
Artificial Intelligence and Consciousness

Drew McDermott
Yale University

This paper is essentially the same as that published as chapter 6 (pages 117–150) of Philip
David Zelazo, Morris Moscovitch, and Evan Thompson (eds.) 2007 The Cambridge Handbook

of Consciousness. Cambridge University Press

Abstract: Consciousness is only marginally relevant to artificial intelligence (AI), because
to most researchers in the field other problems seem more pressing. However, there have been
proposals for how consciousness would be accounted for in a complete computational theory of
the mind, from theorists such as Dennett, Hofstadter, McCarthy, McDermott, Minsky, Perlis,
Sloman, and Smith. One can extract from these speculations a sketch of a theoretical synthesis,
according to which consciousness is the property a system has by virtue of modeling itself as
having sensations and making free decisions. Critics such as Harnad and Searle have not
succeeded in demolishing a priori this or any other computational theory, but no such theory
can be verified or refuted until and unless AI is successful in finding computational solutions of
difficult problems such as vision, language, and locomotion.

1 Introduction

Computationalism is the theory that the human brain is essentially a computer, although pre-
sumably not a stored-program, digital computer, like the kind Intel makes. Artificial intelligence

(AI) is a field of computer science that explores computational models of problem solving, where
the problems to be solved are of the complexity of problems solved by human beings. An AI
researcher need not be a computationalist, because they1 might believe that computers can do
things brains do noncomputationally. Most AI researchers are computationalists to some ex-
tent, even if they think digital computers and brains-as-computers compute things in different
ways. When it comes to the problem of phenomenal consciousness, however, the AI researchers
who care about the problem and believe that AI can solve it are a tiny minority, as we will see.
Nonetheless, because I count myself in that minority, I will do my best to survey the work of
my fellows and defend a version of the theory that I think represents that work fairly well.

Perhaps calling computationalism a “theory” is not exactly right here. One might prefer
“working hypothesis,” “assumption,” or “dogma.” The evidence for computationalism is not
overwhelming, and some even believe it has been refuted, by a priori arguments or empiri-
cal evidence. But, in some form or other, the computationalist hypothesis underlies modern
research in cognitive psychology, linguistics, and some kinds of neuroscience. That is, there

1To avoid sexist pronouns, I will sometimes use third-person-plural pronouns to refer to a generic person.
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wouldn’t be much point in considering formal or computational models of mind if it turned out
that most of what the brain does is not computation at all, but, say, some quantum-mechanical
manipulation (Penrose, 1989). Computationalism has proven to be a fertile working hypothesis,
although those who reject it typically think of the fertility as similar to that of fungi, or of pod
people from outer space.

Some computationalist researchers believe that the brain is nothing more than a computer.
Many others are more cautious, and distinguish between modules that are quite likely to be
purely computational (e.g., the vision system), and others that are less likely, such as the
modules, or principles of brain organization, that are responsible for creativity, or romantic
love. There’s no need, in their view, to require that absolutely everything be explained in terms
of computation. The brain could do some things computationally and other things by different
means, but if the parts or aspects of the brain that are responsible for these various tasks are
more or less decoupled, we could gain significant insight into the pieces that computational
models are good for, and leave the other pieces to some other disciplines such as philosophy
and theology.2

Perhaps the aspect of the brain that is most likely to be exempt from the computationalist
hypothesis is its ability to produce consciousness, that is, to experience things. There are
many different meanings of the word “conscious,” but I am talking here about the “Hard
Problem” (Chalmers, 1996), the problem of explaining how it is that a physical system can
have vivid experiences with seemingly intrinsic “qualities,” such as the redness of a tomato, or
the spiciness of a taco. These qualities usually go by their Latin name, qualia. We all know
what we’re talking about when we talk about sensations, but they are notoriously undefinable.
We all learn to attach a label such as “spicy” to certain tastes, but we really have no idea
whether the sensation of spiciness to me is the same as the sensation of spiciness to you.

Perhaps tacos produce my “sourness” in you, and lemons produce my “spiciness” in you.3

We would never know, because you have learned to associate the label “sour” with the quale
of the experience you have when you eat lemons, which just happens to be very similar to the
quale of the experience I have when I eat tacos. We can’t just tell each other what these qualia
are like; the best we can do is talk about comparisons. But we agree on questions such as, Do
tacos taste more like Szechuan chicken or more like lemons?

I focus on this problem because other aspects of consciousness raise no special problem for
computationalism, as opposed to cognitive science generally. The purpose of consciousness,
from an evolutionary perspective, is often held to have something to do with allocation and
organization of scarce cognitive resources. For a mental entity to be conscious is for it to be

2I would be tempted to say there is a spectrum from “weak” to “strong” computationalism to reflect the
different stances on these issues, but the terms “weak” and “strong” have been used by John Searle (1980) in a
quite different way. See section 5.2.

3I am taking this possibility seriously for now because everyone will recognize the issue and its relationship
to the nature of qualia. But I follow Sloman & Chrisley (2003) in believing that cross-personal comparison of
qualia makes no sense. See section 3.4 and (McDermott, 2001), ch. 4.
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held in some globally accessible area (Baars, 1988, 1997). AI has made contributions to this
idea, in the form of specific ideas about how this global access works, going under names such as
the “blackboard model” (Hayes-Roth, 1985), or “agenda-based control” (Currie & Tate, 1991).
One can evaluate these proposals by measuring how well they work, or how well they match
human behavior. But there doesn’t seem to be any philosophical problem associated with them.

For phenomenal consciousness, the situation is very different. Computationalism seems
to have nothing to say about it, simply because computers don’t have experiences. I can
build an elaborate digital climate-control system for my house, which keeps its occupants at
a comfortable temperature, but the climate-control system never feels overheated or chilly.
Various physical mechanisms implement its temperature sensors in various rooms. These sensors
produce signals that go to units that compute whether to turn the furnace on or turn the air
conditioner on. The result of these computations cause switches to close so that the furnace
or air conditioner does actually change state. We can see the whole path from temperature
sensing to turning off the furnace. Every step can be seen to be one of a series of straightforward
physical events. Nowhere are you tempted to invoke conscious sensation as an effect or element
of the causal chain.

This is the prima facie case against computationalism, and a solid one it seems to be. The
rest of this article is an attempt to dismantle it.

2 An Informal Survey

Although one might expect AI researchers to adopt a computationalist position on most issues,
they tend to shy away from questions about consciousness. AI has often been accused of being
over-hyped, and the only way to avoid the accusation, apparently, is to be so boring that
journalists stay away from you. As the field has matured, and as a flock of technical problems
have become its focus, it has become easier to bore journalists. The last thing most serious
researchers want is to be quoted on the subject of computation and consciousness.

In order to get some kind of indication of what positions researchers take on this issue, I
conducted an informal survey of Fellows of the American Association for Artificial Intelligence
in the summer of 2003. I sent e-mail to all of them asking the following question:

Most of the time AI researchers don’t concern themselves with philosophical questions,
as a matter of methodology and perhaps also opinion about what is ultimately at stake.
However, I would like to find out how the leaders of our field view the following problem:
Create a computer or program that has “phenomenal consciousness,” that is, the ability
to experience things. By “experience” here I mean “qualitative experience,” the kind in
which the things one senses seem to have a definite but indescribable quality, the canonical
example being “looking red” as opposed to “looking green.”

Anyway, please choose from the following possible resolutions of this problem:

1. The problem is just too uninteresting compared to other challenges

3



1 Problem uninteresting 3%

2a Ill-defined 11%

2b Only apparent 8%
19%

3 AI silent 7%

4 Requires new ideas 32%

5 AI will solve it as is 3%

6 Solution in sight 15%

7 None of the above 21%

Percentages indicate fraction of the 34 who responded

Table 1: Results of survey of AAAI Fellows

2. The problem is too ill defined to be interesting; or, the problem is only apparent, and
requires no solution

3. It’s an interesting problem, but AI has nothing to say about it

4. AI researchers may eventually solve it, but will require new ideas

5. AI researchers will probably solve it, using existing ideas

6. AI’s current ideas provide at least the outline of a solution

7. My answer is not in the list above. Here it is:. . .

Of course, I don’t mean to exclude other branches of cognitive science; when I say
“AI” I mean “AI, in conjunction with other relevant disciplines.” However, if you think
neuroscientists will figure out phenomenal consciousness, and that their solution will entail
that anything not made out of neurons cannot possibly be conscious, then choose option 3.

Because this topic is of passionate interest to a minority, and quickly becomes annoying
to many others, please direct all followup discussion to fellows-discuss@aaai.org. Directions
for subscribing to this mailing list are as follows: . . .

Thanks for your time and attention.

Of the approximately 207 living Fellows, I got responses from 34. The results are as indicated
in Table 1.

Of those who chose 7 (None of the above) as answer, here are some of the reasons why:

“Developing an understanding of the basis for conscious experience is a central,
long-term challenge for AI and related disciplines. It’s unclear at the present time
whether new ideas will be needed....”
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“If two brains have isomorphic computation then the ‘qualia’ must be the same.
Qualia must be just another aspect of computation — whatever we say of qualia
must be a property of the computation viewed as computation.”

“There are two possible ways (at least) of solving the problem of phenome-
nal consciousness, ‘explaining what consciousness is’ and ‘explaining consciousness
away.’ It sounds like you are looking for a solution of the first type, but I believe
the ultimate solution will be of the second type.”

“The problem is ill-defined, and always will be, but this does not make it unin-
teresting. AI will play a major role in solving it.”

If the table seems to indicate no particular pattern, just remember that what the data
show is that the overwhelming majority (173 out of 207) refused to answer the question at
all. Obviously, this was not a scientific survey, and the fact that its target group contained
a disproportionate number of Americans perhaps biased it in some way. Furthermore, the
detailed responses to my questions indicated that respondents understood the terms used in
many different ways. But if 84% of AI Fellows don’t want to answer, we can infer that the
questions are pretty far from those that normally interest them. Even the 34 who answered
include very few optimists (if we lump categories 5 and 6 together), although about the same
number (categories 1 and 2) thought the problem didn’t really need to be solved. Still, the
outright pessimists (category 3) were definitely in the minority.

——————————–

3 Research on Computational Models of Consciousness

In view of the shyness about consciousness shown by serious AI researchers, it is not surprising
that detailed proposals about phenomenal consciousness from this group should be few and far
between.

3.1 Moore/Turing Inevitability

One class of proposals can be dealt with fairly quickly. Hans Moravec, in a series of books (Moravec,
1988, 1999), and Raymond Kurzweil (1999) have more or less assumed that continuing progress
in the development of faster, more capable computers will cause computers to equal and then
surpass humans in intelligence, and that consciousness will be an inevitable consequence. The
only argument offered is that the computers will talk as though they are conscious; what more
could we ask?

I believe a careful statement of the argument might go like this:

1. Computers are getting more and more powerful.
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2. This growing power allows computers to do tasks that would have been considered infea-
sible just a few years ago. It is reasonable to suppose, therefore, that many things we
think of as infeasible will eventually be done by computers.

3. Pick a set of abilities such that if a system had them we would deal with it as we would
a person. The ability to carry on a conversation must be in the set, but we can imagine
lots of other abilities as well: skill in chess, agility in motion, visual perspicacity, and so
forth. If we had a talking robot that could play poker well, we would treat it the same
way we treated any real human seated at the same table.

4. We would feel an overwhelming impulse to attribute consciousness to such a robot. If it
acted sad at losing money, or made whimpering sounds when it was damaged, we would
respond as we would to a human that was sad or in pain.

5. This kind of overwhelming impulse is our only evidence that a creature is conscious. In
particular, it’s the only real way we can tell that people are conscious. Therefore, our
evidence that the robot was conscious would be as good as one could have. Therefore the
robot would be conscious, or be conscious for all intents and purposes.

I call this the “Moore/Turing inevitability” argument because it relies on Moore’s Law (Moore,
1965) predicting exponential progress in the power of computers, plus a prediction about how
well future programs will do on the “Turing test,” proposed by Alan Turing (1950) as a tool
for rating how intelligent a computer is.4 Turing thought all questions about the actual intelli-
gence (and presumably degree of consciousness) of a computer were too vague or mysterious to
answer. He suggested a behaviorist alternative: Let the computer carry on a conversation over
a teletype line (or via an instant-messaging system, we would say today). If a savvy human
judge could not distinguish the computer’s conversational abilities from those of a real person
at a rate better than chance, then we would have some measure of the computer’s intelligence.
We could use this measure instead of insisting on measuring the computer’s real intelligence,
or actual consciousness.

This argument has a certain appeal. It certainly seems that if technology brings us robots
that we can’t help treating as conscious, then in the argument about whether they really are
conscious the burden of proof will shift, in the public mind, to the party-poopers who deny that
they are. But so what? You can’t win an argument by imagining a world in which you’ve won
it and declaring it inevitable.

The anti-computationalists can make several plausible objections to the behavioral-inevitability
argument:

4Turing actually proposed a somewhat different test. See (Davidson, 1990) for discussion. Nowadays this
version is the one everyone works with.
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• Just because computers have made impressive strides doesn’t mean that any task we set
them they will eventually be able to carry out. In particular, progress in carrying on
conversations has been dismal.5

• Even if a computer could carry on a conversation, that wouldn’t tell us anything about
whether it really was conscious.

• Overwhelming impulses are not good indicators for whether something is true. The ma-
jority of people have an overwhelming impulse to believe that there is such a thing as
luck, so that a lucky person has a greater chance of winning at roulette than an unlucky
person. The whole gambling industry is based on exploiting the fact that this absurd
theory is so widely believed.

I will come back to the second of these objections in section 5.1. The others I am inclined
to agree with.

3.2 Hofstadter, Minsky, McCarthy

Richard Hofstadter touches on the problem of consciousness in many of his writings, especially
the material he contributed to (Hofstadter & Dennett, 1981). Most of he what he writes
seems to be intended to stimulate or tantalize one’s thinking about the problem. For example,
in (Hofstadter, 1979) there is a chapter (reprinted in (Hofstadter & Dennett, 1981)) in which
characters talk to an anthill. The anthill is able to carry on a conversation because the ants
that compose it play roughly the role neurons play in a brain. Putting the discussion in the
form of a vignette allows for playful digressions on various subjects. For example, the anthill
offers the anteater (one of the discussants) some of its ants, which makes vivid the possibility
that “neurons” could implement a negotiation that ends in their own demise.

It seems clear reading the story that Hofstadter believes that the anthill is conscious, and
therefore one could use integrated circuits rather than ants to achieve the same end. But most
of the details are left out. In this as in other works, it’s as if he wants to invent a new, playful
style of argumentation, in which concepts are broken up and tossed together into so many
configurations that the original questions one might have asked get shunted aside. If you’re
already convinced by the computational story, then this conceptual play is delightful. If you’re
a skeptic, I expect it can get a bit irritating.

I put Marvin Minsky in this category as well; perhaps it should be called “Those who don’t
take consciousness very seriously as a problem.” He wrote a paper in 1968 (Minsky, 1968b)
that introduced the concept of self-model, which, as we will see, is central to the computational
theory of consciousness.

5The Loebner Prize is awarded every year to the writer of a program that appears “most human” to
a panel of judges. You can see how close the programs are getting to fooling anyone at the website,
http://www.loebner.net/Prizef/loebner-prize.html .
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To an observer B, an object A* is a model of an object A to the extent that
B can use A* to answer questions that interest him about A.. . . If A is the world,
questions for A are experiments. A* is a good model of A, in B’s view, to the extent
that A*’s answers agree with those of A, on the whole, with respect to the questions
important to B. When a man M answers questions about the world, then (taking
on ourselves the role of B) we attribute this ability to some internal mechanism W*
inside M.

This part is presumably uncontroversial. But what’s interesting is that W*, however it appears,
will include a model of M himself, M*. In principle, M* will contain a model of W*, which we
can call W**. M can use W** to answer questions about the way he (M) models the world.
One would think that M** (the model of M* in W**) would be used to answer questions about
the way M models himself, but Minsky has a somewhat different take: M** is used to

answer general questions about himself. Ordinary questions about himself, e.g., how
tall he is, are answered by M*, but very broad questions about his nature, e.g., what
kind of a thing he is, etc., are answered, if at all, by descriptive statements made
by M** about M*.

Now, the key point is that the accuracy of M* and M** need not be perfect.

A man’s model of the world has a distinctly bipartite structure: One part is
concerned with matters of mechanical, geometrical, physical character, while the
other is associated with things like goals, meanings, social matters, and the like. This
division of W* carries through the representations of many things in W*, especially
to M itself. Hence, a man’s model of himself is bipartite, one part concerning his
body as a physical object and the other accounting for his social and psychological
experience.

This is why dualism is so compelling. In particular, Minsky accounts for free will by supposing
that it develops from a “strong primitive defense mechanism” to resist or deny compulsion.

If one asks how one’s mind works, he notices areas where it is (perhaps incor-
rectly) understood, that is, where one recognizes rules. One sees other areas where
he lacks rules. One could fill this in by postulating chance or random activity. But
this too, by another route, exposes the self to the . . . indignity of remote control. We
resolve this unpleasant form of M** by postulating a third part, embodying a will or
spirit or conscious agent. But there is no structure in this part; one can say nothing
meaningful about it, because whenever a regularity is observed, its representation
is transferred to the deterministic rule region. The will model is thus not formed
from a legitimate need for a place to store definite information about one’s self; it
has the singular character of being forced into the model, willy-nilly, by formal but
essentially content-free ideas of what the model must contain.
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One can quibble with the details, but the conceptual framework offers a whole new way
of thinking about consciousness, by showing that introspection is mediated by models. There
is no way for us to penetrate through them or shake them off, so we must simply live with
any “distortion” they introduce. I put “distortion” in quotes because it’s too strong a word.
The concepts we use to describe our mental lives were developed over centuries by people who
all shared the same kind of mental model. The distortions are built in. For instance, there
is no independent notion of “free will” beyond what we observe by means of our self-models.
We can’t even say that free will is a dispensable illusion, because we have no way of getting
rid of it and living to tell the tale. Minsky’s insight is that to answer many questions about
consciousness we should focus more on the models we use to answer the questions than on the
questions themselves.

Unfortunately, in that short paper, and in his later book The Society of Mind (Minsky,
1986), Minsky throws off many interesting ideas, but refuses to go into the depth that many
of them deserve. He has a lot to say about consciousness in passing, such as how Freudian
phenomena might arise out of the “society” of subpersonal modules that he takes the human
mind to be. But there is no solid proposal to argue for or against.

John McCarthy has written a lot on what he usually calls “self-awareness” (McCarthy,
1995b). However, his papers are mostly focused on robots’ problem-solving capacities and how
they would be enhanced by the ability to introspect. An important example is the ability of
a robot to infer that it doesn’t know something (such as whether the Pope is currently sitting
or lying down). This may be self-awareness, but the word “awareness” here is used in a sense
that is quite separate from the notion of phenomenal consciousness that is our concern here.

In (McCarthy, 1995a), he specifically addresses the issue of “zombies,” philosophers’ term
for hypothetical beings who behave exactly as we do but do not experience anything. This
paper is a reply to an article by Todd Moody (1994) on zombies. He lists some introspective
capacities it would be good to give to a robot (“. . . Observing its goal structure and forming
sentences about it . . . . Observing how it arrived at its current beliefs . . . .”). Then he concludes
abruptly:

Moody isn’t consistent in his description of zombies. On page 1 they behave like
humans. On page 3 they express puzzlement about human consciousness. Wouldn’t
a real Moody zombie behave as though it understood as much about consciousness
as Moody does?

I tend to agree with McCarthy that the idea of a zombie is worthless, in spite of its initial
plausibility. Quoting Moody:

Given any functional [=, more or less, computational] description of cognition,
as detailed and complete as one can imagine, it will still make sense to suppose
that there could be insentient beings that exemplify that description. That is, it is
possible that there could be a behaviourally indiscernible but insentient simulacrum
of a human cognizer: a zombie.
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The plausibility of this picture is that it does indeed seem that an intricate diagram of the
hardware and software of a robot would leave consciousness out, just as with the computer-
controlled heating system described in section 1. One could print it on rose-colored paper to
indicate that the system was conscious, but the color of the paper would play no role in what
it actually did. The problem is that in imagining a zombie one tends at first to forget that the
zombie would say exactly the same things non-zombies say about their experiences. It would
be very hard to convince a zombie that it lacked experience; which means, as far as I can see,
that we might be zombies, at which point the whole idea collapses.

Almost everyone who thinks the idea is coherent sooner or later slips up the way Moody
does: they let the zombie figure out that it is a zombie by noticing that it has no experience.
By hypothesis, this is something zombies can’t do. Moody’s paper is remarkable only in how
obvious the slip-up in it is.

Consider, for example, the phenomenon of dreaming. Could there be a cognate
concept in zombie-English? How might we explain dreaming to them? We could
say that dreams are things that we experience while asleep, but the zombies would
not be able to make sense[z] of this.6

Of course, zombies would talk about their dreams (or dreams[z]?) exactly as we do; consult the
intricate system diagram to verify this.

McCarthy’s three-sentence reply is just about what Moody’s paper deserves. But meanwhile
philosophers such as Chalmers (1996) have written weighty tomes based on the assumption that
zombies make sense. McCarthy is not interested in refuting them.

Similarly, in (McCarthy, 1990b), McCarthy discusses when it is legitimate to ascribe mental
properties to robots. In some ways his treatment is more formal than that of Dennett, which
I discuss below. But he never builds on this theory to ask the key question: Is there more to
your having a mental state than having that state ascribed to you?

3.3 Daniel Dennett

Daniel Dennett is not a researcher in artificial intelligence, but a philosopher of mind and
essayist in cognitive science. Nonetheless, he is sympathetic to the AI project, and bases his
philosophy on computational premises to a great degree. The models of mind that he has
proposed can be considered to be sketches of a computational model, and therefore constitute
one of the most ambitious and detailed proposals for how AI might account for consciousness.

Dennett’s (1969) Ph.D. dissertation proposed a model for a conscious system. It contains the
sort of block diagram that has since become a standard feature of the theories of psychologists
such as Bernard Baars (1988, 1997), although the central working arena is designed to account
for introspection more than for problem-solving ability.

6The “[z]” is used to flag zombie words whose meanings mustn’t be confused with normal human concepts.
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In later work, Dennett has not built upon this model, but, in a sense, has been rebuilding it
from the ground up. The result has been a long series of papers and books, rich with insights
about consciousness, free will, and intentionality. Their very richness makes it hard to extract
a brisk theoretical statement, but I will try.

Dennett has one overriding methodological principle, to be distrustful of introspection. This
position immediately puts him at odds with such philosophers as Nagel, Searle, and McGinn,
for whom the “first person” point of view is the alpha and omega of consciousness. On his
side Dennett has the many anecdotes and experimental data that show how wildly inaccurate
introspection can be, but his view does leave him open to the charge that he is ruling out all the
competitors to his theory from the start. From a computationalist’s vantage point, this is all to
the good. It’s clear that any computationalist theory must eventually explain the mechanism
of the first-person view in terms of “third person” components. The “third person” is that
which you and I discuss, and therefore must be observable by you and me, and other interested
parties, in the same way. In other words, “third-person data” is just another way of saying
“scientific data.” If there is to be a scientific explanation of the first person, it will surely seem
more like an “explaining away” than a true explanation. An account of how yonder piece of
meat or machinery is conscious will almost certainly invoke the idea of the machinery playing a
trick on itself the result of which is for it to have a strong belief that it has a special first-person
viewpoint.

One of Dennett’s special skills is using vivid images to buttress his case. He invented
the phrase “Cartesian Theater” to describe the hypothetical place in the brain where the self
becomes aware of things. He observes that belief in the Cartesian Theater is deep-seated,
and keeps popping up in philosophical and psychological writings, as well as in common-sense
musings. We all know that there is a lot going on the brain that is preconscious or subconscious.
What happens when a train of events becomes conscious? According to the view Dennett is
ridiculing, to bring it to consciousness is to show it on the screen in the Cartesian Theater.
When presented this way, the idea does seem silly, if for no other reason than that there is no
plausible homunculus to put in the audience. What’s interesting is how hard it is to shake this
image. Just about all theorists of phenomenal consciousness at some point distinguish between
“ordinary” and “conscious” events by making the latter be accessible to . . . what, exactly? The
system as a whole? Its self-monitoring modules? One must tread very carefully to keep from
describing the agent with special access as the good old transcendental self, sitting alone in the
Cartesian Theater.

To demolish the Cartesian Theater, Dennett uses the tool of discovering or inventing situa-
tions in which belief in it leads to absurd conclusions. Many of these situations are experiments
set up by psychology researchers. Most famous are the experiments by Libet (1985), whose
object was to determine exactly when a decision to make a motion was made. What emerged
from the experiments was that at the point where subjects think they have made the decision,
the neural activity preparatory to the motion has already been in progress for hundreds of
milliseconds. Trying to make sense of these results using the homuncular models lead to absur-

11



dities. (Perhaps the choice causes effects in the person’s past?) But it is easy to explain them
if you make a more inclusive picture of what’s going on in a subject’s brain. Libet and others
tended to assume that giving a subject a button to push when the decision had been made
provided a direct route to . . . that pause again . . . the subject’s self, perhaps? Or perhaps the
guy in the theater? Dennett points out that the neural apparatus required to push the button
is part of the overall brain system. Up to a certain resolution, it makes sense to ask someone,
“When did you decide to do X?” But it makes no sense to try to tease off a subsystem of the
brain and ask it the same question, primarily because there is no subsystem that embodies the
“will” of the whole system.

Having demolished most of the traditional model of consciousness, Dennett’s next goal is to
construct a new one, and here he becomes more controversial, and in places more obscure. A
key component is human language. It is difficult to think about human consciousness without
pondering the ability of a normal human adult to say what they are thinking. There are two
possible views about why it should be the case that we can introspect so easily. One is that we
evolved from animals that can introspect, so naturally when language evolved one of the topics
it was used on was the contents of our introspections. The other is that language plays a more
central role than that; without language, we wouldn’t be conscious at all, at least full-bloodedly.
Dennett’s view is the second. He has little to say about animal consciousness, and what he
does say is disparaging.

Language, for Dennett, is very important, but not because it is spoken by the homunculus
in the Cartesian Theater. If you leave it out, who is speaking? Dennett’s answer is certainly
bold: In a sense, the language speaks itself. We take it for granted that speaking feels like it
emanates from our “transcendental self,” or, less politely, from the one-person audience in the
Theater. Whether or not that view is correct now, it almost certainly was not correct when
language began. In its original form, language was an information-transmission device used by
apes whose consciousness, if similar to ours in any real respect, would be about the same as
a chimpanzee’s today. Messages expresssed linguistically would heard by one person, and for
one reason or another be passed to others. Their chance of being passed would depend, very
roughly, on how useful their recipients found them.

The same mechanism has been in operation ever since. Ideas (or simple patterns unworthy
of the name “idea” — advertising jingles, for instance) tend to proliferate in proportion to
how much they help those who adopt them, or in proportion to how well they tend to stifle
competing ideas — not unlike what genes do. Dennett adopts Dawkins’s (1976) term meme

to denote a linguistic pattern conceived of in this way. One key meme is the idea of talking to
oneself; when it first popped up, it meant literally talking out loud and listening to what was
said. Although nowadays we tend to view talking to oneself as a possible symptom of insanity,
we’ve forgotten that it gives our brains a whole new channel for its parts to communicate with
each other. If an idea — a pattern of activity in the brain — can reach the linguistic apparatus,
it gets translated into a new form, and, as it is heard, gets translated back into a somewhat
different pattern than the one that started the chain of events. Creatures that start to behave
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this way start to think of themselves in a new light, as someone to talk to or listen to. Self
modeling, according to Dennett (and Jaynes, 1976) starts as modeling this person we’re talking
to. There is nothing special about this kind of model; it is as crude as most of the models we
make. But memes for self-modeling have been some of the most successful in the history (and
prehistory) of humankind. To a great degree, they make us what we are by giving us a model
of who we are that we then live up to. Every child must recapitulate the story Dennett tells,
as it absorbs from its parents and peers all the ways to think of oneself, as a being with free
will, sensations, and a still small voice inside.

The theory has one striking feature: it assumes that consciousness is based on language and
not vice versa. For that matter, it tends to assume that for consciousness to come to be, there
must be in place a substantial infrastructure of perceptual, motor, and intellectual skills. There
may be some linguistic abilities that depend on consciousness, but the basic ability must exist
before and independent of consciousness.

This conclusion may be fairly easy to accept for the more syntactic aspects of language, but
it is contrary to the intuitions of many when it comes to semantics. Knowing what a sentence
means requires knowing how the sentence relates to the world. If I am told “There is a lion on
the other side of that bush,” I have to understand that “that bush” refers to a particular object
in view; I have to know how phrases like “other side of” work; and I have to understand what
“a lion” means so that I have a grasp of just what I’m expecting to confront. Furthermore,
it’s hard to see how I could know what these words and phrases meant without knowing that I
know what they mean.

Meditating in this way on how meaning works, the late-nineteenth-century philosopher
Franz Brentano developed the notion of intentionality, the power mental representations seem
to have of pointing to — “being about” — things outside of, and arbitrarily far from, the mind
or brain containing those representations. The ability of someone to warn me about that lion
depends on that person’s sure-footed ability to reason about that animal over there, as well as
on our shared knowledge about the species Panthera leo. Brentano, and many philosophers
since, have argued that intentionality is at bottom a property only of mental representations.
There seem to be many kinds of “aboutness” in the world; for instance, there are books about
lions; but items like books can be about a topic only if they are created by humans using
language and writing systems in order to capture thoughts about that topic. Books are said to
have derived intentionality, whereas people have original or intrinsic intentionality.

Computers seem to be textbook cases of physical items whose intentionality, if any, is
derived. If one sees a curve plotted on a computer’s screen, the surest way to find out what it’s
about is to ask the person who used some program to create it. In fact, that’s the only way.
Digital computers are syntactic engines par excellence. Even if there is an interpretation to be
placed on every step of a computation, this interpretation plays no role in what the computer
does. Each step is produced purely by operations dependent on the formal structure of its
inputs and prior state at that step. If you use TurboTax to compute your income taxes, then
the numbers being manipulated represent real-world quantities, and the number you get at the
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end represents what you actually do owe to the tax authorities. Nonetheless, TurboTax is just
applying formulas to the numbers. It “has no idea” what they mean.

This intuition is what Dennett wants to defeat, as should every other researcher who ex-
pects a theory of consciousness based on AI. There’s really no alternative. If you believe that
people are capable of original intentionality and computers aren’t, then you must believe that
something will be missing from any computer program that tries to simulate humans. That
means that human consciousness is fundamentally different from machine consciousness, which
means that a theory of consciousness based on AI is radically incomplete.

Dennett’s approach to the required demolition job on intrinsic intentionality is to focus on
the prelinguistic, nonintrospective case. In a way, this is changing the subject fairly radically.
In the introspective set-up, we are talking about elements or aspects of the mind that we are
routinely acquainted with, such as words and images. In the nonintrospective case, it’s not
clear that those elements or aspects are present at all. What’s left to talk about if we’re not
talking about words, “images,” or “thoughts”? We’ll have to shift to talking about neurons,
chips, firing rates, bits, pointers, and other “subpersonal” entities and events. It’s not clear at
all whether these things are even capable of exhibiting intentionality. Nonetheless, showing that
they are is a key tactic in Dennett’s attack on the problem of consciousness. (See especially
Appendix A of Dennett, 1991b.) If we can define what it is for subpersonal entities to be
intentional, we can then build on that notion and recover the phenomenal entities we (thought
we) started with. “Original” intentionality will turn out to be a secondary consequence of what
I will call impersonal intentionality.

Dennett’s approach to the problem is to call attention to what he calls the intentional stance,

a way of looking at systems in which we impute beliefs and goals to them simply because there’s
no better way to explain what they’re doing. For example, if you’re observing a good chess
program in action, and its opponent has left himself vulnerable to an obvious attack, then one
feels confident that the program will embark on that attack. This confidence is not based on any
detailed knowledge of the program’s actual code. Even someone who knows the program well
won’t bother trying to do a tedious simulation to make a prediction that the attack will occur,
but will base their prediction on the fact that the program almost never misses an opportunity
of that kind. If you refuse to treat the program as though it had goals, you will be able to say
very little about how it works.

The intentional stance applies to the innards of the program as well. If a data structure is
used by the program to make decisions about some situation or object S, and the decisions it
makes are well explained by assuming that one state of the data structure means that P is true
of S, and that another means P ′, then those states do mean P and P ′.

It is perhaps unfortunate that Dennett has chosen to express his theory this way, because
it is easy to take him as saying that all intentionality is observer-relative. This would be
almost as bad as maintaining a distinction between original and derived intentionality, because
it would make it hard to see how the process of intentionality attribution could ever get started.
Presumably my intuition that I am an intentional system is indubitable, but what could it be
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based on? It seems absurd to think that this opinion is based on what others tell me, but it
seems equally absurd that I could be my own observer. Presumably to be an observer you have
to be an intentional system (at least, if your observations are to be about anything). Can I
bootstrap my way into intentionality somehow? If so, how do I tell the successful bootstrappers
from the unsuccessful ones? A computer program with an infinite loop, endlessly printing, “I
am an intentional system because I predict, by taking the intentional stance, that I will continue
to print this sentence out,” would not actually be claiming anything, let alone something true.

Of course, Dennett does not mean for intentionality to be observer-relative, even though
many readers think he does. (To take an example at random from the Internet, the on-line
Philosopher’s Magazine, in their “Philosopher of the Month” column in April, 2003 (Douglas &
Saunders, 2003), say “Dennett suggests that intentionality is not so much an intrinsic feature
of agents, rather, it is more a way of looking at agents.”) Dennett has defended himself from
this misinterpretation more than once (Dennett, 1991a). I will come back to this issue in my
attempt at a synthesis in section 4.

3.4 Perlis, Sloman

The researchers in this section, although they work on hard-headed problems in artificial intel-
ligence, do take philosophical problems seriously, and have contributed substantial ideas to the
development of the computational model of consciousness.

Donald Perlis’s papers build a case that consciousness is ultimately based on self-consciousness,
but I believe he is using the phrase “self-consciousness” in a misleading and unnecessary way.
Let’s start with his paper (Perlis, 1994), which I think lays out a very important idea. He asks,
Why do we need a dichotomy between appearance and reality? The answer is, Because they
could disagree, i.e., because I could be wrong about what I think I perceive. For an organism
to be able to reason explicitly about this difference, it must be able to represent both X (an
object in the world) and quote-X, the representation of X in the organism itself. The latter is
the “symbol,” the former the “symboled.” To my mind the most important consequence of this
observation is that it must be possible for an information processing system to get two kinds
of information out of its X-recognizer: signals meaning “there’s an X,” and signals meaning
“there’s a signal meaning ‘there’s an X.’ ”

Perlis takes a somewhat different tack. He believes there can be no notion of appearance
without the notion of appearance to someone. So the self-model can’t get started without some
prior notion of self to model.

When we are conscious of X, we are also conscious of X in relation to ourselves:
it is here, or there, or seen from a certain angle, or thought about this way and then
that. Indeed, without a self model, it is not clear to me intuitively what it means
to see or feel something: it seems to me that a point of view is needed, a place from
which the scene is viewed or felt, defining the place occupied by the viewer. Without
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something along these lines, I think that a ‘neuronal box’ would indeed ‘confuse’
symbol and symboled: to it there is no external reality, it has no way to ‘think’
(consider alternatives) at all. Thus I disagree [with Crick] that self-consciousness is
a special case of consciousness: I suspect that it is the most basic form of all.

Perlis continues to elaborate this idea in later publications. For example, “Consciousness is

the function or process that allows a system to distinguish itself from the rest of the world .. . . To
feel pain or have a vivid experience requires a self” (Perlis, 1997) (italics in original). I have
trouble following his arguments, which often depend on thought experiments such as imagining
cases where one is conscious but not of anything, or of as little as possible. The problem
is that introspective thought experiments are just not a very accurate tool. One may perhaps
conclude that Perlis, although housed in a Computer Science department, is not a thoroughgoing
computationalist at all. As he says, “I conjecture that we may find in the brain special amazing
structures that facilitate true self-referential processes, and constitute a primitive, bare or ur-
awareness, an ‘I’. I will call this the amazing-structures-and-processes paradigm” (Perlis, 1997)
(italics in original). It’s not clear how amazing the “amazing” structures will be, but perhaps
they won’t be computational.

Aaron Sloman has written prolifically about philosophy and computation, although his
interests range far beyond our topic here. In fact, although he has been interested in conscious
control, both philosophically and as a strategy for organizing complex software, he has tended
to shy away from the topic of phenomenal consciousness. His book The Computer Revolution

in Philosophy (Sloman, 1978) has almost nothing to say about the subject, and in many other
writings the main point he has to make is that the concept of consciousness covers a lot of
different processes, which should be sorted out before hard questions can be answered. However,
in a few of his papers he has confronted the issue of qualia, notably (Sloman & Chrisley, 2003).
I think the following is exactly right:

Now suppose that an agent A . . . uses a self-organising process to develop con-
cepts for categorising its own internal virtual machine states as sensed by internal
monitors. . . . If such a concept C is applied by A to one of its internal states, then the
only way C can have meaning for A is in relation to the set of concepts of which it is
a member, which in turn derives only from the history of the self-organising process
in A. These concepts have what (Campbell, 1994) refers to as ‘causal indexicality’.
This can be contrasted with what happens when A interacts with other agents in
such a way as to develop a common language for referring to features of external
objects. Thus A could use ‘red’ either as expressing a private, causally indexical,
concept referring to features of A’s own virtual-machine states, or as expressing a
shared concept referring to a visible property of the surfaces of objects. This means
that if two agents A and B have each developed concepts in this way, then if A uses
its causally indexical concept Ca, to think the thought ‘I am having experience Ca’,
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and B uses its causally indexical concept Cb, to think the thought ‘I am having ex-
perience Cb’ the two thoughts are intrinsically private and incommunicable, even if
A and B actually have exactly the same architecture and have had identical histories
leading to the formation of structurally identical sets of concepts. A can wonder:
‘Does B have an experience described by a concept related to B as my concept Ca
is related to me?’ But A cannot wonder ‘Does B have experiences of type Ca’, for
it makes no sense for the concept Ca to be applied outside the context for which
it was developed, namely one in which A’s internal sensors classify internal states.
They cannot classify states of B.

This idea suggests that the point I casually assumed at the beginning of this paper, that
two people might wonder if they experienced the same thing when they ate tacos, is actually
incoherent. Our feeling that the meaning is clear is due to the twist our self-models give to
introspections of the kind Sloman and Chrisley are talking about. The internal representation of
the quale of redness is purely local to A’s brain, but the self-model says quite the opposite, that
objects with the color are recognizable by A because they have that quale. The quale is made
into an objective entity that might attach itself to other experiences, such as my encounters
with blue things, or B’s experiences of red things.

3.5 Brian Cantwell Smith

The last body of research to be examined in this survey is that of Brian Cantwell Smith. It’s hard
to dispute that he is a computationalist, but he is also an antireductionist, which places him in a
rather unique category. Although it is clear in reading his work that he considers consciousness
to be a crucial topic, he has been working up to it very carefully. His early work (Smith, 1984)
was on “reflection” in programming languages, that is, how and why a program written in a
language could have access to information about its own subroutines and data structures. One
might conjecture that reflection might play a key role in a system’s maintaining a self-model
and thereby being conscious. But since that early work Smith has moved steadily away from
straightforward computational topics and toward foundational philosophical ones. Each of his
papers seems to take tinier steps from first principles than the ones that have gone before, so as
to presuppose as little as humanly possible. Nonetheless, they often express remarkable insight.
His paper (Smith, 2002) on the “Foundations of Computing” is a gem. (I also recommend
(Sloman, 2002), from the same collection (Scheutz, 2002).)

One thing both Smith and Sloman argue is that Turing machines are misleading as ideal
vehicles for computationalism, which is a point often missed by philosophers. For example,
Wilkes (1990) says “. . . computers (as distinct from robots) produce at best only linguistic and
exclusively ‘cognitive’ — programmable — ‘behaviour’: the emphasis is on internal psycholog-
ical processes, the cognitive ‘inner’ rather than on action, emotion, motivation, and sensory
experience.” Perhaps I’ve misunderstood him, but it’s very hard to see how this can be true,
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given that all interesting robots are controlled by digital computers. Furthermore, when com-
puters and software are studied isolated from their physical environments, it’s often for purely
tactical reasons (from budget or personnel limitations, or to avoid endangering bystanders).
If we go all the way back to Winograd’s (1972) SHRDLU system, we find a simulated robot
playing the role of conversationalist, not because Winograd thought real robots were irrelevant,
but precisely because he was thinking of a long-term project in which an actual robot would
be used.

As Smith (2002) says,

In one way or another, no matter what construal [of formality] they pledge
allegiance to, just about everyone thinks that computers are formal. . . . But since the
outset, I have not believed that this is necessarily so.. . . Rather, what computers are
. . . is neither more nor less than the full-fledged social construction and development

of intentional artifacts. (italics in original)

The point he is trying to make (and it can be hard to find a succinct quote in Smith’s papers) is
that computers are always connected to the world, whether they are robots or not, and therefore
the meaning their symbols possess is more determined by those connections than by what a
formal theory might say they mean. One might want to rule that the transducers that connect
them to the world are noncomputational (cf. (Harnad, 1990)), but there is no principled way
to draw a boundary between the two parts, because ultimately a computer is physical parts
banging against other physical parts. As Sloman puts it,

. . . The view of computers as somehow essentially a form of Turing machine
. . . is simply mistaken. . . . [The] mathematical notion of computation . . . is not the
primary motivation for the construction or use of computers, nor is it particularly
helpful in understanding how computers work or how to use them (Sloman, 2002).

The point Smith makes in the paper cited above is elaborated into an entire book, On

the Origin of Objects (Smith, 1995). The problem the book addresses is the basic ontology
of physical objects. The problem is urgent, according to Smith, because the basic concept
of intentionality is that a symbol S stands for an object X; but we have no prior concept of
what objects or symbols are. A geologist might see a glacier on a mountain, but is there some
objective reason why the glacier is an object (and the group of stones suspended in it is not)?
Smith believes that all object categories are to some extent carved out by subjects, i.e., by
information-processing systems like us (and maybe someday by robots as well).

The problem with this point of view is that it is hard to bootstrap oneself out of what
Smith calls the Criterion of Ultimate Concreteness: “No naturalistically palatable theory of
intentionality — of mind, computation, semantics, ontology, objectivity — can presume the
identify or existence of any individual object whatsoever” (p. 184). He tries valiantly to derive
subjects and objects from prior . . . umm . . . “entities” called s-regions and o-regions, but it is
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hard to see how he succeeds. In spite of its length, 420 pages, the book claims to arrive at no
more than a starting point for a complete rethinking of physics, metaphysics, and everything
else.

Most people will have a hard time following Smith’s inquiry, not least because few people
agree on his opening premise, that everyday ontology is broken and needs to be fixed. I actually
do agree with that, but I think the problem is much worse than Smith does. Unlike him, I am
reductionist enough to believe that physics is the science of “all there is”; so how do objects
emerge from a primordial superposition of wave functions? Fortunately, I think this is a problem
for everyone, and has nothing to do with the problem of intentionality.7 If computationalists
are willing to grant that there’s a glacier over there, anyone should be willing to consider the
computational theory of how systems refer to glaciers.

4 A Synthetic Summary

In spite of the diffidence of most AI researchers on this topic, I believe that there is a dominant
position on phenomenal consciousness among computationalists, “dominant” in the sense that
among the small population of those who are willing to take a clear position, this is more or
less the position they take. In this section I will try to sketch that postion, pointing out the
similarities and differences from the positions sketched in section 3.

The idea in a nutshell is that phenomenal consciousness is the property a computational
system X has if X models itself as experiencing things. To understand it, I need to explain

1. What a computational system is.

2. How such a system can exhibit intentionality.

3. That to be conscious is to model oneself as having experiences.

4.1 The Notion of Computational System

Before we computationalists can really get started, we run into the objection that the word
“computer” doesn’t denote the right kind of thing to play an explanatory role in a theory of
any natural phenomenon. A computer, so the objection goes, is an object that people8 use

to compute things. Without people to assign meanings to its inputs and outputs, a computer
is just an overly complex electronic kaleidoscope, generating a lot of pseudo-random patterns.
We may interpret the output of a computer as a prediction about tomorrow’s weather, but
there’s no other sense in which the computer is predicting anything. A chess computer outputs

7Even more fortunate, perhaps, is the fact that few will grant that foundational ontology is a problem in the
first place. Those who think elementary particles invented us, rather than vice versa, are in the minority.

8Or intelligent aliens, but this is an irrelevant variation on the theme.
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a syntactically legal expression that we can take to be its next move, but the computer doesn’t
actually intend to make that move. It doesn’t intend anything. It doesn’t care whether the
move is actually made. Even if it’s displaying the move on a screen, or using a robot arm to
pick up a piece and move it, these outputs are just meaningless pixel values or drive-motor
torques until people supply the meaning.

In my opinion, the apparent difficulty of supplying an objective definition of syntax and
especially semantics is the most serious objection to the computational theory of psychology,
and in particular to a computational explanation of phenomenal consciousness. To overcome it,
we need to come up with a theory of computation (and eventually semantics) that is observer-
independent.

There are two prongs to this attack, one syntactic, the other semantic. The syntactic prong
is the claim that even the symbols we attribute to computers are observer-relative. We point
to a register in the computer’s memory, and claim that it contains a number. The critic then
says that the mapping of states that cause this state to encode “55,000” is entirely arbitrary;
there are an infinite number of ways of interpreting the state of the register, none of which is
the “real” one in any sense; all we can talk about is the intended one. A notorious example
of John Searle’s exemplifies this kind of attack; he claims in (Searle, 1992) that the wall of his
office could be considered to be a computer under the right encoding of its states.

The semantic prong is the observation, discussed in sections 3.3 and 3.5, that even after
we’ve agreed that the register state encodes “55,000,” there is no objective sense in which this
figure stands for “Jeanne D’Eau’s 2003 income in euros.” If Jeanne D’Eau is using the EuroTax
software package to compute her income tax, then such semantic statements are nothing but
a convention adopted by her and the people that wrote EuroTax. In other words, the only
intentionality exhibited by the program is derived intentionality.

To avoid these objections, we have to be careful about how we state our claims. I have
space for only a cursory overview here; see (McDermott, 2001) for a more detailed treatment.
First, the idea of “computer” is prior to the idea of “symbol.” A basic computer is any physical
system whose subsequent states are predictable given its prior states. By “state” I mean “partial
state,” so that the system can be in more than one state at a time. An encoding is a mapping
from partial physical states to some syntactic domain (e.g., numerals). To view a system as
a computer, we need two encodings, one for inputs, one for outputs. It computes f(x) with
respect to a pair 〈I,O〉 of encodings if and only if putting it into the partial state encoding x

under I causes it to go into a partial state encoding f(x) under O.
A memory element under an encoding E is a physical system that, when placed into a state

s such that E(s) = x, tends to remain in the set of states {s : E(s) = x} for a while.
A computer is then a group of basic computers and memory elements viewed under a consis-

tent encoding scheme, meaning merely that if changes of component 1’s state cause component
2’s state to change, then the encoding of 1’s outputs is the same as the encoding of 2’s inputs.
Symbol sites then appear as alternative possible stable regions of state space, and symbol to-

kens as chains of symbol sites such that the occupier of a site is caused by the presence of the
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occupier of its predecessor site. Space does not allow me to discuss all the details here, but the
point is clear: the notions of computer and symbol are not observer-relative. Of course, they
are encoding-relative, but then velocity is “reference-frame-relative.” The encoding is purely
syntactic, or even pre-syntactic, since we have said nothing about what syntax an encoded value
has, if any. We could go on to say more about syntax, but one has the feeling that the whole
problem is a practical joke played by philosophers on naive AI researchers. (“Let’s see how
much time we can get them to waste defining ’computer’ for us, until they catch on.”) I direct
you to (McDermott, 2001) for more of my theory of syntax. The important issue is semantics,
to which we now turn.

One last remark: The definitions above are not intended to distinguish digital from analogue
computers, or serial from parallel ones. They are broad enough to include anything anyone
might ever construe as a computational system. In particular, they allow neural nets (Rumelhart
et al., 1986), natural and artificial, to count as computers. Many observers of AI (Churchland,
1986; Churchland, 1988; Wilkes, 1990) believe that there is an unbridgeable chasm between
some classical, digital, traditional AI and a revolutionary, analogue, connectionist alternative.
The former is the realm of von Neumann machines, the latter the realm of artificial neural
networks, “massively parallel” networks of simple processors (meant to mimic neurons), which
can be trained to learn different categories of sensory data (Rumelhart et al., 1986). The
“chasm” between the two is less observable in practice than you might infer from the literature.
AI researchers are omnivorous consumers of algorithmic techniques, and think of neural nets
as one of them — entirely properly, in my opinion. I will return to this subject in section 5.3.

4.2 Intentionality of Computational Systems

I described above Dennett’s idea of the “intentional stance,” in which an observer explains
a system’s behavior by invoking intentional categories such as beliefs and goals. Dennett is
completely correct that there is such a stance. The problem is that we sometimes adopt it
inappropriately. People used to think thunderstorms were out to get them, and a sign on my
wife’s printer says, “Warning! This machine is subject to breakdown during periods of critical
need.” What could it possibly mean to say that a machine demonstrates real intentionality
when it is so easy to indulge in a mistaken or merely metaphorical “intentional stance”?

Let’s consider an example. Suppose someone has a cat that shows up in the kitchen at the
time it is usually fed, meowing and behaving in other ways that tend to attract the attention
of the people who usually feed it. Contrast that with the case of a robot that, whenever its
battery is low, moves along a black trail painted on the floor that leads to the place where it
gets recharged, and, when it is over a large black cross that has been painted at the end of
the trail, emits a series of beeps that tend to attract the attention of the people who usually
recharge it. Some people might refuse to attribute intentionality to either the cat or the robot,
and treat comments such as, “It’s trying to get to the kitchen [or recharging area],” or “It
wants someone to feed [or recharge] it,” as purely metaphorical. They might take this position,
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or argue that it’s tenable, on the grounds that we have no reason to suppose that either the
cat or the robot has mental states, and hence nothing with the kind of “intrinsic aboutness”
that people exhibit. High catologists9 are sure cats do have mental states, but the skeptic
will view this as just another example of someone falling into the metaphorical pit of “as-if”
intentionality.

I believe, though, that even hard-headed low catologists think the cat is truly intentional,
albeit in the impersonal way discussed in section 3.3. They would argue that if you could open
up its brain you would find neural structures that “referred to” the kitchen or the path to it, in
the sense that those structures became active in ways appropriate to the cat’s needs: they were
involved in steering the cat to the kitchen and stopping it when it got there. A similar account
would tie the meowing behavior to the event of getting food, mediated by some neural states.
We would then feel justified in saying that some of the neural states and structures denoted the
kitchen, or the event of being fed.

The question is, Are the ascriptions of impersonal intentionality so derived arbitrary, or
objectively true? It’s difficult to take either choice. It feels silly saying that something is
arbitrary if it takes considerable effort to figure it out, and if one is confident that if someone
else independently undertook the same project they would reach essentially the same result.
But it also feels odd to say that something is objectively true if it is inherently invisible.
Nowhere in the cat will you find labels that say “This means X,” nor little threads that tie
neural structures to objects in the world. One might want to say that the cat is an intentional
system because there was evolutionary pressure in favor of creatures whose innards were tied via
“virtual threads” to their surroundings. I don’t like dragging evolution in because it’s more of
a question stopper than a question answerer. I prefer the conclusion that reluctance to classify
intentionality as objectively real simply reveals an overly narrow conception of objective reality.

A couple of analogies will help.

1. Code breaking: A code breaker is sure they have cracked a code when the message turns
into meaningful natural-language text. That’s because there are an enormous number
of possible messages, and an enormous number of possible ciphers, out of which there is
(almost certainly) only one combination of natural-language text and simple cipher that
produces the encrypted message.

Unfortunately for this example, it involves interpreting the actions of people. So even if
there is no observer-relativity from the cryptanalyst’s point of view, the intentionality in
a message is “derived” according to skeptics about the possible authentic intentionality
of physical systems.

2. Geology: A geologist strives to find the best explanation for how various columns and
strata of rock managed to place themselves in the positions they are found in. A good

9By analogy with Christology in Christian theology, which ranges from high to low depending on how super-
human one believes Jesus to be.
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explanation is a series of not-improbable events that would have transformed a plausible
initial configuration of rocks into what we see today.

In this case, there is no observer-relativity, because there was an actual sequence of events
that led to the current rock configuration. If two geologists have a profound disagreement
about the history of a rock formation, they can’t both be right (as they might be if
disagreeing about the beauty of a mountain range). Our normal expectation is that any
two geologists will tend to agree on at least the broad outline of an explanation of a rock
formation; and that as more data are gathered the areas of agreement will grow.

These examples are cases where, even though internal harmoniousness is how we judge
explanations, what we get in the end is an explanation that is true, independent of the harmo-

niousness. All we need to do is allow for this to be true even though, in the case of intentionality,
even a time machine or mind reader would not give us an independent source of evidence. To
help us accept this possibility, consider the fact that geologists can never actually get the entire
story right. What they are looking at is a huge structure of rock with a detailed microhistory
that ultimately accounts for the position of every pebble. What they produce in the end is
a coarse-grained history that talks only about large intrusions, sedimentary layers, and such.
Nonetheless we say that it is objectively true, even though the objects it speaks of don’t even
exist unless the account is true. It explains how a particular “intrusion” got to be there, but
if geological theory isn’t more or less correct, there might not be such a thing as an intrusion;
the objects might be parsed in a totally different way.

If processes and structures inside a cat’s brain exhibit objectively real impersonal intention-
ality, then it’s hard not to accept the same conclusion about the robot trying to get recharged.
It might not navigate the way the cat does — for instance, it might have no notion of a place
it’s going to, as opposed to the path that gets it there — but we see the same fit with its
environment among the symbol structures in its hardware or data. In the case of the robot the
hardware and software were designed, and so we have the extra option of asking the designers
what the entities inside the robot were supposed to denote. But it will often happen that there
is conflict between what the designers intended and what actually occurs, and what actually

occurs wins. The designers don’t get to say, “This boolean variable means that the robot is
going through a door” unless the variable’s being true tends to occur if and only if the robot is
between two door jambs. If the variable is correlated with something else instead, then that’s

what it actually means. It’s appropriate to describe what the roboticists are doing as debugging
the robot so that its actual intentionality matches their intent. The alternative would be to
describe the robot as “deranged” in the sense that it continuously acts in ways that are bizarre
given what its data structures mean.

Two other remarks are in order: What the symbols in a system mean is dependent on the
system’s environment. If a cat is moved to a house that is so similar to the one it’s familiar with
that the cat is fooled, then the structures inside it that used to refer to the kitchen of house 1
now refer to the kitchen of house 2. And so forth; and there will of course be cases in which the
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denotation of a symbol breaks down, leaving no coherent story about what it denotes, just as in
the geological case an event of a type unknown to geology, but large enough to cause large-scale
effects, will go unhypothesized, and some parts of geologists’ attempts to make sense of what
they see will be too incoherent to be true or false, or to even to refer to anything.

The other remark is that it might be the case that the sheer size of the symbolic systems
inside people’s heads might make the impersonal intentionality story irrelevant. We don’t,
of course, know much about the symbol systems used by human brains, whether there is a
“language of thought” (Fodor, 1975) or some sort of connectionist soup, but clearly we can have
beliefs orders of magnitude more complex than those of a cat or a robot (year-2006 model).
If you walk to work, but at the end of the day absent-mindedly head for the parking lot to
retrieve your car, what you will believe once you get there has the content “My car is not here.”
Does this belief correspond to a symbol structure in the brain whose pieces include symbol
tokens for “my car,” “here,” and “not”? We don’t know. But if anything like that picture
is accurate, then assigning a meaning to symbols such as “not” is considerably more difficult
than assigning a meaning to the symbols a cat or robot might use to denote “the kitchen.”
Nonetheless, the same basic story can still be told: that the symbols mean what the most
harmonious interpretation says they mean. This story allows us to assign arbitrarily abstract
meanings to symbols like “not”; the price we pay is that for now all we have is an IOU for a
holistic theory of the meanings inside our heads.

4.3 Modelling Oneself as Conscious

I have spent a lot of time discussing intentionality because once we can establish the concept
of an impersonal level of meaning in brains and computers, we can introduce the idea of a
self-model, a device that a robot or a person can use to answer questions about how it interacts
with the world. This idea was introduced by Minsky almost forty years ago (Minsky, 1968a),
and has since been explored by many others, including Sloman (Sloman & Chrisley, 2003),
McDermott (2001), and Dennett (1991b). As I mentioned above, Dennett mixes this idea with
the concept of meme, but self-models don’t need to be made out of memes.

We start with Minsky’s observation that complex organisms use models of their environ-
ments in order to predict what will happen and decide how to act. In the case of humans,
model making is taken for granted by psychologists (Johnson-Laird, 1983); no one really knows
what other animals’ capacities for using mental models are. A mental model is some sort of
internal representation of part of the organism’s surroundings that can be inspected, or even
“run” in some way, so that features of the model can then be transformed back into inferred or
predicted features of the world. For example, suppose you’re planning to go grocery shopping,
and the skies are threatening rain, and you’re trying to decide whether to take an umbrella.
You enumerate the situations where the umbrella might be useful, and think about whether on
balance it will be useful enough to justify having to keep track of it. One such situation is the
time when you emerge from the store with a cartload of groceries to put in the car. Will the

24



umbrella keep you or your groceries dry?10

This definition is general (and vague) enough to cover noncomputational models, but the
computationalist framework provides an obvious and attractive approach to theorizing about
mental models. In this framework, a model is an internal computer set up to simulate something.
The organism initializes it, lets it run for a while, reads off its state, and interprets the state
as a set of inferences that then guide behavior. In the umbrella example, one might imagine
a physical simulation, at some level of resolution, of a person pushing a cart and holding an
umbrella while rain falls.

A mental model used by an agent A to decide what to do must include A itself, simply
because any situation A finds itself in will have A as one of its participants. If I am on a
sinking ship, and trying to pick a lifeboat to jump into, predicting the number of people on
the lifeboat must not omit the “+ 1” required to include me. This seemingly minor principle
has far-reaching consequences, because many of A’s beliefs about itself will stem from the way
its internal surrogates participate in mental models. We will call the beliefs about a particular
surrogate a self-model, but usually for simplicity I will refer to the self-model, as if all those
beliefs are pulled together into a single “database.” Let me state up front that the way things
really work is likely to be much more complex and messy. Let me also declare that the self-
model is not a Cartesian point of transcendence where the self can gaze at itself. It is a resource
accessible to the brain at various points for several different purposes.

We can distinguish between exterior and interior self-models. The former refer to the agent
considered as a physical object, something with mass that might sink a lifeboat. The latter
refers to the agent considered as an information-processing system. To be concrete, let’s look
at a self-model that arises in connection with the use of anytime algorithms to solve time-

dependent planning problems (Boddy & Dean, 1989). An anytime algorithm is one that can be
thought of as an asynchronous process that starts with a rough approximation to the desired
answer and gradually improves it; it can be stopped at any time and the quality of the result it
returns depends on how much run time it was given. We can apply this idea to planning robot
behavior, in situations where the objective is to minimize the total time required to solve the
problem, which is equal to

time (tP ) to find a plan P + time (tE(P )) to execute P

If the planner is an anytime algorithm, then the quality of the plan it returns improves with
tP . We write P (tP ) to indicate that the plan found is a function of the time allotted to finding
it. Because quality is execution time, we can refine that statement and say that tE(P (tP ))
decreases as tP increases. Therefore, in order to optimize

tP + tE(P (tP ))

10For some readers this example will elicit fairly detailed visual images of shopping carts and umbrellas, and
for those readers it’s plausible that the images are part of the mental-model machinery. But even people without
much visual imagery can still have mental models, and might still use them to reason about grocery shopping.
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we must find the smallest tP such that the time gained by planning ∆t longer than that would
probably improve tE by less than ∆t. The only way to find that optimal tP is to have an
approximate model of how fast tE(P (tP )) changes as a function of tP . Such a model would
no doubt reflect the law of diminishing returns, so that finding the optimal tP is an easy one-
dimensional optimization problem. The important point for us is that this model is a model of
the planning component of the robot, and so counts as an interior self-model.

Let me make sure my point is clear: interior self-models are no big deal. Any algorithm that
outputs an estimate of something plus an error range incorporates one. The mere presence of
a self-model does not provide us some kind of mystical reflection zone where we can make con-
sciousness pop out as an “emergent” phenomenon. This point is often misunderstood by critics
of AI (Rey, 1997; Block, 1997) who attribute to computationalists the idea that consciousness
is nothing but the ability to model oneself. In so doing, they tend to muddy the water further
by saying that computationalists confuse consciousness with self-consciousness. I hope in what
follows I can make these waters a bit clearer.

Today’s information-processing systems are not very smart. They tend to work in narrow
domains, and outperform humans only in areas, such as chess and numerical computation,
where clear formal ground rules are laid out in advance. A robot that can walk into a room,
spy a chessboard, and ask if anyone wants to play is still far in the future. This state of affairs
raises a huge obstacle for those who believe that consciousness is built on top of intelligence
rather than vice versa, that obstacle being that everything we say is hypothetical. It’s easy
to counter the computationalist argument. Just say, “I think you’re wrong about intelligence
preceding consciousness, but even if you’re right I doubt that computers will ever reach the
level of intelligence required.”

To which I reply, Okay. But let’s suppose they do reach that level. We avoid begging any
questions by using my hypothetical chess-playing robot as a concrete example. We can imagine
it being able to locomote, see chessboards, and engage in simple conversations. (“Want to
play?” “Later.” “I’ll be back.”) We start by assuming that it is not conscious, and then
think about what it would gain by having interior self-models of a certain class. The starting
assumption, that it isn’t conscious, should be uncontroversial.

One thing such a robot might need is a way to handle perceptual errors. Suppose that it
has a subroutine for recognizing chessboards and chessmen.11 For serious play only Staunton
chess pieces are allowed, but you can buy a chessboard with pieces of almost any shape; I have
no doubt that Disney sells a set with Mickey and Minnie Mouse as king and queen. Our robot,
we suppose, can correct for scale, lighting, and other variations of the appearance of Staunton
pieces, but just can’t “parse” other kinds of pieces. It could also be fooled by objects that only
appeared to be Staunton chess pieces.

11I have two reasons for positing a chessboard-recognition subroutine instead of a general-purpose vision system
that recognizes chessboards and chess pieces in terms of more “primitive” elements: (1) Many roboticists prefer
to work with specialized perceptual systems; and (2) the qualia-like entities we will predict will be different in
content from human qualia, which reduces the chances of jumping to conclusions about them.
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Now suppose that the robot contained some modules for improving its performance. It
might be difficult to calibrate the perceptual systems of our chess-playing robots at the factory,
especially since different owners will use them in different situations. So we suppose that after
a perceptual failure a module we will call the perception tuner will try to diagnose the problem
and change the parameters of the perceptual system to avoid it in the future.

The perception tuner must have access to the inputs and outputs of the chess recognition
system, and, of course, access to parameters that it can change in order to improve the system’s
performance. It must have a self-model that tells it how to change the parameters to reduce the
likelihood of errors. (The “back propagation” algorithm used in neural nets (Rumelhart et al.,
1986) is an example.) What I want to call attention to is that the perception tuner interprets
the outputs of the perceptual system in a rather different way from the decision-making system.
The decision-making system interprets them (to oversimplify) as being about the environment;
the tuning system interprets them as being about the perceptual system. For the decision
maker the output “Pawn at 〈x, y, z〉” means that there is a pawn at a certain place. For the
tuner, it means that the perceptual system says there is a pawn, in other words, that there
appears to be a pawn.

Here is where the computationalist analysis of intentionality steps in. We don’t need to
believe that either the decision maker or the tuner literally “thinks” that a symbol structure
at a certain point means a particular thing. The symbol structure S means X if there is a
harmonious overall interpretation of the states of the robot in which S means X.

The perceptual-tuner scenario suggests that we can distinguish two sorts of access to a
subsystem: normal access and introspective access. The former refers to the flow of information
that the subsystem extracts from the world (Dretske, 1981). The latter refers to the flow
of information it produces about the normal flow.12 For our robot, normal access gives it
information about chess pieces; introspective access gives it information about . . . what, exactly?
A datum produced by the tuner would consist of a designator of some part of the perceptual
field that was misinterpreted, plus information about how it was interpreted and how it should
have been. We can think of this as being information about “appearance” vs. “reality.”

The next step in our story is to suppose that our robot has “episodic” memories, that
is, memories of particular events that occurred to it. (Psychologists draw distinctions between
these memories and other kinds, such as learned skills (e.g.,the memory of how to ride a bicycle)
and abstract knowledge (e.g., the memory that France is next to Germany), sometimes called
semantic memory.) We take episodic memory for granted, but presumably flatworms do without
it; there must be a reason why it evolved in some primates. One possibility is that it’s a means to
keep track of events whose significance is initially unknown. If something bad or good happens
to an organism, it might want to retrieve past occasions when something similar happened and

12Of course, what we’d like to be able to say here is that normal access is the access it was designed to support,
and for most purposes that’s what we will say, even when evolution is the “designer.” But such basic concepts
can’t depend on historical events arbitrarily far in the past.
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try to see a pattern. It’s hard to say why the expense of maintaining a complex “database”
would be paid back in terms of reproductive success, especially given how wrongheaded people
can be about explaining patterns of events. But perhaps all that is required is enough paranoia
to avoid too many false negatives in predicting catastrophes.

The final step is to suppose that the robot can ask fairly general questions about the
operation of its perceptual and decision-making systems. Actually, this ability is closely tied
to the ability to store episodic memories. To remember something one must have a notation to
express it. Remembering a motor skill might require storing a few dozen numerical parameters
(e.g., weights in neural networks, plus some sequencing information). If this is correct, then, as
argued above, learning a skill means nudging these parameters toward optimal values. Because
this notation is so lean, it won’t support recording the episodes during which skill was enhanced.
You may remember your golf lessons, but those memories are independent of the “memories,”
encoded as numerical parameters, that manifest themselves as an improved putt. If you try
to think of a notation in which to record an arbitrary episode, it’s like trying to think of a
formal notation to capture the content of a Tolstoy novel. It’s not even clear what it would
mean to record an episode. How much detail would there be? Would it always have to be
from the point of view of the creature that recorded it? Such questions get us quickly into
the realm of Knowledge Representation, and the Language of Thought (Fodor, 1975). For
that matter, we are quickly led to the topic of ordinary human language, because the ability
to recall an episode seems closely related to the ability to tell about it, and to ask about it.
We are far from understanding how language, knowledge representation, and episodic memory
work, but it seems clear that the mechanisms are tightly connected, and all have to do with
what sorts of questions the self-model can answer. This clump of mysteries accounts for why
Dennett’s (1991b) meme-based theory is so attractive. He makes a fairly concrete proposal
that language came first and that the evolution of the self-model was driven by the evolution
of language.

Having waved our hands a bit, we can get back to discussing the ability of humans, and
presumably other intelligent creatures, to ask questions about how they work. We will just
assume that these questions are asked using an internal notation reminiscent of human language,
and then answered using a Minskyesque self-model. The key observation is that the self-model
need not be completely accurate, or, rather, that there is a certain flexibility in what counts as
an accurate answer, because what it says can’t be contradicted by other sources of information.
If everyone’s self-model says they have free will, then free will can’t be anything but whatever
it is everyone thinks they have. It becomes difficult to deny that we have free will, because
there’s no content to the claim that we have it over and above what the chorus of self-models
declare.13

Phenomenal experience now emerges as the self-model’s answer to the question, What hap-

13For the complete story on free will, see (McDermott, 2001), ch. 3. I referred to Minsky’s rather different
theory above; McCarthy champions his own version in (McCarthy & Hayes, 1969).
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pens when I perceive something? The answer, in terms of appearance, reality, and error, is
accurate up to a point. It’s when we get to qualia that the model ends the explanation with a
just-so story. It gives more useful answers on questions such as whether it’s easier to confuse
green and yellow than green and red, or what to do when senses conflict, or what conditions
make errors more or less likely. But to questions such as, How do I know this is red in the
first place?, it gives an answer designed to stop inquiry. The answer is that red has this quality
(please focus attention on the red object) which is intrinsically different from the analogous
quality for green objects (now focus over here, if you don’t mind). Because red is “intrinsically
like . . . this,” there is no further question to ask. Nor should there be. I can take steps to
improve my classification of objects by color, but there’s nothing I can do to improve my ability
to tell red from green (or, more plausibly, to tell two shades of red apart) once I’ve obtained
optimal lighting and viewing conditions.14

The computationalist theory of phenomenal consciousness thus ends up looking like a spoil-
sport’s explanation of a magic trick. It comes down to: “Don’t look over there! The key
move is over here, where you weren’t looking!”15 Phenomenal consciousness is not part of the

mechanism of perception, but part of the mechanism of introspection about perception.

It is easy to think that this theory is similar to Perlis’s model of self-consciousness as
ultimately fundamental, and many philosophers have misread it that way. That’s why “self-
consciousness” is so misleading. Ordinarily what we mean by it is consciousness of self. But
the self-model theory of consciousness aims to explain all phenomenal consciousness in terms
of subpersonal modelling by an organism R of R’s own perceptual system. Consciousness of
self is just a particular sort of phenomenal consciousness, so the theory aims to explain it in
terms of modelling by R of R’s own perceptual system in the act of perceiving R. In these last
two sentences the word “self” does not appear except as part of the definiendum, not as part of
the definiens. Whatever the “self” is, it is not lying around waiting to be perceived; the act of
modelling it defines what it is to a great extent. There is nothing mystical going on here. When
R’s only view of R is R∗, in Minsky’s terminology, then it is no surprise if terms occur in R∗
whose meaning depends at least partly on how R∗ fits into everything else R is doing, and in
particular on how (the natural-language equivalents of those) terms are used by a community
of organisms R belongs to.

I think the hardest part of this theory to accept is that perception is normally not mediated,
or even accompanied, by qualia. In section 1 I invited readers to cast their eyes over a complex
climate-control system and observe the absence of sensation. We can do the same exercise with
the brain, with the same result. It just doesn’t need sensations in order to do its job. But if
you ask it, it will claim it does. A quale exists only when you look for it.

14One may view it as a bug that a concept, qualia, whose function is to end introspective questioning has
stimulated so much conversation! Perhaps if human evolution goes on long enough natural selection will eliminate
those of us who persist in talking about such things, especially while crossing busy streets.

15Cf (Wittgenstein, 1953): “The decisive movement in the conjuring trick has been made, and it was the very
one we thought quite innocent.”
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Throughout this section, I have tried to stay close to what I think is a consensus position on
a computational theory of phenomenal consciousness. But I have to admit that the endpoint to
which I think we are driven is one that many otherwise fervent computationalists are reluctant
to accept. There is no alternative conclusion on the horizon, just a wish for one, as in this
quote from (Perlis, 1997):

. . . Perhaps bare consciousness is in and of itself a self-distinguishing process, a
process that takes note of itself. If so, it could still be considered a quale, the
ur-quale, what it’s like to be a bare subject. . . . What might this be? That is
unclear. . . .

Perlis believes that a conscious system needs to be “strongly self-referring,” in that its modelling
of self is modelled in the very modelling, or something like that. “Why do we need a self-
contained self, where referring stops? Negotiating one’s way in a complex world is tough
business. . . .” He sketches a scenario in which Ralph, a robot, needs a new arm.

Suppose the new arm is needed within 24 hours. He cannot allow his decision-
making about the best and quickest way to order the arm get in his way, i.e., he must
not allow it to run on and on. He can use meta-reasoning to watch his reasoning
so it does not use too much time, but then what is to watch his meta-reasoning?
. . . He must budget his time. Yet the budgeting is another time-drain, so he must
pay attention to that too, and so on in an infinite regress. . . . Somehow he must
regard [all these modules] as himself, one (complex) system reasoning about itself,
including that very observation. He must strongly self-refer : he must refer to that
very referring so that its own time-passage can be taken into account. (Italics in
original.)

It appears to me that two contrary intuitions are colliding here. One is the hard-headed
computationalist belief that self-modelling is all you need for consciousness; the other is the
nagging feeling that self-modelling alone can’t quite get us all the way. Yet when he tries to find
an example, he winds up with a mystical version of the work by Boddy and Dean (1989) that
I cited above as a prosaic example of self modelling. It seems clear to me that the only reason
Perlis needs the virtus dormitiva of “strong self-reference” is because the problem-solving system
he’s imagining is not an ordinary computer program, but a transcendental self-contemplating
mind, something not really divided into modules at all, but actively dividing itself into time-
shared virtual modules as it shifts its attention from one aspect of its problem to another, then
to a meta-layer, a meta-meta-layer, and so forth. If you bite the bullet and accept that all this
meta-stuff, if it exists at all, exists only in the system’s self-model, then the need for strong self-
reference, and the “ur-quale,” goes away, much like the ether in the theory of electromagnetism.
So I believe, but I admit that most AI researchers who take a position probably share Perlis’s
reluctance to let that ether go.
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5 The Critics

AI has always generated a lot of controversy. The typical pattern is that some piece of research
captures the public’s imagination, as amplified by journalists, then the actual results don’t fit
those public expectations, and finally someone comes along to chalk up one more failure of AI
research. Meanwhile, often enough the research does succeed, not on the goals hallucinated by
the popular press, but on those the researchers actually had in mind, so that the AI community
continues to gain confidence that it is on the right track.

Criticism of AI models of consciousness doesn’t fit this pattern. As I observed at the outset,
almost no one in the field is “working on” consciousness, and certainly there’s no one trying to
write a conscious program. It is seldom that a journalist can make a breathless report about a
robot that will actually have experiences!! 16

Nonetheless, there has been an outpouring of papers and books arguing that mechanical
consciousness is impossible, and that suggestions to the contrary are wasteful of research dollars
and possibly even dangerously dehumanizing. The field of “artificial consciousness” (AC) is
practically defined by writers who deny that such a thing is possible. Much more has been
written by AC skeptics than by those who think it is possible. In this section I will discuss
some of those criticisms and refute them as best I can.

Due to space limitations, I will try to focus on critiques that are specifically directed at
computational models of consciousness, as opposed to general critiques of materialist explana-
tion. For example, I will pass over Jackson’s (1982) story about “Mary, the color scientist” who
learns what red looks like. There are interesting things to say about it (which I say in (McDer-
mott, 2001)), but Jackson’s critique is not directed at, and doesn’t mention, computationalism
in particular. I will also pass over the vast literature on “inverted spectrum” problems, which
is a somewhat more complex version of the sour/spicy taco problem.

Another class of critiques that I will omit are those whose aim is to show that computers can
never achieve human-level intelligence. As discussed in sections 3, I concede that if computers
can’t be intelligent then they can’t be conscious either. But our focus here is on consciousness,
so the critics I try to counter are those who specifically argue that computers will never be
conscious, even if they might exhibit intelligent behavior. One important group of arguments
this leaves out are those based on Gödel’s proof that Peano arithmetic is incomplete (Nagel &
Newman, 1958; Penrose, 1989, 1994). These arguments are intended to show a limitation in
the abilities of computers to reason, not specifically a limitation on their ability to experience
things; in fact, the connection between the two is too tenuous to justify talking about the topic
in detail.

16One occasionally hears news reports about attempts to build an artificial nose. When I hear such a report, I
picture a device that measures concentrations of substances in the air. But perhaps the average person imagines
a device that “smells things,” so that, e.g., the smell of a rotten egg would be unpleasant for it. In any case,
these news reports seem not to have engendered much controversy, so far.
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5.1 Turing’s Test

Let’s start where the field started: with Turing’s Test (Turing, 1950). As described in section 3,
the test consists of a judge trying to distinguish a computer from a person by carrying on typed
conversations with them. If the judge gets it wrong about 50% of the time, then the computer
passes the test.

Turing’s test is not necessarily relevant to the computational theory of consciousness. Few of
the theorists discussed in sections 3 and 4 have invoked the Test as a methodological tool. Where
it comes in is when it is attributed to computationalists. A critic will take the computationalist’s
focus on the third-person point of view as an endorsement of behaviorism, then jump to Turing’s
Test as the canonical behaviorist tool for deciding whether an entity is conscious. That first
step, from “third-person” to “behaviorist,” is illegitimate. It is, in fact, somewhat ludicrous to
accuse someone of being a behaviorist who is so eager to open an animal up (metaphorically,
that is), and stuff its head with intricate block diagrams. All the “third-personist” is trying
to do is stick to scientifically, that is, publicly, available facts. This attempt is biased against
the first-person view, and that bias pays off by eventually giving us an explanation of the first
person.

So there is no particular reason for a computationalist to defend the Turing Test. It doesn’t
particularly help develop theoretical proposals, and it gets in the way of thinking about intelli-
gent systems that obviously can’t pass the test. Nonetheless, an objection to computationalism
raised in section 3.1 does require an answer. That was the objection that even if a computer
could pass the Turing Test, it wouldn’t provide any evidence that it actually was conscious. I
disagree with this objection on grounds that should be clear at this point: To be conscious is to
model one’s mental life in terms of things like sensations and free decisions. It would be hard
to have an intelligent robot that wasn’t conscious in this sense, because everywhere the robot
went it would have to deal with its own presence and its own decision making, and so it would
have to have models of its behavior and its thought processes. Conversing with it would be a
good way of finding out how it thought about itself, that is, what its self-models were like.

Keep in mind, however, that the Turing Test is not likely to be the standard method to check
for the presence of consciousness in a computer system, if we ever need a standard method. A
robot’s self-model, and hence its consciousness, could be quite different from ours in respects
that are impossible to predict given how far we are from having intelligent robots. It is also just
barely possible that a computer not connected to a robot could be intelligent with only a very
simple self-model. Suppose the computer’s job was to control the traffic, waste management,
and electric grid of a city. It might be quite intelligent, but hardly conscious in a way we could
recognize, simply because it wouldn’t be present in the situations it modeled the way we are.
It probably couldn’t pass the Turing Test either.

Somewhere in this thicket of possibilities there might be an artificial intelligence with an
alien form of consciousness that could pretend to be conscious on our terms while knowing
full well that it wasn’t. It could then pass the Turing Test, wine tasting division, by faking
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it. All this shows is that there is a slight possibility that the Turing Test could be good at
detecting intelligence and not so good at detecting consciousness. This shouldn’t give much
comfort to those who think that the Turing Test systematically distracts us from the first-
person viewpoint. If someone ever builds a machine that passes it, it will certainly exhibit
intentionality and intelligence, and almost certainly be conscious. There’s a remote chance that
human-style consciousness can be faked, but no chance that intelligence can be.17

5.2 The Chinese Room

One of the most notorious arguments in the debate about computational consciousness is
Searle’s (1980) “Chinese Room” argument. It’s very simple. Suppose we hire Searle (who
speaks no Chinese) to implement a computer program for reading stories in Chinese and then
answering questions about those stories. Searle reads each line of the program and does what
it says. He executes the program about a million times slower than an actual CPU would, but
if we don’t mind the slow motion we could carry on a perfectly coherent conversation with him.

Searle goes on:

Now the claims made by strong AI are that the programmed computer under-
stands the stories and that the program in some sense explains human understand-
ing. But we are now in a position to examine these claims in light of our thought
experiment.

1. As regards the first claim, it seems to me quite obvious in the example that
I do not understand a word of the Chinese stories. I have inputs and outputs that
are indistinguishable from those of the native Chinese speaker, and I can have any
formal program you like, but I still understand nothing. . . .

2. As regards the second claim, that the program explains human understanding,
we can see that the computer and its program do not provide sufficient conditions
of understanding since the computer and the program are functioning, and there is
no understanding.

It’s hard to see what this argument has to do with consciousness. The connection is some-
what indirect. Recall that in section 4.2 we made sure to talk about “impersonal” intentionality,
the kind a system has by virtue of being a computer whose symbol structures are causally con-
nected to the environment so as to denote objects and states of affairs in that environment.
Searle absolutely refuses to grant that there is any such thing as impersonal or subpersonal
intentionality (Searle, 1992). The paradigm case of any mental state is always the conscious

17I realize that many people, for instance Robert Kirk (1994), believe that in principle something as simple as
a lookup table could simulate intelligence. I don’t have space here to refute this point of view, except to note
that besides the fact that the table would be larger than the known universe and take a trillion years to build,
a computer carrying on a conversation by consulting it would not be able to answer a question about what time
it is.
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mental state, and he is willing to stretch mental concepts only far enough to cover unconscious
mental states that could have been conscious (repressed desires, for instance). Hence there is
no understanding of Chinese unless it is accompanied by a conscious awareness or feeling of
understanding.

If Searle’s stricture were agreed upon, then all research in cognitive science would cease
immediately, because it routinely assumes the existence of nonconscious symbol processing to
explain the results of experiments.18

Searle seems to have left an escape clause, the notion of “weak AI”:

I find it useful to distinguish what I will call ‘strong’ AI from ‘weak’ or ‘cautious’
AI . . . . According to weak AI, the principal value of the computer in the study
of the mind is that it gives us a very powerful tool. For example, it enables us to
formulate and test hypotheses in a more rigorous and precise fashion. But according
to strong AI, the computer is not merely a tool in the study of the mind; rather, the
appropriately programmed computer really is a mind, in the sense that computers
given the right programs can be literally said to understand and have other cognitive
states (Searle, 1980).

Many people have adopted this terminology, viewing the supposed weak version of AI as a
safe harbor in which to hide from criticism. In my opinion, the concept of weak AI is incoherent.
Suppose someone writes a program to simulate a hurricane, to use a common image. The
numbers in the simulation denote actual or hypothetical air pressures, wind velocities, and
the like. The simulation embodies differential equations that are held to be more or less true
statements about how wind velocities affect air pressures and vice versa, and similarly for
all the other variables involved. Now think about “computer simulations of human cognitive
capacities” (Searle’s phrase). What are the analogues of the wind velocities and air pressures
in this case? When we use the simulations to “formulate and test hypotheses,” what are the
hypotheses about? They might be about membrane voltages and currents in neurons, but of
course they aren’t, because neurons are “too small.” We would have to simulate an awful lot
of them, and we don’t really know how they’re connected, and the simulation would just give
us a huge chunk of predicted membrane currents anyway. So no one does that. Instead, they
run simulations at a much higher level, at which symbols and data structures emerge. This
is true even for neural-net researchers, whose models are much, much smaller than the real
thing, so that each connection weight represents an abstract summary of a huge collection of
real weights. What, then, is the ontological status of these symbols and data structures? If we
believe that these symbols and the computational processes over them are really present in the

18There is a popular belief that there is such a thing as “nonsymbolic” or “subsymbolic” cognitive science,
as practiced by those who study artificial neural nets. As I mentioned in section 4.1, this distinction is usually
unimportant, and the present context is an example. The goal of neural-net researchers is to explain conscious
thought in terms of unconscious computational events in neurons, and as far as Searle is concerned, this is just
the same fallacy all over again (Searle, 1990).
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brain, and really explain what the brain does, then we are back to strong AI. But if we don’t
believe that, then why the hell are we simulating them? By analogy, let us compare strong vs.
weak computational meteorology. The former is based on the belief that wind velocities and
air pressures really have something to do with how hurricanes behave. The latter allows us to
build “powerful tools” that perform “computer simulations of [hurricanes’ physical] capacities,”
and “formulate and test hypotheses” about . . . something other than wind velocities and air
pressures?

Please note that I am not saying that all cognitive scientists are committed to a computa-
tionalist account of consciousness. I’m just saying that they’re committed to a computationalist
account of whatever it is they’re studying. If someone believes that the EPAM model (Feigen-
baum & Simon, 1984) accounts for human errors in memorizing lists of nonsense syllables, they
have to believe that structures isomorphic to the discrimination trees in EPAM are actually to
be found in human brains. If someone believes that there is no computationalist account of
consciousness, then they must also believe that a useful computer simulation of consciousness
must simulate something other than symbol manipulation, perhaps ectoplasm secretions. In
other words, given our lack of any noncomputational account of the workings of the mind, they
must believe it to be pointless to engage in simulating consciousness at all at this stage of the
development of the subject.

There remains one opportunity for confusion. No one believes that a simulation of a hurri-
cane could blow your house off the beach. Why should we expect a simulation of a conscious
mind to be conscious (or expect a simulation of a mind to be a mind)? Well, we need not
expect that, exactly. If a simulation of a mind is disconnected from an environment, then it
would remain a mere simulation.

However, once the connection is made properly, we confront the fact that a sufficiently
detailed simulation of computation C is computation C. This is a property of formal systems
generally. As Haugeland (1985) observes, the difference between a game like tennis and a game
like chess is that the former involves moving a physical object, the ball, through space, while the
latter involves jumping from one legal board position to the next, and legal board positions are
not physical entities. In tennis, one must hit a ball with certain prescribed physical properties
using a tennis racket, which must also satisfy certain physical requirements. Chess requires
only that the state of the game be represented with enough detail to capture the positions of
all the pieces.19 One can use any 8×8 array as a board, and any collection of objects as pieces,
provided they are isomorphic to the standard board and pieces. One can even use computer
data structures. So a detailed simulation of a good chess player is a good chess player, provided
it is connected by some channel, encoded however you like, between its computations and an
actual opponent with whom it is alternating moves. Whereas for a simulation of a tennis player
to be a tennis player, it would have to be connected to a robot capable of tracking and hitting
tennis balls.

19And a couple of other bits of information, such as whether each player still has castling as an option.
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This property carries over to the simulation of any other process that is essentially computa-
tional. So, if it happens that consciousness is a computational phenomenon, then a sufficiently
faithful simulation of a conscious system would be a conscious system, provided it was connected
to the environment in the appropriate way. This point is especially clear if the computations
in question are somewhat modularizable, as might be the case for a system’s self-model. The
difference between a nonconscious tennis player and a conscious one might involve connections
among its internal computational modules, and not the connections from there to its cameras
and motors. There would then be no difference between the “consciousness module” and a
detailed simulation of that “module”; they would be interchangeable, provided that they didn’t
differ too much in speed, size, and energy consumption. I use scare quotes here because I doubt
that things will turn out to be that tidy. Nonetheless, no matter how the wires work out, the
point is that nothing other than computation need be involved in consciousness, which is what
Strong AI boils down to. Weak AI boils down to a sort of “cargo cult” whose rituals involve
simulations of things someone only guesses might be important in some way.

Now that I’ve clarified the stakes, let’s look at Searle’s argument. It is ridiculously easy
to refute. When he says, “the claims made by strong AI are that the programmed computer
understands the stories and that the program in some sense explains human understanding,”
he may be right about the second claim (depending on how literally you interpret “explains”),
but he is completely wrong about the first claim, that the programmed computer understands
something. As McCarthy says, “The Chinese Room Argument can be refuted in one sentence:
Searle confuses the mental qualities of one computational process, himself for example, with
those of another process that the first process might be interpreting, a process that understands
Chinese, for example” (McCarthy, 2000). Searle’s slightly awkward phrase “the programmed
computer” gives the game away. Computers and software continually break our historical
understanding of the identity of objects across time. Any computer user has (too often) had
the experience of not knowing “whom” they’re talking to when talking to their program. Listen
to a layperson try to sort out the contributions to their current state of frustration of the e-mail
delivery program, the e-mail reading program, and the e-mail server. When you run a program
you usually then talk to it. If you run two programs at once you switch back and forth between
talking to one and talking to the other.20 The phrase “programmed computer” makes it sound
as if programming it changes it into something you can talk to. The only reason to use such an
odd phrase is because in the story Searle himself plays the role of the programmed computer,
the entity that doesn’t understand. By pointing at the “human CPU” and shouting loudly, he
hopes to distract us from the abstract entity that is brought into existence by executing the
story-understanding program.

We can state McCarthy’s argument vividly by supposing that two CPUs are involved, as
they might well be. The story-understanding program might be run on one for a while, then

20Technically I mean “process” here, not “program.” McCarthy’s terminology is more accurate. But I’m
trying to be intelligible by technical innocents.
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on the other, and so forth, as dictated by the internal economics of the operating system. Do
we imagine that the ability to “understand” jumps back and forth between the two CPUs? If
we replace the two CPUs by two people, does Strong AI predict that the ability to understand
Chinese will jump back and forth between the two people (McDermott, 2001)? Of course not.

5.3 Symbol Grounding

In both of the preceding sections, it sometimes seems as if intentionality is the real issue, or
what Harnad (1990, 2001) calls the symbol-grounding problem. The problem arises from the idea
of a disembodied computer living in a realm of pure syntax, which we discussed in section 3.5.
Suppose that such a computer ran a simulation of the battle of Waterloo. That is, we intend it
to simulate that battle, but for all we know there might be another encoding of its states that
would make it be a simulation of coffee prices in Ecuador.21 What connects the symbols to the
things they denote? In other words, what grounds the symbols?

This problem underlies some people’s concerns about the Turing Test and the Chinese Room
because the words in the Turing Test conversation might be considereed to be ungrounded and
therefore meaningless (Davidson, 1990); and the program and data structures being manipu-
lated by the human CPU John Searle seem also to be disconnected from anything that could
give them meaning.

As should be clear from the discussion in section 4.2, symbols get their meanings by being
causally connected to the world. Harnad doesn’t disagree with this, but he thinks that the
connection must take a special form, via neural networks, natural or artificial.22 The inputs to
the networks must be sensory transducers. The outputs are neurons that settle into different
stable patterns of activation depending on how the transducers are stimulated. The possible
stable patterns, and the way they classify inputs, is learned over time as the network is trained
by its owner’s encounters with it surroundings.

How does the hybrid system find the invariant features of the sensory projection
that make it possible to categorize and identify objects correctly? Connection-
ism, with its general pattern-learning capability, seems to be one natural candidate
(though there may well be others): Icons, paired with feedback indicating their
names, could be processed by a connectionist network that learns to identify icons
correctly from the sample of confusable alternatives it has encountered by dynam-
ically adjusting the weights of the features and feature combinations that are reli-
ably associated with the names in a way that (provisionally) resolves the confusion,
thereby reducing the icons to the invariant (confusion-resolving) features of the cat-
egory to which they are assigned. In effect, the ‘connection’ between the names

21I believe these particular examples (Waterloo & Ecuador) were invented by someone besides me, but I have
been unable to find the reference.

22The fact that these are called “connectionist” is a mere pun in this context — I hope.
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and the objects that give rise to their sensory projections and their icons would be
provided by connectionist networks (Harnad, 1990).

The symbol-grounding problem, if it is a problem, requires no urgent solution, as far as I
can see. I think it stems from a basic misunderstanding about what computationalism is and
what the alternatives are. Harnad’s view is “The predominant approach to cognitive modeling
is still what has come to be called ‘computationalism’ . . . , the hypothesis that cognition is com-
putation. The more recent rival approach is ‘connectionism’ . . . , the hypothesis that cognition
is a dynamic pattern of connections and activations in a ‘neural net’ ” (Harnad, 2001). Put
this way, it seems clear that neural nets would be allowed under computationalism’s “big tent,”
but Harnad withdraws the invitation rapidly, by imposing a series of fresh requirements. By
“computation” he means “symbolic computation,” which consists of syntactic operations on
“symbol tokens.” Analogue computation is ruled out. Symbolic computation doesn’t depend
on the medium in which it is implemented, just so long as it is implemented somehow (because
the syntactic categories of the symbol tokens will be unchanged). And last, but certainly not
least, “the symbols and symbol manipulations in a symbol system [must be] systematically in-
terpretable (Fodor & Pylyshyn, 1988): they can be assigned a semantics, they mean something
(e.g., numbers, words, sentences, chess moves, planetary motions, etc.).” The alternative is
“trivial” computation, which produces “uninterpretable formal gibberish.”

As I argue in (McDermott, 2001), these requirements have seldom been met by what most
people call “computational” systems. The average computer programmer knows nothing about
formal semantics or systematic interpretability. Indeed, in my experience it is quite difficult
to teach a programmer about formal systems and semantics. One must scrape away layers of
prior conditioning about how to “talk” to computers.

Furthermore, as I said in section 4.1, few AI practitioners refuse to mix and match con-
nectionist and symbolic programs. One must be careful about how one interprets what they
say about their practice. Clancey (1999), in arguing for a connectionist architecture, calls the
previous tradition modeling the brain as a “wet” computer similar in important respects to
the “dry” computers we use as models. He argues that we should replace it with a particular
connectionist architecture. As an example of the change this would bring, he says (p. 30)
“Cognitive models have traditionally treated procedural memory, including inference rules (‘if
X then Y’), as if human memory is just computer random-access memory. . . .” He proposes to
“explore the hypothesis that a sequential association, such as an inference rule . . . , is a temporal
relation of activation, such that if X implies Y,” what is recorded is a “relation . . . of temporal
activation, such that when X is presently active, Y is a categorization that is potentially active
next” (p. 31). But he remains a committed computationalist through this seemingly discontin-
uous change. For instance, in discussing how the new paradigm would actually work, he says
“The discussion of [insert detailed proposal here] illustrates how the discipline of implementing
a process in a computer representation forces distinctions to be rediscovered and brings into
question consistency of the theory” (p. 44).
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The moral is that we must be careful to distinguish between two ways computers are used in
psychological modelling: as implementation platform and as metaphor. The digital-computer
metaphor might shed light on why we have a single stream of consciousness (∼ von Neumann
instruction stream?), why we can only remember 7 ± 2 things (∼ size of our register set?),
why we have trouble with deep center-embedded sentences like “The boy the man the dog bit
spanked laughed” (∼ stack overflow?). The metaphor may have had some potential in the
1950s, when cognitive science was just getting underway, but it’s pretty much run out of steam
at this point. Clancey is correct to point out how the metaphor may have affected cognitive
science in ways that seemed too harmless to notice, but that in retrospect are hard to justify.
For instance, the program counter in a computer makes pursuing a rigid list of tasks easy. If we
help ourselves to a program counter in implementing a cognitive model, we may have begged
an important question about how sequentiality is achieved in a parallel system like the brain.

What I argue is that the essence of computationalism is to believe (a) that brains are
essentially computers; and (b) digital computers can simulate them in all important respects,
even if they aren’t digital at all. Because a simulation of a computation is a computation, the
“digitality” of the digital computer cancels out. If symbol grounding is explained by some very
special properties of a massively parallel neural network of a particular sort, then if that net
can be simulated in real time on a cluster of parallel workstations, then the cluster becomes a
virtual neural net, which grounds symbols as well as a “real” one would.

Perhaps this is the place to mention the paper by O’Brien & Opie (1999) that presents a
“connectionist theory of phenomenal experience.” The theory makes a basic assumption, that
a digital simulation of a conscious connectionist system would not be conscious. It is very hard
to see how this could be true. It’s the zombie hypothesis, raised from the dead one more time.
The “real” neural net is conscious, but the simulated one, in spite of behaving in exactly the
same way (plus or minus a little noise), would be experience-less — another zombie lives.

6 Conclusions

The contribution of artificial intelligence to consciousness studies has been slender so far, be-
cause almost everyone in the field would rather work on better defined, less controversial prob-
lems. Nonetheless, there do seem to be common themes running through the work of AI
researchers that touches on phenomenal consciousness. Consciousness stems from the structure
of the self-models that intelligent systems use to reason about themselves. A creature’s models
of itself are like models of other systems, except for some characteristic indeterminacy about
what counts as accuracy. In order to explain how an information-processing system can have a
model of something, there must be a prior notion of intentionality that explains why and how
symbols inside the system can refer to things. This theory of impersonal intentionality is based
on the existence of harmonious matchups between the states of the system and states of the
world. The meanings of symbol structures are what the matchups say they are.
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Having established that a system’s model of that very system is a nonvacuous idea, the next
step is to show that the model almost certainly will contain ways of thinking about how the
system’s senses work. The difference between appearance and reality arises at this point, and
allows the system to reason about its errors in order to reduce the chance of making them. But
the self-model also serves to set boundaries to the questions that it can answer. The idea of a
sensory quale arises as a useful way of cutting off useless introspection about how things are
ultimately perceived and categorized.

Beyond this point it is hard to find consensus between those who believe that the just-so
story the self-model tells its owner is all you need to explain phenomenal consciousness, and
those who think that something more is needed. Frustratingly, we won’t be able to create
systems and test hypotheses against them in the foreseeable, because real progress on creating
conscious programs awaits further progress on enhancing the intelligence of robots. There is no
guarantee that AI will ever achieve the requisite level of intelligence, in which case this chapter
has been pretty much wasted effort.

There are plenty of critics who don’t want to wait to see how well AI succeeds, because they
think they have arguments that can shoot down the concept of machine consciousness, or rule
out certain forms of it, right now. We examined three: the accusation that AI is behaviorist
on the subject of consciousness, the “Chinese Room” argument, and the symbol-grounding
problem. In each case the basic computationalist working hypothesis survived intact: that the
embodied brain is an “embedded” computer, and that a reasonably accurate simulation of it
would have whatever mental properties it has, including phenomenal consciousness.
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