was saved when the load/store

primitive faulted. If the current process does not have enough available quota to

allocate the required pages, then the instruction pointer register is updated to point

to the entry of the yield primitive (see below). This means that the process will end

up page faulting and yielding infinitely.

• Get Quota — get quota returns the amount of remaining quota for the currently-

executing process. This is useful to provide as a system call since it allows processes

to divide their quota among children in any way they wish.

• Spawn Process — proc create attempts to spawn a new child process. It takes a

quota as a parameter, specifying the maximum number of pages the child process

will be allowed to allocate. This quota allowance is taken from the current process’s

available quota.

• Yield — sys yield performs the first step for yielding to the next process in the ready

queue. It enters kernel mode, disables paging, saves the current registers, and changes

104

the currently-running process ID to the head of the ready queue (updating the ready

queue accordingly). It then context switches by restoring the newly-running process’s

registers. The newly-restored instruction pointer register is guaranteed (proved as an

invariant) to point to the function entry of the start user primitive.

• Start User — start user performs the simple second step of yielding. It enables pag-

ing for the currently-running process and exits kernel mode. The entire functionality

of yielding must be split into two primitives (sys yield and start user) because

context switching requires writing to the instruction pointer register, and therefore

only makes sense when it is the final operation performed by a primitive. Hence

yielding is split into one primitive that ends with a context switch, and a second

primitive that returns to user mode.

• Output — print appends its integer parameter to the output buffer of the currently-

running process.

6.2 Security Overview

We have now provided enough background on mCertiKOS to begin discussing the security

verification. We consider each process ID to be a distinct principal or security domain.

The security property that we aim to prove is exactly the high-level security defined in

Section 5.2 (Definition 6), applied over the TSysCall machine using a carefully-constructed

observation function that we define below. Theorem 14 then guarantees security of the

corresponding whole-execution behaviors over the MBoot machine (which represents our

lowest-level model of the assembly machine).

High-Level Semantics As explained in Chapters 4 and 5, high-level security is proved

by showing that every step of execution preserves an indistinguishability relation saying that

the observable portions of two states are equal. In the mCertiKOS context, however, this

property will not actually hold over the TSysCall machine, because it models the execution

of all user processes, not just the observer’s process.

105

active state inactive state

Figure 6.2: The TSysCall-local semantics, defined by taking big steps over the inactive
parts of the TSysCall semantics.

To see this, consider any process ID p, which we call the observer process. For any

TSysCall state σ, we say that σ is “active” if cid(σ) = p, and “inactive” otherwise. Now

consider whether the values in machine registers should be observable to p. Clearly, if p

is executing, then it can read and write registers however it wishes, so the registers must

be considered observable. On the other hand, if some other process p′ is executing, then

the registers must be unobservable to p if we hope to prove that p and p′ are isolated. We

conclude that registers should be observable to p only in active states.

What happens, then, if we attempt to prove that indistinguishability is preserved when

starting from inactive indistinguishable states? Since the states are inactive, the registers

are unobservable, and so the instruction pointer register in particular may have a completely

different value in the two states. This means that the indistinguishable states may execute

different instructions. If, for example, one state executes the yield primitive while the other

does not, we may end up in a situation where one resulting state is active but the other is

not; clearly, such states cannot be indistinguishable since the registers are observable in one

state but not in the other. Thus indistinguishability will not be preserved in this example.

The fundamental issue here is that, in order to prove that p cannot be influenced by

p′, we must show that p has no knowledge that p′ is even executing over the kernel. We

accomplish this by defining a higher-level machine above the TSysCall machine, where every

state is active, meaning the semantics itself hides the executions of all processes except for

the observer. We call this the TSysCall-local machine — it is parameterized by principal

p, and it represents p’s local view of the TSysCall machine.

Figure 6.2 shows how the semantics of TSysCall-local is defined. The solid arrows are

transitions of the TSysCall machine, white circles are active TSysCall states, and shaded

circles are inactive states. The TSysCall-local semantics is then obtained by combining all

106

of the solid arrows connecting active states with all of the dotted arrows. Note that in

the TSysCall layer, the yield primitive is the only way that a state can change from active

to inactive, or vice-versa. Thus one can think of the TSysCall-local machine as a version

of the TSysCall machine where the yield semantics takes a big step over other processes’

executions, immediately returning to the observer process that invoked the yield.

Given all of this discussion, our high-level security property is proved over the TSysCall-

local machine, for any choice of observer principal p. We prove simulation from TSysCall-

local to TSysCall, so this strategy fits cleanly into our security verification methodology.

Observation Function We now define the high-level observation function used in our

verification, which maps each principal and state to an observation. For a given process ID

p, the state observation of σ is defined as follows:

• Registers — All registers are observable if σ is active. No registers are observable if

σ is inactive.

• Output — The output buffer of p is observable.

• Virtual Address Space — We can dereference any virtual address by walking through

p’s page tables. This will result in a value if the address is actually mapped, or no

value otherwise. This function from virtual addresses to option values is observable.

Importantly, the physical address at which a value resides is never observable.

• Spawned — The spawned status of p is observable.

• Quota — The remaining quota (max quota minus usage) of p is observable.

• Children — The number of children of p is observable.

• Active — It is observable whether cid(σ) is equal to p.

• Reg Ctxt — The saved register context of p is observable.

The virtual address space component of the observation function is particularly inter-

esting, as it showcases the strength and generality of our methodology. Figure 6.3 shows

pseudocode of the Coq specification used at the TSysCall level for loading data from the

107

Definition va_load p σ rs rd va :=
 match ZMap.get (PDX va) (pgmapp σ) with
 PDEValid _ pte =>
 match ZMap.get (PTX va) pte with
 | PTEValid pg _ =>
 Next (rs # rd <-
 FlatMem.load (HP σ) (pg*PGSIZE + va%PGSIZE))
 | PTEUnPresent => exec_pagefault p σ rs va
 end
 end.

Figure 6.3: Pseudocode of the load primitive specification.

global heap (the load primitive). The two match clauses walk the two levels of page tables

(pgmap) to convert a virtual address va into a physical page number pg and an offset (as-

suming a page fault does not occur). The resulting physical address, which we will refer

to as pa in the following, is computed as pg ∗ PGSIZE + va%PGSIZE. Then FlatMem.load

is called to obtain the value at location pa in the global heap HP. At first glance, it is not

at all obvious how one might prove the security of this specification. In particular, the

value of pa causes trouble: if the observer learns the physical address where his data is lo-

cated, he could potentially learn some information about how other processes are allocating

pages (e.g., the bigger the physical address, the more memory other processes have been

using). In traditional label-based reasoning, pa would have a Hi security label, while the

final data returned by the FlatMem.load lookup would have a Lo label. In other words,

FlatMem.load performs a declassification here; yet this declassification does not actually

result in an information leak. How can one prove that the declassification is acceptable?

Our verification methodology answers this question with ease. We simply define our

observation function as described above, so that the physical address obtained during virtual

address loading is unobservable. Only the following function is observed:

Op(σ)
4
= fun va⇒ va load p σ va

If we define the observation function in this way, and prove the high-level noninterference

property (Definition 6) with respect to this observation function, then we successfully guar-

108

antee that end-to-end behavior of va load really is independent from the specific value of

pa. Hence our methodology cleanly and implicitly shows that the declassification performed

by va load is secure. Furthermore, this example demonstrates the power of allowing the

observation function to express more than just a portion of program state. We define the

observation to be a subtle transformation involving both the pgmap and HP portions of state.

109

Chapter 7

Proving Security of mCertiKOS

To prove end-to-end security of mCertiKOS, we must apply Theorem 14 of Chapter 5, using

the simulation from TSysCall-local to MBoot, the high-level observation function described

in Chapter 6, and a low-level observation function that simply projects the output buffer.

To apply the theorem, the following facts must be established:

1. MBoot is deterministic.

2. MBoot is behavioral for any principal (Definition 7 of Chapter 5).

3. The simulation from TSysCall-local to MBoot preserves indistinguishability.

4. TSysCall-local satisfies the high-level security property (Definition 6 of Chapter 5).

Determinism of the MBoot machine is already proved in mCertiKOS (in fact, all layers

are deterministic). Behaviorality of MBoot is easily established by defining a partial order

over output buffers based on list prefix, and showing that every step of MBoot either leaves

the buffer untouched or appends to the end of the buffer. To prove that the simulation

preserves indistinguishability, we first prove that simulation between consecutive layers in

mCertiKOS always preserves the output buffer. Property 3 of Definition 11 then directly

follows, using an observation translation function f which simply projects the output buffer.

The primary task of the proof effort is, unsurprisingly, establishing the high-level un-

winding condition over the TSysCall-local semantics. The proof is done by showing that

110

Load 147

Store 258

Page Fault 188

Get Quota 10

Spawn 30

Yield 960

Start User 11

Print 17

Total 1621

Primitives 1621

Glue 853

Framework 2192

Invariants 1619

Total 6285

Security Proof (LOC)

Security of Primitives (LOC)

Figure 7.1: Approximate Coq LOC of proof effort.

each non-yield primitive of the TSysCall layer preserves indistinguishability. The yield

primitive requires special treatment since the TSysCall-local semantics treats it differently;

this will be discussed later in this section.

Figure 7.1 gives the number of lines of Coq definitions and proof scripts required for

the proof effort. The entire effort is broken down into security proofs for primitives, glue

code to interface the primitive proofs with the LAsm(L) semantics, definitions and proofs

of the framework described in Chapter 5, and proofs of new state invariants that needed

to be established. We will now discuss the most interesting aspects and difficulties of the

TSysCall-local security proof.

7.1 Conducting the TSysCall-local Security Proof

State Invariants While mCertiKOS already verifies a number of useful state invariants,

some new ones are needed for our security proofs. The most important new invariants

established over TSysCall-local execution are:

1. In all saved register contexts, the instruction pointer register points to the entry of

the start user primitive.

2. No page is mapped more than once in the page tables.

3. A user process is always either in user mode, or is in kernel mode and the instruction

pointer register points to the entry of the start user primitive (meaning that the

first part of yield was just executed, and user mode will be restored in one step).

111

4. The sum of the available quotas (max quota minus usage) of all spawned processes

is less than or equal to the number of unallocated pages in the heap (implying that

page allocation will always be successful if the process has quota available).

Additionally, for a given observer principal p, we assume the invariant that process p has

been spawned. Anything occurring before the spawning of p is considered part of the

initialization/configuration phase; we are not interested in reasoning about the security of

process p before the process even exists in the system.

Security of Load/Store Primitives The main task for proving security of the 100+

assembly commands of LAsm(TSysCall) is to show that the TSysCall layer’s load/store

primitives preserve indistinguishability. This requires showing that equality of virtual ad-

dress spaces is preserved. Reasoning about virtual address spaces can get quite hairy since

we always have to consider walking through the page tables, with the possibility of faulting

at either of the two levels.

To better understand the intricacies of this proof, consider the following situation. Sup-

pose we have two states σ1 and σ2 with equal mappings of virtual addresses to option values

(where no value indicates a page fault). Suppose we are writing to some virtual address v

in two executions on these states. Consider what happens if there exists some other virtual

address v′ such that v and v′ map to the same physical page in the first execution, but

map to different physical pages in the second. It is still possible for σ1 and σ2 to have

identical views of their virtual address space, as long as the two different physical pages

in the second execution contain the same values everywhere. However, writing to v will

change the observable view of v′ in the first execution, but not in the second. Hence, in this

situation, it is possible for the store primitive to break indistinguishability.

We encountered this exact counterexample while attempting to prove security, and we

resolved the problem by establishing the second state invariant mentioned above. The

invariant guarantees that the virtual addresses v and v′ will never be able to map to the

same physical page, thus ruling out the counterexample.

112

function alice {

 int pid1 = proc_create();

 yield();

 int pid2 = proc_create();

 print(pid2 – pid1 + 1);

}

function bob {
 int secret = 42;
 for i = 0 to secret {
 proc_create();
 }
 yield();
}

||

Figure 7.2: Using child process IDs to as a side channel.

Security of Process Spawning During our verification effort, we discovered that the

proc create primitive had a major security flaw. Figure 7.2 shows two user programs that

exploit proc create as a side channel for communication. When the insecure version of

mCertiKOS creates a new child process, it chooses the lowest process ID not currently in

use, and returns the ID to the user. In the figure, Alice spawns a child process, stores its

ID into variable x, and then yields to Bob. Bob spawns a number of children equal to some

secret value, and then yields back to Alice. Finally, Alices spawns another child, stores its

ID into y, and observes the value y − x− 1. This observed value is exactly Bob’s secret!

To close this side channel, we had to revamp the way child process IDs are chosen in

mCertiKOS-secure. The new ID system works as follows. We define a global parameter

m limiting the number of children any process is allowed to spawn. Suppose a process

with ID i and c children (c < m) spawns a new child. Then the child’s ID will always be

i ∗m+ c+ 1. This formula guarantees that different processes can never interfere with each

other via child ID: if i 6= j, then the set of possible child IDs for process i is completely

disjoint from the set of possible child IDs for process j. It is easy to see how this scheme

closes the leak of Figure 7.2. x will always the contain the ID of Alice’s first child, while y

will contain the ID of Alice’s second child; these two values are determined solely by Alice’s

own ID, so Bob is no longer capable of influencing them.

Security of Page Fault Since page faults dynamically allocate new pages, security of

page faulting requires some reasoning about the resource quota implemented by containers

(recall the container discussion in Chapter 6). More specifically, notice that the global

113

C: confidentiality I: integrity CR: confidentiality restore

σ1

σ2

σ1’

σ2’

 I I I

 I I I I I I I

 C

CR

Figure 7.3: Applying the three lemmas to prove the security property of TSysCall-local
yielding.

allocation table AT must be unobservable to user processes since all processes can affect it

via page allocation. This means that the page fault handler may successfully allocate a page

in one execution, but fail to allocate a page in an execution from an indistinguishable state

due to there being no pages available. Clearly, the observable result of the primitive will be

different for these two executions. To deal with this difficulty, we relate available heap pages

to available quota by applying the fourth state invariant mentioned above. Recall that the

invariant guarantees that the sum of the available quotas of all spawned processes is always

less than or equal to the number of available heap pages. Therefore, if an execution ever

fails to allocate a page because no available page exists, the available quota of all spawned

processes must be zero. Since the available quota is observable, we see that allocation

requests will be denied in both executions from indistinguishable states. Therefore, we

actually can end up in a situation where one execution has pages available for allocation

while the other does not; in both executions, however, the available quota will be zero, and

so the page allocator will deny the request for allocation.

Security of Yield Yielding is by far the most complex primitive to prove secure, as

the proof requires reasoning about the relationship between the TSysCall semantics and

TSysCall-local semantics. Consider Figure 7.3, where active states σ1 and σ2 are indistin-

guishable, and they both call yield. The TSysCall-local semantics takes a big step over the

executions of all non-observer processes; these big steps are unfolded in Figure 7.3, so the

solid arrows are all of the individual steps of the TSysCall semantics. We must establish

that a big-step yield of the TSysCall-local machine preserves indistinguishability, meaning

that states σ′1 and σ′2 in Figure 7.3 must be proved indistinguishable. We divide this proof

114

into three separate lemmas, proved over the TSysCall semantics:

• Confidentiality — If two indistinguishable active states take a step to two inactive

states, then those inactive states are indistinguishable.

• Integrity — If an inactive state takes a step to another inactive state, then those

states are indistinguishable.

• Confidentiality Restore — If two indistinguishable inactive states take a step to two

active states, then those active states are indistinguishable.

These lemmas are chained together as pictured in Figure 7.3. The dashed lines indicate

indistinguishability. Thus the confidentiality lemma establishes indistinguishability of the

initial inactive states after yielding, the integrity lemma establishes indistinguishability

of the inactive states immediately preceding a yield back to the observer process, and

the confidentiality restore lemma establishes indistinguishability of the active states after

yielding back to the observer process.

In the mCertiKOS proof, we actually generalize the confidentiality lemma to apply to

other primitives besides yield.

• Generalized Confidentiality — Two indistinguishable active states always take a step

to indistinguishable states.

We frame all of the high-level security proofs for the other primitives as instances of this

confidentiality lemma. This means that we derive high-level security of the entire TSysCall-

local machine by proving this generalized confidentiality lemma along with integrity and

confidentiality restore.

Note that while the confidentiality and confidentiality restore lemmas apply specifically

to the yield primitive (since it is the only primitive that can change active status), the

integrity lemma applies to all primitives. Thus, like the security unwinding condition,

integrity is proved for each of the TSysCall primitives. The integrity proofs are simpler since

the integrity property only requires reasoning about a single execution, whereas security

requires comparing two.

115

The confidentiality restore lemma only applies to the situation where two executions are

both yielding back to the observer process. The primary obligation of the proof is to show

that if the saved register contexts of two states σ1 and σ2 are equal, then the actual registers

of the resulting states σ′1 and σ′2 are equal. There is one interesting detail related to this

proof: a context switch in mCertiKOS does not save every machine register, but instead

only saves those registers that are relevant to the local execution of a process (e.g., EAX,

ESP, etc.). In particular, the CR2 register, which the page fault handler primitive depends

on, is not saved. This means that, immediately after a context switch from some process

i to some other process j, the CR2 register could contain a virtual address that is private

to i. How can we then guarantee that j is not influenced by this value? Indeed, if process

j is able to immediately call the page fault handler without first triggering a page fault,

then it may very well learn some information about process i. We resolve this potential

leak by making a very minor change to mCertiKOS: we add a line of assembly code to the

implementation of context switch that clears the CR2 register to zero.

Security of Other Primitives We do not need to reason about security of proc init

since we assume that initialization occurs appropriately, and no process is ever allowed

to call the primitive again after initialization finishes. None of the primitives get quota,

start user, or print brought up any difficulties for security verification.

7.2 End-to-End Process Isolation

We conclude this chapter by taking a step back and revisiting the top-level end-to-end

security theorem. The final statement is the conclusion of Theorem 14, which is low-level

security of the MBoot machine for all states related by φ(M,p, I, R). In other words,

the theorem says that if we consider any MBoot state s1 related to a properly-initialized

TSysCall state σ1, and we consider related modified states s2 and σ2 with σ2 initialized and

Op(σ1) = Op(σ2), then the whole-execution behaviors of MBoot on s1 and s2 are identical.

Notice that this statement requires a solid understanding of the particular mCertiKOS

116

observation function. While it may feel intuitively clear that the observation function

defined in Section 6.2 is reasonable, how can we be certain? Poorly-defined observation

functions are certainly possible; for example, if we define an identity observation function

where all principals observe all program state, then the unwinding condition degenerates

into a simple statement of determinism. Thus applying our methodology with such an

observation function would not actually give us a result that is related to security.

In general, we consider the observation function definition to be a trusted part of the

methodology, in the same way that high-level specifications must be trusted to actually

specify our intuitive desires for the software’s behavior. However, depending on the context,

we may be able to do better than this. While we have not yet completed a formal Coq

development, we hope to prove a higher-level end-to-end security theorem in mCertiKOS

that truly guarantees user-process isolation by being completely independent from the choice

of observation function. Our vision for how this would work involves the following two steps:

1. Define a new state predicate Spawned(p), saying that process p was just spawned by

the kernel. Prove that this predicate is stronger than the initialization predicate I

(i.e., ∀p . Spawned(p)⇒ I).

2. Prove that all states satisfying Spawned(p) are indistinguishable from one another

according to p (i.e., ∀σ1, σ2 ∈ Spawned(p) . Op(σ1) = Op(σ2)). We imagine that such

a property should be provable since all of p’s data should be in a deterministic initial

state (e.g., all zeros) immediately after p is spawned.

Assuming we can successfully implement these steps, the end-to-end security guarantee can

clearly be reformulated as follows: if we consider some MBoot state s1 that is related to

a TSysCall state σ1 which occurs immediately after p is spawned (i.e., σ1 ∈ Spawned(p)),

along with related modified states s2 and σ2 (with σ2 ∈ Spawned(p)), then the whole-

execution behaviors of MBoot on s1 and s2 are identical. With this theorem formulation,

we no longer need to understand and trust the choice of observation function. While we

still have some details to work out, we are hopeful that such a theorem can be established

in the near future.

117

Chapter 8

New Feature: Virtualized Time

To demonstrate the extensibility of our methodology, we decided to add a new, useful

feature to mCertiKOS-secure: the ability for user processes to time their own executions.

Timing flows pose a notoriously difficult challenge for security reasoning. Nevertheless, we

were able to successfully implement and verify the security of this new feature with only

about two person-weeks of effort. The generality of the observation function is extremely

helpful for clearly specifying how user processes view time.

8.1 Specification and Implementation of Timing

Figure 8.1 shows a motivating example for the new feature that we would like to support.

We wish to provide a system call gettime that user processes can invoke to help time their

executions. However, we do not want to allow processes to communicate with each other by

exploiting this timestamp. Hence we must create some notion of virtualized time, whereby

each process has its own isolated timeline. It is important to note that the feature we are

implementing here is completely orthogonal to a wall-clock time. While a user can observe

the time of an event within the context of his own timeline, our threat model still assumes

that he has no mechanism for associating that event with a global wall-clock time.

118

function alice {

 int t0 = gettime();

 while (true) {

 for i = 0 to 106 {

 // do some work...

 }

 int t = gettime();

 print(t – t0);

 yield();

 }

}

Figure 8.1: A sample usage of the gettime feature.

TSC Oracle As a basis for implementing the timing feature, we make use of x86’s Time

Stamp Counter (TSC), which keeps track of the total number of clock cycles since the last

reset. At the machine model level (MBoot), we add a new primitive rd tsc, and axiomatize

its specification. The primitive’s implementation is unverified but extremely simple: it looks

up the current TSC value using x86’s RDTSC instruction, and returns the value. Note that

the TSC value clearly can be used as a potential information-flow side channel; thus the

rd tsc primitive is not exposed to users at the TSysCall level, and users are not allowed

to directly invoke the RDTSC instruction (x86 has a global TSD flag which, when set, will

cause a user-mode RDTSC invocation to trigger an exception).

Defining the specification of rd tsc is somewhat subtle. We certainly do not want to

model the actual number of cycles on the machine, since this is highly nondeterministic. A

single assembly instruction could take any number of cycles to execute depending on various

unpredictable conditions. Rather than try to accurately specify the value of the TSC, we

will instead assume the existence of an oracle for a given execution that will accurately

answer the question, “for any n, what is the TSC value returned by the nth invocation of

the RDTSC instruction?” This strategy is reasonable because of the following two facts:

(1) our theorems will apply to any choice of oracle; and (2) for every actual execution, there

exists some oracle consistent with that execution.

Local Timeline Given our specification of the physical TSC in terms of an oracle, we

virtualize the TSC value for each user process by implementing isolated timelines. Fig-

119

time
paused

time
advances

time
advances

time
paused

time
paused

time
advances

= p is active = p is not active

void stoptime() {

 int p = get_cid();

 int t = rd_tsc();

 sump += t – cur;

}

int gettime() {

 int p = get_cid();

 int t = rd_tsc();

 return (sump + (t – cur));

}

void starttime() {

 cur = rd_tsc();

}

Figure 8.2: Illustration and implementation of local timelines.

ure 8.2 illustrates a timeline that is local to process p, and shows the code that implements

all timelines. It is useful to think of our implementation in terms of stopwatches. Each pro-

cess has its own stopwatch: gettime returns the value of the active (i.e., currently-running)

process’s stopwatch, stoptime pauses the active process’s stopwatch, and starttime re-

sumes the active process’s stopwatch. Whenever a process yields, stoptime is called prior

to context switching, the active process ID is changed to be the head of the ready queue,

and finally starttime is called after context switching. This guarantees that, at any given

moment during execution, all process’s stopwatches are paused except for the active one.

The code of Figure 8.2 shows a straightforward way to implement these stopwatches.

In the following, we will use the term epoch to refer to a portion of execution in between

two consecutive yields. We say that an epoch belongs to process p if p is the active process

during that epoch. At any moment during an execution, we use the term current epoch to

refer to the portion of execution since the most recent yield. Given this terminology, the

stopwatch implementation uses the following two fields of program state:

• sumi — For each process i, this integer value gives the total amount of time spent in

previous completed epochs belonging to i.

• cur — This integer value records the TSC value of the beginning of the current epoch.

Given these fields, the current virtualized time at any moment can be computed as sump+(t−

cur), where p is the active process and t is the current TSC value returned by rd tsc. When-

120

ever a yield occurs, the appropriate sum is increased by the length of the just-completed

epoch (stoptime), and then cur is reset to the current TSC value (starttime). In this

way, each process has its own virtualized timeline.

Aside on TSC Overflow Technically, we need to be concerned with errors in our

code arising from the TSC value overflowing. However, the TSC is a 64-bit value in x86

architecture, so a machine would have to be running for well over a century on modern

architecture in order for overflow to occur. Therefore, we choose to embed an assumption

within our verification that the return value of rd tsc is always less than 264. Notice that

this assumption implies that the virtualized time sump + (t − cur) also does not overflow,

since this value is a subset of the timeline interval from 0 to t.

8.2 Security of Virtualized Time

The generality of the observation function allows for a clean and simple security verification

of virtualized time. For convenience, we first add a field tsc to abstract state that represents

the physical TSC. It gets updated to the return value of rd tsc whenever that primitive is

called. In other words, tsc simply remembers the value that rd tsc returned the last time

it was called. Given this, we define three timing-related observations made by process p:

• Previous Epochs — The value of sump is observable.

• Current Epoch — The value of (tsc− cur) is observable if p is the active process.

• Oracle — The p-filtered subset of the TSC oracle is observable (discussion below).

The first two observations clearly imply that the virtualized time sump + (t− cur) is always

observable when p is the active process and t is the value just returned by rd tsc; this fact

yields a simple security proof of the gettime system call. Notice how we exploit generality

of the observation function here by making the difference between tsc and cur observable,

even though each of the two values individually must be unobservable since they pinpoint

timestamps on a global timeline rather than local.

121

The third observation is quite subtle. Consider the following two insights:

1. The oracle cannot be entirely unobservable. Recall that the specification of gettime

first sets t to be the next value given by the oracle, and then returns sump+ (t−cur).

In order to prove that this specification is noninterfering, we must know that the

oracle produces the same t value in two indistinguishable states. Therefore the oracle

cannot be entirely hidden from observation.

2. The oracle cannot be entirely observable. It is possible that in two executions from

indistinguishable states, a process p′ which is not the observer p may invoke gettime

a different number of times, implying an information flow from p′ to p. In other words,

the integrity lemma of Chapter 7 will fail to hold if the entire oracle is observable

to p, since other processes can clearly change the oracle by invoking gettime.

Together, these insights imply that only some portion of the oracle can be observable to p.

In particular, we need to somehow filter the oracle, observing only those entries which

correspond to rd tsc invocations made by p. One potential solution would be to divide

the single global oracle into many per-process oracles. Unfortunately, this solution makes

it difficult to define the semantics of rd tsc at the MBoot level. At the TSysCall level,

we would choose which oracle to query based on the currently-running process, stored in

the abstract data field cid; at the MBoot level, however, cid has not yet been abstracted.

It might be possible to specify the MBoot-level semantics to inspect the concrete memory

corresponding to cid, but this would cause all kinds of trouble since it would violate the

mCertiKOS convention that primitive specifications never depend on concrete memory.

Instead, we use a simple solution that cleverly exploits our assumption of safety of

the high-level machine (the first property of Definition 6 in Chapter 5). For each natural

number n, we extend the oracle to return not only the current TSC value, but also an

integer p representing a process ID. At the TSysCall level, p is used as a prerequisite for

safe execution: the specification of gettime checks whether p is equal to cid, and returns

None if this check fails. At the MBoot level, on the other hand, p is completely ignored by the

rd tsc specification, allowing us to define the specification without a need to refer to cid.

122

This means that there are some oracles for which a TSysCall-level execution gets stuck, but

the corresponding MBoot-level execution is safe. Thankfully, this odd situation is irrelevant

due to the fact that we assume safe execution at the TSysCall level as a prerequisite for all

of our major theorems. Notice that this solution is still justifiable in the following sense:

even though many choices of oracle will now yield faulty high-level execution, there still

always exists some valid oracle for any actual, safe execution.

Given this extended definition of oracle, we can now p-filter an oracle by choosing only

those entries with process ID p. Then, as mentioned above, we make only this p-filtered

oracle subset observable to p. While the intuitive concept should be clear at this point, the

technical details of defining p-filtering are actually still a bit tricky. Because we represent the

oracle as a function from natural numbers to pairs, we also keep track of the current natural-

number position in abstract state. Whenever rd tsc is called, this position is incremented

by one. When defining the observation, we must be careful how we treat this oracle position,

since it could be a source of information leak. To make observability independent from the

precise value of the oracle position, we define a function filter(o, c, p, n) which takes oracle

o, oracle position c, process ID p, and natural number n as parameters, and returns the nth

occurrence of pairs in o with process ID equal to p, starting from position c. Then oracle

observation is defined as:

Op(σ)
4
= λ n . filter(oracle(σ), oracle pos(σ), p, n)

In other words, rather than make the oracle position c observable, we make the infinite

stream of p-related oracle entries starting from c observable.

With the help of a few simple lemmas characterizing this filter function, the entire

security verification of virtualized time goes through quite easily. The generality of the

observation function is key in allowing us to prove security of this new kernel feature. This

clearly demonstrates the extensibility of our novel methodology: even though we need to

introduce the concept of an oracle for reasoning about time within mCertiKOS, the timing-

sensitive security verification is still completely straightforward.

123

Chapter 9

Assumptions, Limitations, and

Future Work

We have demonstrated that our new methodology is extremely general, and is effective in

guaranteeing security of realistic, low-level systems code. Nevertheless, like any framework,

it has its fair share of assumptions and limitations. In this chapter, we discuss the most

important limitations in order to help contextualize the situations in which our methodology

should or should not be applicable.

Fidelity of the Assembly Machine Model Our methodology only yields a security

proof for assembly programs that fit within our model of x86 assembly execution. The model

is an extended version of CompCert’s, primarily designed for supporting all of the features

needed by the mCertiKOS kernel implementation (e.g., distinction between kernel and user

mode executions). We make no claims about the relationship between our model and the

physical hardware that executes x86 assembly code. If one wished to apply our proof to the

actual machine execution, the following significant gaps would need to be closed:

• Completeness Gap — Our model is certainly not complete for all user-level assembly

programs, so it may be possible to violate security on actual hardware by exploiting

unmodeled assembly instructions. One example of such an instruction is RDTSC,

which reads the x86 timestamp counter, as described in Chapter 8. The TSC can be

124

used as a communication channel between processes, leaking information about how

much time certain processes have spent executing. We do not model the RDTSC

instruction — a user program that uses the instruction would not even be considered

valid syntax in our model, so there is no way that any verified properties could apply

to such a program. Note that even in the extension described in Chapter 8, we choose

not to model the RDTSC instruction; instead, we axiomatize a rd tsc primitive and

call the RDTSC instruction in its unverified implementation.

• Soundness Gap — In addition to this completeness gap, there is also a potential

soundness gap between our machine model and the physical hardware; we must trust

that the semantics of all of our modeled assembly instructions are faithful to the

actual hardware execution. This is a standard area of trust that arises in any formal

verification effort: at some point, we always reach a low-enough level where trust

is required, whether this means trusting the operating system that a program is

running on, trusting the hardware to meet its published specifications, or trusting

the laws of physics that the hardware is presumably obeying. Note that the level of

trustworthiness of our machine model is similar to CompCert’s, since we use a modest

extension over CompCert’s model.

• Safety Gap — The soundness gap just described requires us to trust that whenever

the modeled semantics of an assembly instruction is well-defined, the execution of

that instruction on physical hardware will do what the model says. What happens,

however, if the modeled semantics gets stuck? The model makes no promises about

the actual execution of a stuck semantics; the execution could continue running with-

out issues, but it would no longer be bound by any of our verification. Therefore,

even if we closed the completeness and soundness gaps described above to a point

of satisfaction, we would still be required to assume that user programs never have

undefined semantics in order to apply our verification to the physical execution. This

is quite a heavyweight assumption, as user-level code is meant to represent arbitrary

and unverified assembly.

125

Future Plans for Model Fidelity In light of these various unrealistic assumptions

required to apply our verification to the physical machine, it would be desirable to imple-

ment a clearer and more streamlined representation of user-mode assembly execution. The

mCertiKOS assembly model was designed for verification of the kernel code; there is actu-

ally no need to use that model for unverified user process execution. Instead, we can design

a simple model consisting of registers and a flat memory representing a virtual address

space, where an instruction can be one of the following:

• interrupt — A trap into the kernel to handle, for example, a privileged instruction

or a system call.

• load/store — Instructions that use the kernel’s load/store primitives to access the

virtual address space. These may trigger a page fault, to be handled by the kernel.

• other — Any other user-land instruction, which is assumed to only be able to read/write

the values in registers.

This simple model has the benefit of making very clear exactly what assumption needs

to hold in order to relate the model to actual execution: the arbitrary user-land instruc-

tions must only depend upon and write values in the modeled registers. Notice that the

RDTSC instruction described above is an example of an instruction that does not satisfy

this assumption; hence it would need to be explicitly modeled if we wanted to support it.

We hope that future work can gradually model more and more hardware features and

instructions like RDTSC that do not satisfy this assumption. Each new feature could

potentially violate security, and thus will require some additional verification effort. For the

RDTSC example, we would close the timestamp counter information channel by setting the

timestamp disable flag (TSD), which causes the hardware to treat RDTSC as a privileged

instruction. Then, if a user process attempts to execute the instruction, the hardware will

generate an exception and trap into the kernel. The kernel will then handle the exception in

a way that is verified to be secure (e.g., it could kill the process, yield to a different process,

or return a virtualized timestamp as in Chapter 8).

126

High-Level Policy Specification As with any formal verification effort, we must

trust that the top-level specification of our system actually expresses our intentions for

the system, including the security policy specified as an observation function. Because

observation functions can have any type, our notion of security is far more expressive than

classical pure noninterference. This does mean, however, that it can potentially be difficult

to comprehend the security ramifications of a complex or poorly-constructed observation

function. We place the onus on the system verifier to make the observation function as clear

and concise as possible. This view is shared by a number of previous security frameworks

with highly-expressive policy specification, such as the PER model [50] and Relational

Hoare Type Theory [42]. In our mCertiKOS security specification, the virtual address

space observation provides a good example of a nontrivial but clear policy specification —

hiding physical addresses is, after all, the primary reason to use virtual address spaces.

Note, however, as we discussed in Section 7.2, it may actually be possible to remove this

trust requirement in certain contexts by proving a higher-level theorem that is independent

from the choice of observation function.

Applicability of the Methodology In order to utilize our security methodology, the

following steps must be taken:

• The high-level security policy must be expressed as isolation between the observation

functions of different principals. As mentioned previously, the complete lack of re-

strictions on the observation function yields a very high level of policy expressiveness.

While a systematic exploration of expressiveness remains to be done, we have not

encountered any kinds of information flows that are not expressible in terms of an

observation function.

• The high-level security property (Definition 6) must be provable over the top-level

semantics. In particular, this means that indistinguishability must be preserved on

a step-by-step basis. If it is not preserved by each individual step, then the top-level

semantics must be abstracted further. For example, in our mCertiKOS security ver-

ification, we found that the TSysCall semantics did not preserve indistinguishability

127

on a step-by-step basis; we therefore abstracted it further into the TSysCall-local

semantics that hides the executions of non-observer processes. We are unsure if this

requirement for single-step indistinguishability preservation could be problematic for

other systems. In our experience, however, repeated abstraction to the point of atom-

icity is highly desirable, as it yields a clear specification of the system.

• Indistinguishability-preserving simulations must be established to connect the various

levels of abstraction. While the main simulation property can require significant

effort, we have not found the indistinguishability preservation property to be difficult

to establish in practice. The property generally feels closer to a sanity check than a

significant restriction. Consider, for instance, the example of the swap primitive from

Section 4.1.3. That example failed to preserve security across simulation because the

local variable z was being considered observable. A caller of the swap primitive should

obviously have no knowledge of z, however. Thus this is just a poorly-constructed

observation function; a reasonable notion of observation would hide the local variable,

and indistinguishability preservation would follow naturally.

User Process Safety There are a number of assumptions required specifically for the

mCertiKOS security guarantee (as opposed to the general theory). Most of these are directly

inherited from the mCertiKOS soundness theorem, such as correctness of the bootloader,

device drivers, and the CompCert assembler; see [21] for more details on these assumptions.

There is, however, one new assumption that requires discussion here, related to the safety

of user processes.

Notice that the theory presented in Chapter 5 requires a proof of safety of the top-level

semantics, with respect to some initialization invariant I (Definition 6). This means we must

prove that I is preserved by each individual step of the semantics, and that the semantics

can always take a step from any state satisfying I (i.e., standard preservation and progress

properties). We have a proof of preservation for mCertiKOS, but not progress. The current

version of mCertiKOS is non-preemptive and trusts user processes to have well-defined

semantics. The TSysCall-local semantics can thus get stuck in either of the following ways:

128

• The semantics does not currently specify what should happen when a user process

attempts to execute an assembly instruction that has undefined semantics, such as a

division by zero. Ideally, an operating system should provide a sandbox environment

for user processes, where any undefined instruction causes a trap into the kernel, and

is handled by either killing the offending process or by yielding to a different process.

mCertiKOS does not yet do this, but we hope this could be done in future work.

• The big steps of the TSysCall-local semantics (Figure 6.2) could get stuck if a process

yields but is never scheduled again. Even if we proved that the kernel scheduler is

fair (which would not be difficult as it currently only does round-robin scheduling),

we would still need to assume that user processes always eventually call yield. This

is a fundamental limitation of a non-preemptive kernel. There are plans to make

mCertiKOS preemptive in the future, but this requires a significant amount of effort.

Because of this potential for the top-level semantics to get stuck, we assume a significant

hypothesis in our Coq proof, which essentially says that neither of the two situations above

ever happens. While this hypothesis is necessary at the moment, it can be completely

discharged if mCertiKOS is upgraded with a sandbox feature and preemption.

Inter-Process Communication The mCertiKOS verification presented in this work

only applies to a version of the kernel that disables IPC. In the future, we would like to

allow some well-specified and disciplined forms of IPC that can still be verified secure. We

have actually already started adding IPC — our most recent version of the secure kernel

includes an IPC primitive that allows communication between all processes with ID at most

k (a parameter that can be modified). The security theorem then holds for any observer

process with ID greater than k. Ideally, we would like to extend this theorem so that it

guarantees some nontrivial properties about those privileged processes with low ID.

129

Chapter 10

Related Work and Conclusions

10.1 Locality in Separation Logic

The definition of locality (or local action), which enables the frame rule, plays a critical role

in Separation Logic [28, 46, 58]. Almost all versions of Separation Logic — including their

concurrent [8, 9, 43], higher-order [6], and relational [57] variants, as well as mechanized

implementation (e.g., [2]) — have always used the same locality definition that matches the

well-known Safety and Termination Monotonicity properties and the Frame Property [58].

In Chapter 2, we argued a case for strengthening the definition of locality to enforce

behavior preservation. This means that the behavior of a program when executed on a small

state is identical to the behavior when executed on a larger state — put another way, excess,

unused state cannot have any effect on program behavior. We showed that this change can

be made to have no effect on the usage of Separation Logic, and we gave multiple examples

of how it simplifies reasoning about metatheoretical properties.

Determinism Constancy One related work that calls for comparison is the property

of “Determinism Constancy” presented by Raza and Gardner [45], which is also a strength-

ening of locality. While they use a slightly different notion of action than we do, it can

be shown that Determinism Constancy, when translated into our context (and ignoring

130

divergence behaviors), is logically equivalent to:

σ0JCKσ′0 ∧ σ′0#σ1 =⇒ σ0#σ1 ∧ (σ0 • σ1)JCK(σ′0 • σ1)

For comparison, we repeat our Forwards Frame Property here:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 • σ1)JCK(σ′0 • σ1)

While our strengthening of locality prevents programs from increasing state during execu-

tion, Determinism Constancy prevents programs from decreasing state. The authors use

Determinism Constancy to prove the same property regarding footprints that we proved

in Section 2.4.1. Note that, while behavior preservation does not imply Determinism Con-

stancy, our concrete logic of Section 2.2 does have the property since it never decreases

state (we chose to have the free command put the deallocated cell back onto the free list,

rather than get rid of it entirely).

While Determinism Constancy is strong enough to prove the footprint property, it does

not provide behavior preservation — an execution on a small state can still become invalid

on a larger state. Thus it will not, for example, help in resolving the dilemma of growing

relations in the data refinement theory of [18]. Due to the lack of behavior preservation,

we do not expect the property to have a significant impact on the metatheory as a whole.

Note, however, that there does not seem to be any harm in using both behavior preservation

and Determinism Constancy. The two properties together enforce that the area of memory

accessible to a program be constant throughout execution.

Module Reasoning Besides our discussion of data refinement in Section 2.4.2, there has

been some previous work on reasoning about modules and their implementations within the

context of Separation Logic. In [44], a “Hypothetical Frame Rule” is used to allow modular

reasoning when a module’s implementation is hidden from the rest of the code. In [6], a

higher-order frame rule is used to allow reasoning in a higher-order language with hidden

module or function code. However, neither of these works discuss relational reasoning

131

between different modules. We are not aware of any relational logic for reasoning about

modules.

Section 2.4.5 discussed how behavior preservation is fundamentally important for com-

bining local reasoning with security verification; one interesting area for future work would

be to formalize this relationship in the context of mCertiKOS. Currently, mCertiKOS uses

a single monolithic datatype for abstract state. In the future, the framework could be al-

tered to instead divide abstract state into minimal composable pieces. This would yield

clea primitive specifications that only operate over the portion of abstract state needed by

the primitive (e.g., the get quota specification would only take the container portion of

abstract state as input). Behavior preservation would then need to be explicitly enforced

in order to soundly and securely combine all of these “small” specifications into a single,

system-wide guarantee.

10.2 Security-Aware Program Logic

In the area of language-based IFC reasoning [48], there are many type systems and program

logics that share similarities with our logic presented in Chapter 3.

Amtoft et al. [1] develop a program logic for proving noninterference of a program

written in a simple object-oriented language. They use relational assertions of the form “x

is independent from high-security data.” Such an assertion is equivalent to saying that x

contains Lo data in our assertion language. Thus their logic can be used to prove that the

final values of low-security data are independent from initial values of high-security data —

this is pure noninterference. Note that, unlike our logic, theirs does not attempt to reason

about declassification. Some other differences between these IFC systems are:

• We allow pointer arithmetic, while they disallow it by using an object-oriented lan-

guage. Pointer arithmetic adds significant complexity to information flow reasoning.

In particular, their system uses a technique similar to our mark vars function for

reasoning about conditional constructs, except that they syntactically search for all

locations in both the store and heap that might be modified within the conditional.

132

With the arbitrary pointer arithmetic of our C-like language, it is not possible to

syntactically bound all possible heap-writes, so we require the additional semantic

technique described in Section 3.5 that involves enforcing a side condition on the

bisimulation semantics.

• Our model of observable behavior provides some extra leniency in verification. Our

logic allows some leaks to happen within the program state, so long as these leaks are

not made observable via an output command. In their logic (and many other IFC

systems), the enforcement mechanism must prevent those leaks within program state

from happening in the first place. Of course, we take this idea to the extreme when

we move away from a specific program logic in Chapters 4 and 5.

Banerjee et al. [5] develop an IFC system that specifies declassification policies through

state predicates in basically the same way that we do. For example, they might have a

(relational) precondition of “A(x ≥ y),” saying that two states agree on the truth value

of x ≥ y. This corresponds directly to a precondition of “x ≥ y” in our system, and

security guarantees for the two systems are both stated relative to the precondition. The

two systems have very similar goals, but there are a number of significant differences in the

basic setup that make the systems quite distinct:

• Their system does not attempt to reason about the program heap at all. They have

some high-level discussions about how one might support pointers in their setup, but

there is nothing formal.

• Their system enforces noninterference primarily through a type system (rather than

a program logic). The declassification policies, specified by something similar to a

Hoare triple, are only used at specific points in the program where explicit “declas-

sify” commands are executed. A type system enforces pure noninterference for the

rest of the program besides the declassify commands. Their end-to-end security guar-

antee then talks about how the knowledge of an observer can only increase at those

points where a declassify command is executed (a property called “gradual release”,

defined by Askarov and Sabelfeld [3]). Thus their security guarantee for individual

133

declassification commands looks very similar to our version of noninterference, but

their end-to-end security guarantee looks quite different. We do not believe that there

is any comparable notion of gradual release in our system, as we do not have explicit

program points where declassification occurs.

• Because they use a type system, their system must statically pick security labels for

each program variable. This means that there is no notion of dynamically propa-

gating labels during execution, nor is there any way to express our novel concept of

conditional labels. As a result, the calendar example program of Section 3.3 would

not be verifiable in their system.

Jif [41] is a practical IFC language built on top of Java. It employs the Decentralized

Label Model [40] to enforce a static type system that controls security and integrity of data

in a decentralized environment. A decentralized label describes each user’s access control

policy for the data, and thus can viewed as an instance of our principal-parameterized

observation function of Chapter 4. Because label checks occur throughout the various

typing rules, there is a close relationship between Jif and the static, instrumented semantics

of our program logic. Declassifications in Jif are performed through an explicit declassify

command in the language, however, and no attempts are made to provide any formal

security guarantees in the presence of such declassifications.

The language-based IFC systems mentioned above, as well as our own program logic,

use static reasoning. There are also many dynamic IFC systems (e.g., [4, 25, 54, 59]) that

attempt to enforce security of a program during execution. Because dynamic systems are

analyzing information flow at runtime, they will incur some overhead cost in execution

time. Static IFC systems need not necessarily incur extra costs. Indeed, in our setup we

have a “true machine” that executes on states with all labels erased (Figure 3.2). The

security-aware machine is for reasoning purposes only; it will never be physically executed.

134

10.3 Security Verification over Specifications

Noninterference and Relational Program Logics There have been numerous

relational program logics in the literature that naturally help with verification of nonin-

terference properties, as noninterference is a relational property comparing two executions.

In a relational program logic such as Yang’s Relational Separation Logic [57], logical infer-

ence rules are used to verify a relational pre/post-condition pair for two programs. If the

following Hoare triple is derived,

{R}
C

C ′
{S},

where R and S are relational predicates, then we are guaranteed that: if (1) two initial

states σ1 and σ2 satisfy R, (2) C takes σ1 to final state σ′1, and (3) C ′ takes σ2 to final

state σ′2, then σ′1 and σ′2 must satisfy S. This kind of program logic can easily support

noninterference: we just make C and C ′ be the same program, and R and S both say

that states are related if they are indistinguishable to an observing principal or security

domain. Then the soundness property just described becomes the standard unwinding

condition of noninterference. As mentioned in Section 10.2, Amtoft et al. [1] and Banerjee

et al. [5] present two systems that employ this view of relational program logics for verifying

noninterference. Our own security-aware program logic presented in Chapter 3 (and in [14])

also does something similar, although we directly model logical security labels in program

state to allow for unary predicates rather than relational predicates; the unary predicates

are easier to work with and cleaner for describing intricate security policies.

All of these program logics unfortunately suffer from the issues mentioned in Section 3.6.

Program logics are inherently connected to a specific programming language; if one has a

system that links together code written in different languages (e.g., C and assembly), then a

program logic would need to be designed for each language being used. Program logics also

assume full access to the entire system’s codebase, which may be an unrealistic assumption

under some circumstances. Additionally, security-aware program logics necessarily suffer

from some level of incompleteness, since they reason about a program’s security on line-by-

135

line basis, and therefore may not be able to infer that some seemingly-insecure operation

within a function is actually completely hidden by the function’s overall, end-to-end behav-

ior. The novel security verification methodology presented in the dissertation gets around

all of these difficulties by first abstracting all code within a system into precise and abstract

functional specifications; all security verification is then performed over the specifications,

and our special security-preserving simulations automatically propagate security from the

specifications back down to the implementations.

Observations and Indistinguishability Our flexible notion of observation presented

in Chapters 4 and 5 is similarly powerful to purely semantic and relational views of state

indistinguishability, such as the ones used in Sabelfeld et al.’s PER model [50] and Nanevski

et al.’s Relational Hoare Type Theory [42]. In those systems, for example, a variable x is

considered observable if its value is equal in two related states. In our system, we directly say

that x is an observation, and then indistinguishability is defined as equality of observations.

Our approach may at first glance seem less expressive since it uses a specific definition for

indistinguishability. However, we do not put any restrictions on the type of observation: for

any given indistinguishability relation R, we can represent R by defining the observation

function on σ to be the set of states related to σ by R. We have not systematically explored

the precise extent of policy expressiveness in our methodology; this could be an interesting

direction for future work.

Our approach is a generalization of Delimited Release [49] and Relaxed Noninterfer-

ence [35]. Delimited Release allows declassifications only according to certain syntactic

expressions (called “escape hatches”). Relaxed Noninterference uses a similar idea, but in

a semantic setting: a security label is a function representing a declassification policy, and

whenever an unobservable variable x is labeled with function f , the value f(x) is consid-

ered to be observable. Our observation function can easily express both of these concepts

of declassification.

Sabelfeld and Sands [51] define a road map for analyzing declassification policies in terms

of four dimensions: who can declassify, what can be declassified, when can declassification

136

occur, and where can it occur. Our implicit notion of declassification can easily represent

any of these dimensions due to the extreme generality of our methodology. The who dimen-

sion is handled directly via the explicit parameterization of the observation function based

on principals. The what dimension is directly handled since the observation function is pa-

rameterized by program state, and can therefore specify exactly what data within the state

is observable. The when dimension can be handled by representing time within program

state (note that this piece of state could be either physical or logical). Similarly, we can

handle the where dimension by including an explicit program counter within the state.

Preserving Security across Simulation/Refinement As explained in Chapter 4,

refinements and simulations may fail to preserve security. There have been a number of

solutions proposed for dealing with this so-called refinement paradox [29, 36, 37]. The one

that is most closely related to our setup is Murray et al.’s seL4 security proof [38, 39], where

the main security properties are shown to be preserved across refinement. As we mentioned

in Chapter 4, we employ a similar strategy for security preservation in our framework, dis-

allowing high-level specifications from exhibiting domain-visible nondeterminism. Because

we use an extremely flexible notion of observation, however, we encounter another difficulty

involved in preserving security across simulation; this is resolved with the natural solution

of requiring simulation relations to preserve state indistinguishability.

10.4 Security Verification of mCertiKOS

Comparison with mCertiKOS-base Our verified secure kernel builds directly over

the “base” version of mCertiKOS presented in [21]. In that version, the many layers of

mCertiKOS are connected using CompCert-style simulations, and CompCertX is used to

integrate C primitives with assembly primitives. However, that version does not have general

notions of observations, events, or behaviors. Technically, CompCert expresses external

events using traces that appear on the transition functions of operational semantics, and

then defines whole-execution behaviors in terms of events; however, mCertiKOS does not

137

make use of these events (the LAsm semantics completely ignores CompCert traces).

Separately from the security verification effort, a large portion of our work was devoted

to developing the framework of generalized observations and indistinguishability-preserving

simulations described in Chapters 4 and 5 (over 2000 lines of Coq code, as shown in Fig-

ure 7.1), and integrating these ideas into mCertiKOS. The previous mCertiKOS soundness

theorem in [21] only claimed a standard simulation between TSysCall and MBoot. We inte-

grated observation functions into the mCertiKOS layers, modified this soundness theorem

to establish an indistinguishability-preserving simulation between TSysCall and MBoot,

and then defined whole-execution behaviors and proved an extended soundness theorem

guaranteeing that the behaviors of executions at the TSysCall level are identical to those of

corresponding executions at the MBoot level. This soundness theorem over whole-execution

behaviors is then used to obtain the end-to-end noninterference property for the kernel.

Security of seL4 An important work in the area of formal operating system security

is the seL4 verified kernel [30, 38, 39, 52]. There are some similarities between the security

proof of seL4 and that of mCertiKOS, as both proofs are conducted over a high-level spec-

ification and then propagated down to a concrete implementation. Our work, however, has

three important novelties over the seL4 work.

First, the seL4’s lack of assembly verification is quite significant. Our mCertiKOS

kernel consists of 354 lines of assembly code and approximately 3000 lines of C code. Thus

the assembly code represents a nontrivial chunk of the codebase that could easily contain

security holes. Furthermore, the assembly code has to deal with low-level hardware details

like registers, which are not exposed to high level specifications and might have security

holes. Indeed, as discussed in Chapter 7, we needed to patch up a security hole in the

context switch primitive related to the CR2 register.

Second, our assembly-level machine is a much more realistic model than the abstract

C-level machine used by seL4. For example, virtual memory address translation, page fault

handlers, and context switches are not verified in seL4. Chapter 7 describes the intricacies

of security of load/store primitives (with address translation), page fault handler, and yield.

138

None of them would appear in the seL4 proofs because their machine model is too high level.

Addressing this issue is not easy because it requires not just assembly verification but also

verified linking of C and assembly components.

Third, our generalization of the notion of observation allows for highly expressive se-

curity policies. The seL4 verification uses a particular policy model based on intransitive

noninterference (the intransitive part helps with specifying what IPC is allowed). Our

mCertiKOS verification is a case study using the particular policy expressed by the obser-

vation function of Chapter 6, but our methodology allows for all kinds of policy models

depending on context. Thus, while the particular security property that we proved over

mCertiKOS is not an advance over the seL4 security property, our new methodology in-

volved in stating and proving the property, and for propagating security proofs through

verified compilation and abstraction layers, is a significant advance.

seL4 and Inter-Process Communication As just mentioned, we verify pure iso-

lation between processes when IPC is disabled, while seL4 uses intransitive noninterfer-

ence [47] to specify a policy allowing for processes to communicate with each other. While

the seL4 security property is certainly more general, it is also far more complex, and we do

not feel the property gives a particularly useful security guarantee beyond its specialization

to pure isolation (which happens when no processes use IPC). Intransitive noninterference

allows one to specify an information flow relation between principals that is intransitive —

e.g., a policy might say that Alice can flow to Bob and Bob can flow to Charlie, but Alice

cannot flow to Charlie. Therefore, there is some inherent difficulty built into the property:

Alice can clearly flow to Charlie by using Bob as a middleman. The final seL4 security theo-

rem deals with this difficulty by using the intransitive flow relation to specify the minimum

number of execution steps required for one principal to influence another. For example, we

might say that Alice can influence Bob in a execution steps and Bob can influence Charlie

in b steps, but Alice requires a+ b execution steps to influence Charlie.

For the mCertiKOS security verification, we choose to stick to the clearer property of

pure isolation. We could certainly handle IPC in a similar way to seL4. For example: in

139

a or more execution steps, Alice’s observation is added to Bob’s; in b or more steps, Bob’s

observation is added to Charlie’s; in a + b or more steps, Alice’s observation is added to

Charlie’s. We have not found much value, however, in such a property since it only provides

guarantees for partial executions, up to a certain number of execution steps. We are much

more interested in guaranteeing a clean, end-to-end, whole-execution security property.

Security of Other OS Kernels Dam et al. [15] aim to prove isolation of separate

kernel components that are allowed to communicate across authorized channels. They do

not formulate security as standard noninterference, since some communication is allowed.

Instead, they prove a property saying that the machine execution is trace-equivalent to

execution over an idealized model where the communicating components are running on

physically-separated machines. Their setup is fairly different from ours, as we disallow

communication between processes and hence prove noninterference. Furthermore, they

conduct all verification at the assembly level, whereas our methodology supports verification

and linking at both the C and assembly levels.

The Ironclad [23] system aims for full correctness and security verification of a system

stack, which shares a similar goal to ours: provide guarantees that apply to the low-level

assembly execution of the machine. The overall approaches are quite different, however.

Ironclad uses Dafny [32] and Z3 [16] for verification, whereas our approach uses Coq; this

means that Ironclad relies on SMT solving, which allows for more automation, but does not

produce machine-checkable proofs as Coq does. Another difference is in the treatment of

high-level specifications. While Ironclad allows some verification to be done in Dafny using

high-level specifications, a trusted translator converts them into low-level specifications

expressed in terms of assembly execution. The final security guarantee applies only to the

assembly level; one must trust that the guarantee corresponds to the high-level intended

specifications. Contrast this to our approach, where we verify that low-level execution

conforms to the high-level policy.

Asbestos, HiStar, and Flume Asbestos [17] is a security-aware operating system

that attempts to enforce security policies by monitoring label propagation between com-

140

municating processes. Each process p has a send label Sp representing the security level of

information that has tainted p, and a receive label Rp representing the maximum security

level that p is ever allowed to be tainted with. Process p is allowed to send a message to

process q only if Sp v Rq (ordering defined by a lattice of labels), and q’s send label will be

tainted by the message, increasing from Sq to Sq t Sp. In this way, the operating system

can prevent untrusted processes from maliciously or accidentally leaking users’ secret data.

Declassification is supported as well: a process may have declassification privileges for user

Alice, implying that Alice trusts that process to only release her secret data in ways that

she deems appropriate.

HiStar [62] is another security-aware operating system that was directly inspired by

Asbestos. It expands upon the Asbestos label model to design a low-level kernel interface

that tracks security label propagation between various kernel objects. While Asbestos only

tracks labels between processes communicating via IPC mechanisms, HiStar tracks labels

on all relevant resources, such as shared memory.

Both Asbestos and HiStar are helpful in providing users with some some amount of

protection for their secret data. However, neither operating system provides any formal

guarantees. Both the code and the label model are too complex to reasonably allow for for-

mal reasoning. Flume [31] is an IFC system that provides security between user processes,

and is built purely in user space. Flume borrows the label model of Asbestos/HiStar, and

improves upon it by separating out mechanisms for privacy, integrity, authentication, de-

classification, and port send rights. Because the system operates purely at user level, and

the label model is cleaner, some formal reasoning about Flume is possible. The notions of

safety and security are formally defined within the model, and there is a formal argument

that security is enforced. However, because Flume only models user space, all of the guaran-

tees are predicated upon the assumption that the underlying operating system is behaving

appropriately. This results in a potentially enormous trusted computing base.

The work presented in this dissertation has the potential to greatly improve the trust-

worthiness of IFC systems like Asbestos, HiStar, and Flume. By verifying the security of the

entire operating system kernel API, we can remove Flume’s reliance on trusting the entire

141

kernel codebase. In theory, one could imagine implementing Flume over the mCertiKOS

API; however, Asbestos, HiStar, and Flume all use models that support explicit declassi-

fication via specially-marked trusted processes. As described previously, our methodology

handles declassification differently: we require that declassifications are implicitly encoded

within security policies through careful construction of an observation function. In other

words, instead of allowing a certain process to be trusted by Alice to declassify her data, we

require the process’s functional specification to say precisely under what circumstances it

will release Alice’s data. Therefore, depending on the specific application, some additional

specification work is required to directly support a Flume-like system within our methodol-

ogy; however, this additional work yields a far more trustworthy guarantee since we do not

need to trust either user processes with declassification privileges or the OS kernel code.

10.5 Conclusions

This dissertation presents a lengthy journey, starting from a novel, stronger notion of local

reasoning that is compatible with security verification (Chapter 2), then moving on to a

new program logic making use of this strong locality to formally guarantee security of C-like

programs (Chapter 3), and finally learning from the problematic aspects of this program

logic to devise a general methodology for security verification that is completely free from

a specific programming language and logic (Chapters 4 and 5). The beauty of this final

destination is then demonstrated with the formal security verification of a real, executable

operating system kernel (Chapters 6, 7, and 8).

Ultimately, we consider the following abstraction principle to be the most fundamental

and encompassing conclusion of this journey: whenever one desires to prove some property

P over a complex system implemented in low-level code, one should first verify a precise and

descriptive specification of the system’s behavior at an extremely high level of abstraction.

Then property P should be proved by looking only at the specification; all implementation

code should be completely irrelevant. Of course, it is crucial that P can then be soundly

propagated from the specification to any correct implementation. This principle of abstrac-

142

tion is advocated by Gu et al. in the original presentation of mCertiKOS [21], with the

desired precise high-level specifications being deemed “deep specifications”. In that work,

however, it is only an optimistic hope that the principle can be applied to any desired

property P . In this dissertation, we demonstrate some solid evidence by showing that a

property as complex as noninterference fits cleanly. Indeed, noninterference is famous in

the literature for not being preserved across program refinement. Nevertheless, our novel

contribution shows that this problem can be resolved in a clean manner with only a minor

strengthening of the requirements for refinement. In an ideal future, all software would

come with a highly-abstracted deep specification, and all properties of interest would be

derivable by utilizing only this deep specification.

143

Bibliography

[1] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for information

flow in object-oriented programs. In POPL, pages 91–102, 2006.

[2] Andrew W. Appel and Sandrine Blazy. Separation logic for small-step cminor. In

Theorem Proving in Higher Order Logics, 20th International Conference, TPHOLs

2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings, pages 5–21, 2007.

[3] Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassification, en-

cryption and key release policies. In 2007 IEEE Symposium on Security and Privacy

(S&P 2007), 20-23 May 2007, Oakland, California, USA, pages 207–221, 2007.

[4] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information flow

analysis. In PLAS, pages 113–124, 2009.

[5] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive declassifica-

tion policies and modular static enforcement. In IEEE Symposium on Security and

Privacy, pages 339–353, 2008.

[6] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of separation-logic

typing and higher-order frame rules. In Proc. 20th IEEE Symposium on Logic in

Computer Science, pages 260–269, 2005.

[7] Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of the

C language. J. Automated Reasoning, 43(3):263–288, 2009.

144

[8] Stephen Brookes. A semantics for concurrent separation logic. In Proc. 15th Inter-

national Conference on Concurrency Theory (CONCUR’04), volume 3170 of LNCS,

2004.

[9] C. Calcagno, P.W. O’Hearn, and Hongseok Yang. Local action and abstract separation

logic. In Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE Symposium

on, pages 366–378, July 2007.

[10] Silviu Chiricescu, André DeHon, Delphine Demange, Suraj Iyer, Aleksey Kliger, Greg

Morrisett, Benjamin C. Pierce, Howard Reubenstein, Jonathan M. Smith, Gregory T.

Sullivan, Arun Thomas, Jesse Tov, Christopher M. White, and David Wittenberg. Safe:

A clean-slate architecture for secure systems. In Proceedings of the IEEE International

Conference on Technologies for Homeland Security, November 2013.

[11] David Costanzo. Dissertation companion website. http://www.cs.yale.edu/homes/

dsc5/thesis.html. Accessed: 2016-08-02.

[12] David Costanzo and Zhong Shao. A case for behavior-preserving actions in separation

logic. In Programming Languages and Systems - 10th Asian Symposium, APLAS 2012,

Kyoto, Japan, December 11-13, 2012. Proceedings, pages 332–349, 2012.

[13] David Costanzo and Zhong Shao. A case for behavior-preserving actions in separation

logic. Technical report, Dept. of Computer Science, Yale University, New Haven, CT,

June 2012. http://flint.cs.yale.edu/publications/bpsl.html.

[14] David Costanzo and Zhong Shao. A separation logic for enforcing declarative infor-

mation flow control policies. In Proc. 3rd International Conference on Principles of

Security and Trust (POST), pages 179–198, 2014.

[15] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and Oliver

Schwarz. Formal verification of information flow security for a simple ARM-based

separation kernel. In 2013 ACM SIGSAC Conference on Computer and Communica-

tions Security (CCS), pages 223–234, 2013.

145

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In

Tools and Algorithms for the Construction and Analysis of Systems, 14th International

Conference (TACAS), Budapest, Hungary. Proceedings, pages 337–340, 2008.

[17] Petros Efstathopoulos, Maxwell N. Krohn, Steve Vandebogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazières, M. Frans Kaashoek, and Robert Morris. La-

bels and event processes in the asbestos operating system. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton, UK,

October 23-26, 2005, pages 17–30, 2005.

[18] Ivana Filipovic, Peter W. O’Hearn, Noah Torp-Smith, and Hongseok Yang. Blaming

the client: on data refinement in the presence of pointers. Formal Asp. Comput.,

22(5):547–583, 2010.

[19] Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE

Symposium on Security and Privacy, pages 11–20, 1982.

[20] Joseph A. Goguen and José Meseguer. Unwinding and inference control. In Proceedings

of the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA,

April 29 - May 2, 1984, pages 75–87, 1984.

[21] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (New-

man) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and

certified abstraction layers. In Proc. 42nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), Mumbai, India, pages 595–608, 2015.

[22] Gurvan Le Guernic. Automaton-based confidentiality monitoring of concurrent pro-

grams. In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8 July

2007, Venice, Italy, pages 218–232, 2007.

[23] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng

Zhang, and Brian Zill. Ironclad apps: End-to-end security via automated full-system

146

verification. In 11th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI), Broomfield, CO, USA, pages 165–181, 2014.

[24] Nevin Heintze and Jon G. Riecke. The slam calculus: Programming with secrecy and

integrity. In POPL, pages 365–377, 1998.

[25] Catalin Hritcu, Michael Greenberg, Ben Karel, Benjamin C. Pierce, and Greg Mor-

risett. All your ifcexception are belong to us. In IEEE Symposium on Security and

Privacy, pages 3–17, 2013.

[26] Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios

Vytiniotis, Arthur Azevedo de Amorim, and Leonidas Lampropoulos. Testing nonin-

terference, quickly. In ICFP, pages 455–468, 2013.

[27] Sebastian Hunt and David Sands. On flow-sensitive security types. In POPL, pages

79–90, 2006.

[28] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data

structures. In Proc. 28th ACM Symposium on Principles of Programming Languages,

pages 14–26, January 2001.

[29] Jan Jürjens. Secrecy-preserving refinement. In FME 2001: Formal Methods for In-

creasing Software Productivity, International Symposium of Formal Methods Europe,

Berlin, Germany, March 12-16, 2001, Proceedings, pages 135–152, 2001.

[30] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal

Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel.

ACM Transactions on Computer Systems, 32(1), February 2014.

[31] Maxwell N. Krohn, Alexander Yip, Micah Z. Brodsky, Natan Cliffer, M. Frans

Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for standard os

abstractions. In SOSP, pages 321–334, 2007.

147

[32] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-

ness. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) - 16th

International Conference, Dakar, Senegal, pages 348–370, 2010.

[33] Xavier Leroy. The CompCert verified compiler. http://compcert.inria.fr/, 2005–

2014.

[34] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,

43(4):363–446, 2009.

[35] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterference. In

Proc. 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL), Long Beach, California, USA, pages 158–170, 2005.

[36] Carroll Morgan. The shadow knows: Refinement and security in sequential programs.

Sci. Comput. Program., 74(8):629–653, 2009.

[37] Carroll Morgan. Compositional noninterference from first principles. Formal Asp.

Comput., 24(1):3–26, 2012.

[38] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,

Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. sel4: From general purpose to

a proof of information flow enforcement. In IEEE Symposium on Security and Privacy,

pages 415–429, 2013.

[39] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Gerwin Klein.

Noninterference for operating system kernels. In Certified Programs and Proofs (CPP)

- Second International Conference, Kyoto, Japan, Proceedings, pages 126–142, 2012.

[40] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow

control. In SOSP, pages 129–142, 1997.

[41] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label

model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

148

[42] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification of information

flow and access control policies with dependent types. In IEEE Symposium on Security

and Privacy, pages 165–179, 2011.

[43] Peter W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR’04, pages

49–67, 2004.

[44] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information

hiding. ACM Trans. Program. Lang. Syst., 31(3):1–50, 2009.

[45] Mohammad Raza and Philippa Gardner. Footprints in local reasoning. Journal of

Logical Methods in Computer Science, 5(2), 2009.

[46] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS’02, pages 55–74, 2002.

[47] John Rushby. Noninterference, transitivity, and channel-control security policies. Tech-

nical report, dec 1992.

[48] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[49] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information release.

In Software Security - Theories and Systems, Second Mext-NSF-JSPS International

Symposium (ISSS), Tokyo, Japan, pages 174–191, 2003.

[50] Andrei Sabelfeld and David Sands. A Per model of secure information flow in sequen-

tial programs. In Programming Languages and Systems, 8th European Symposium on

Programming (ESOP), Amsterdam, The Netherlands, Proceedings, pages 40–58, 1999.

[51] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles. Jour-

nal of Computer Security, 17(5):517–548, 2009.

[52] Thomas Sewell, Simon Winwood, Peter Gammie, Toby C. Murray, June Andronick,

and Gerwin Klein. seL4 enforces integrity. In Interactive Theorem Proving (ITP) -

149

Second International Conference, Berg en Dal, The Netherlands, Proceedings, pages

325–340, 2011.

[53] Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic dependency monitoring

to secure information flow. In 20th IEEE Computer Security Foundations Symposium,

CSF 2007, 6-8 July 2007, Venice, Italy, pages 203–217, 2007.

[54] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dy-

namic information flow control in haskell. In Haskell, pages 95–106, 2011.

[55] The Coq development team. The Coq proof assistant. http://coq.inria.fr, 1999 –

2015.

[56] V. N. Venkatakrishnan, Wei Xu, Daniel C. DuVarney, and R. Sekar. Provably cor-

rect runtime enforcement of non-interference properties. In Information and Com-

munications Security, 8th International Conference, ICICS 2006, Raleigh, NC, USA,

December 4-7, 2006, Proceedings, pages 332–351, 2006.

[57] Hongseok Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334,

2007.

[58] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In

Proc. 5th Int’l Conf. on Foundations of Software Science and Computation Structures

(FOSSACS’02), volume 2303 of LNCS, pages 402–416. Springer, 2002.

[59] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automatically

enforcing privacy policies. In POPL, pages 85–96, 2012.

[60] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving

application security with data flow assertions. In SOSP, pages 291–304, 2009.

[61] Stephan Arthur Zdancewic. Programming Languages for Information Security. PhD

thesis, Ithaca, NY, USA, 2002. AAI3063751.

150

[62] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making

information flow explicit in histar. In OSDI, pages 263–278, 2006.

151

