
DRS: A Set of Conventions for Representing

Logical Languages in RDF

Drew McDermott

January 12, 2004

1 The DRS Notation

RDF, and notations based on it such as OWL, are not very good at representing
arbitrary propositions, which are necessary for many applications, including the
representation of processes and plans. There are various official (“OWL rules”)
and semiofficial (“RuleML”) efforts to solve this problem. DRS is similar in
spirit to the OWL Rules system, but different in detail. (For further remarks,
see section 3, below.)

The key idea behind DRS is to describe a formula as an object. You can think
of this as an alternative to reification, or as reification done right, depending on
one’s understanding of the slippery term “reification.” An RDF processor must
then take such a description as an assertion that the rule is true, if it occurs in
an appropriate context. For example, in OWL-S, an appropriate context would
be the precondition or effect of a step in a process.

The building blocks of a formula are descriptions, terms and atomic formulas.
An atomic formula is represented in the XML serialization of RDF thus:

<drs:Atomic formula>

<rdf:subject>T s</rdf:subject>
<rdf:predicate>P</rdf:predicate>

<rdf:object>T b</rdf:object>
</drs:Atomic formula>

where P is a predicate, Ts is a term,and Tb is a term if P is binary. If P is
not binary, we have to be more devious about Tb, as we will describe shortly.
We assume that the namespace rdf is the usual one for RDF (URI: http://-

www.w3.org/1999/02/22-rdf-syntax-ns). We use the standard tags for reifying
RDF expressions. The namespace drs is for vocabulary items in our formula-
representation system (URI: http://www.cs.yale.edu/homes/dvm/daml/drs-
onto040112.owl#). “DRS” stands for “Declarative RDF System.”

In the simple cases, the objects P , Ts, and Tb of an atomic formula are
resources, just as one would expect. For example, to assert that that Tony
Blair’s address is 10 Downing Street, one might write

1

<drs:Atomic formula>

<rdf:subject resource="...URI for Blair"/>

<rdf:predicate resource="...URI for address"/>

<rdf:object>

<adr:Address>

<adr:number>10</adr:number>

<adr:street>Downing Street</adr:street>

<adr:city resource="...URI for London..."/>

...

</adr:Address>

</rdf:object>

</drs:Atomic formula>

Note that as far as RDF is concerned, Atomic formula is just another class.
Its members are formulas. It is described by an OWL ontology (located at the
same URI
http://www.cs.yale.edu/homes/dvm/daml/drsonto040112.owl

as the one we use for the drs namespace). So technically all we are doing here
is describing formulas, with the unstated convention that any formula whose
description occurs at the top level of a document is considered asserted by
that document. A human or computational reader of the notation that doesn’t
know the convention will treat the descriptions as mere descriptions (and pretty
useless ones at that).

If a predicate has arity > 2, its rdf:object slot is filled by a a term se-
quence, represented as an OWL list of all arguments after the first. We use
the same idea for representing nonatomic terms. For example, suppose we have
a function person-name that takes three arguments, the family name, given
name, and middle initial(s). In predicate calculus, this might yield the term
person-name("Musharraf", "Shlomo", ""). In our RDF serialization, this term
would be written

<drs:Functional term>

<drs:term function resource="....#person-name"/>

<drs:term args rdf:parseType="Collection">

<drs:Literal>

<drs:litdefn rdf:datatype="&xsd;string">Musharraf</drs:litdefn>

</drs:Literal>

<drs:Literal>

<drs:litdefn rdf:datatype="&xsd;string">Shlomo</drs:litdefn>

</drs:Literal>

<drs:Literal>

<drs:litdefn rdf:datatype="&xsd;string"></drs:litdefn>

</drs:Literal>

</drs:term args>

</drs:Functional term>

(The Literal class and its associated property litdefn allow us to treat literals
as individuals. OWL Full allows us for this metaphysically, but not syntactically.
As long as we’re making invisible extensions to RDF/OWL, we might as well
introduce this convenience.)

2

In case you’re wondering why we represented one object as an Address de-
scription and another as a person-name term, the answer is that you can do
whichever seems more natural. The only caveat is that any properties of an ob-
ject described using RDF are actually asserted, so if you describe a “hypotheti-
cal” object of some kind, you have to realize that RDF treats it as a description
of an actual object. In other words, if you give Santa Claus’s address as 0000
North Pole Drive, then as far as RDF is concerned you have asserted that there
is such a roadway and a 0th location along its length. This property of RDF is
why we have to resort to a coding scheme in the first place.

If an atomic formula has exactly one argument, the object slot is occupied by
a special object called null from the DRS namespace. If it has zero arguments,
both the subject and object slots are both null.

Above the level of atomic formulas we have connectives, which are just classes
of formulas with names Implies, And, Or, and Not. Formulas of classes And

and Or have a single property conn args which is a Term seq of the arguments.
Formulas of class Implies have two properties, antecedent and consequent.
Formulas of class Not have a single property negated. One can easily add more
connectives if they are needed.

Variables in this system are treated as belonging to the class Variable from
SWRL, the OWL rules language. Variables (may) have names, which link them
back to their source form. They also have rdf:IDs that distinguish different
variables with the same name. Variables are normally scoped by quantifiers (or
other binding mechanisms), so name clashes are not a problem, but in RDF
nodes have document scope.

Variables are bound with quantifiers, which are objects with two properties:
the bound vars (an OWL list of variables) and the body (a formula). There
are two quantifier classes, Forall and Exists, both subclasses of Binder. You
can add new quantifiers-like entities, such as λ, by subclassing Binder. You can
even do without quantifiers, and use Prolog-style conventions for free variables.

Example: ∀xy(loves(x, y) ⊃ loves(y, x)) would be represented as

<drs:Forall>

<drs:bound vars>

<drs:Var bag rdf:parseType="Collection">

<swrl:Variable ID="v1" name="x"/>

<swrl:Variable ID="v2" name="y"/>

</drs:Var bag>

</drs:bound vars>

<drs:body>

<drs:Implies>

<drs:antecedent>

<drs:Atomic formula>

<rdf:predicate

resource="http://human.rels.org/term#loves"/>

<rdf:subject resource="#v1"/>

<rdf:object resource="#v2"/>

</drs:Atomic formula>

</drs:antecedent>

3

<drs:consequent>

<drs:Atomic formula>

<rdf:predicate

resource="http://human.rels.org/term#loves"/>

<rdf:subject resource="#v2"/>

<rdf:object resource="#v1"/>

</drs:Atomic formula>

</drs:consequent>

</drs:Implies>

</drs:body>

</drs:Forall>

As formulas get larger and more deeply nested, they tend to wander annoy-
ingly far to the right. Fortunately, we can fix that by moving subformulas out
and making reference to them. (The cure for RDF syntax is more RDF syntax.)

2 Reference Manual, Abstract Syntax, Formal

Semantics

Not really.
The abstract syntax of DRS is just the abstract syntax of any formal lan-

guage you like. Ditto the formal semantics.
DRS is more a set of conventions and supporting ontology for expressing

formal languages in RDF. The ontology
http://www.cs.yale.edu/homes/dvm/daml/drsonto040112.owl

is essentially the infrastructure required to represent formal languages, plus
the grammar of the archetype, typed first-order logic. If you want to add to
this grammar, it’s easy to do. To add a variable-binding operator, just mimic
Forall and make the resulting class a subclass of Binder. If you want to add a
connective, chances are it looks like And or Implies; if not, make your own up
and make it a subclass of Connective formula.

3 Comparison with OWL et al.

The DRS notation is virtually identical in spirit to the OWL Rules language
SWRL
http://www.daml.org/2003/11/swrl/.
I believe OWL Rules to be an ancestor of the standard that will finally emerge in
this area, and so have tried to incorporate SWRL vocabulary into DRS wherever
possible.

Unfortunately, the overlap between SWRL and DRS is currently rather
small, because of some basic differences in the philosophy behind the two sys-
tems. Systems like SWRL and RuleML
http://www.dfki.uni-kl.de/ruleml/indtd0.8.html

4

are oriented toward representing “rules,” while DRS is oriented toward repre-
senting propositions. I put quotes around the word “rules” because it means
different things to different people. What it means in SWRL is Prolog-style
Horn clauses. (RuleML is more “eclectic.”) This means that variables have
no explicit binders, and are implicitly universally quantified. The antecedent
of a clause normally contains only atomic formulas; in SWRL nothing else is
allowed.

Such differences are why we can’t identify swrl:Imp and drs:Implies, which
seemingly mean the same thing. swrl:Imp has two pieces, a head and a body,
each a list of “atoms,” which are a sort of atomic formula mimicking the asser-
tions you can make in OWL. drs:Implies has two pieces, too, an antecedent and
a consequent, each a formula. Technically, we could still identify swrl:Imp and
drs:Implies, identifying the antecedent as the conjunction of the atoms in body,
but there’s really no point. If at some point someone wants to mix SWRL and
DRS notations, they can just declare that swrl:Imp is a drs:Connective formula.

One problem with both SWRL and DRS is that such notations relegate
RDF to a subordinate role; it’s not really being used the way it’s supposed to
be. It has even been suggested that other vehicles would do just as well as RDF
for the purpose of including more expressive notations in RDF documents. In
particular, Bijan Parsia (personal rumor) has suggested that we could just quote
a predicate-calculus formula as a string. Instead of

<Or>

<conn args rdf:parseType="Collection">

<Atomic formula>

<rdf:predicate

resource="http://human.rels.org/term#loves"/>

<rdf:subject resource="#she"/>

<rdf:object resource="#me"/>

</Atomic formula>

<Not>

<negated>

<Atomic formula>

<rdf:predicate

resource="http://human.rels.org/term#loves"/>

<rdf:subject resource="#v2"/>

<rdf:object resource="#v1"/>

</Atomic formula>

</negated>

</Not>

</conn args>

<Or>

we could just write this

<logic>(or (loves she me) (not (she loves me)))</logic>

which is certainly more concise.
The arguments against using strings are pretty clear: Staying within RDF

allows a processor to determine that a formula refers to a resource, even when it

5

can’t tell or doesn’t care what it says. An XML/RDF/OWL syntax checker will
do useful things with DRS notation, checking that the parens balance, that only
formulas occur inside connectives, and so forth. Finally, the extra conciseness
of strings is certainly attractive, but the advantage shrinks when we use non-
XML-based versions of RDF.

Acknowledgements: The basis for the approach advocated here is described in

Drew McDermott and Dejing Dou 2002 Representing Disjunc-
tion and Quantifiers in RDF
http://www.cs.yale.edu/homes/dvm/papers/McDermottDou02.pdf

Representing Disjunction and Quantifiers in RDF. Proc. Int’l Se-
mantic Web Conference(available at http://www.cs.yale.edu/homes/-
dvm).

That paper uses the N3 notation instead of the XML serialization used here.
The paper acknowledges contributions from many other people to DRS.

Mark Burstein is mentioned, but it should be noted that since the publication of
that paper he has continued to contribute ideas to DRS. The development of a
logic dialect, Web-PDDL, for the web, and the implementation of the translator
PDDOWL
http://www.cs.yale.edu/homes/dvm/daml/pddl daml translator1.html

from DRS to Web-PDDL, are the work of Dejing Dou and Peishen Qi.

6

