
Reasoning about Autonomous Processes in an Estimated-Regression Planner ∗

Drew V. McDermott
Yale University

Computer Science Department
drew.mcdermott@yale.edu

Abstract

We examine the issues that arise in extending an estimated-
regression (ER) planner to reason about autonomous pro-
cesses that run and have continuous and discrete effects with-
out the planning agent’s intervention (although the planner
may take steps to get processes running). An ER plan-
ner is a classical planner that searches situation space, us-
ing as a heuristic numbers derived from a backward search
through a simplified space, summarized in the regression-
match graph. Extending the planner to work with processes
requires it to handle objective functions that go beyond the
traditional step count or cumulative step cost. Although re-
gressing through process descriptions is no more difficult
than regressing through standard action descriptions, figur-
ing out how good an action recommended by the regression-
match graph really is requires “plausibly projecting” the sub-
tree suggested by the action, which often requires forcing ac-
tions to be feasible. The resulting algorithm works well, but
still suffers from the fact that regression-match graphs can be
expensive to compute.

Keywords: Planning and scheduling with complex do-
main models, domain-independent (almost) classical plan-
ning, constraint reasoning for planning and scheduling,
planning with resources.

Introduction
Classical planning assumes that only the agent executing the
plan has any effect on the world. However, there are many
problems in which processes can be set in motion, either by
the agent’s actions or by forces of nature, and then proceed
while the agent does other things. The other things the agent
does may influence or terminate these processes. For exam-
ple, an agent may plan to fly to San Francisco. The flight
is a process that takes a predictable amount of time, but if a
storm (another process) occurs, the flight may slow down.

In the 2002 International Planning Competition, a limited
form of process called a durative action was introduced.
These are actions that take a predictable amount of time
computed when the action begins. Nothing can change that

∗This work was supported by DARPA/CoABS under contract
number F30602-98-0168. Mark Burstein supplied ideas for an ear-
lier version of this paper.
Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

time. Although there are domains in which this idealization
is useful, it doesn’t seem all that natural. It is not hard (Fox
& Long 2001) to define duratives in terms of a more general
process model. The question is whether planners can reason
in terms of that more general model.

This paper is about extensions to the Optop planner (Mc-
Dermott 1996; 1999; 2002) to handle autonomous pro-
cesses, which, as we shall see, also requires that it handle
a broader range of objective functions than in the past. Op-
top is an estimated-regression (ER) planner, which searches
through a space of plan prefixes, using as a heuristic esti-
mator a number derived by doing a search back from the
goal in a relaxed space in which deletions are ignored. (The
HSP family of planners (Bonet, Loerincs, & Geffner 1997;
Bonet & Geffner 2001) are also ER planners.) One key dif-
ference between Optop and other recent planners is that it
does not instantiate all action schemas in advance in all pos-
sible ways, and then work with the corresponding ground
action instances. This frees it to work in domains involving
numbers and other infinite sets.1

As a simple example, figure 1 shows a domain with one
process schema, describing what happens when a bathtub
is filled. We use an extension of the PDDL notation (Mc-
Dermott 1998; Fox & Long 2001), in which :process def-
initions are allowed by analogy with :action definitions.
A problem in the domain might involve the goal of floating
your boat. A solution would require one to turn the tub on,
wait for it to fill, then put the boat in. If there are multiple
tubs, the optimal plan is the one that uses the tub that fills
up the fastest, assuming that one wants to minimize time.
One might want to minimize some other metric, such as the
weighted difference of time and tub surface area.

A solution to a one-boat problem in this domain will look
like

(turn-on u); (wait); (float the-boat)

where u is the chosen tub, and the-boat is the given boat.
If we want to require that no overflow occur, the plan will
also have a turn-off step.

We will assume that concurrency is interleaved (Chandy

1Another difference is that it is written in Lisp, not C or C++.
Although the use of Lisp has made it possible for a very complex
algorithm to evolve faster than would be possible in any other lan-
guage, performance has suffered.



(define (domain tub)
(:requirements :fluents :processes)

(:types Boat Tub - Obj)

(:functions (volume ?tub - Tub)
(faucet-rate ?tub - Tub) - Float
(water-in ?tub - Tub) - (Fluent Float))

(:predicates (floating ?b - Boat ?tub - Tub)
(faucet-on ?tub - Tub)
(overflowing ?tub - Tub))

(:action (float ?b - Boat ?tub - Tub)
:precondition (=˜ (water-in ?tub) (volume ?tub))
:effect (floating ?b ?tub))

(:action (turn-on ?tub - Tub)
:effect (faucet-on ?tub))

(:action (turn-off ?tub - Tub)
:effect (not (faucet-on ?tub)))

(:process (filling ?tub - Tub)
:condition (faucet-on ?tub)
:effect

(and (when (< (water-in ?tub) (volume ?tub))
(derivative (water-in ?tub)

(faucet-rate ?tub)))
(when (>= (water-in ?tub) (volume ?tub))

(and (derivative (water-in ?tub) 0.0)
(overflowing ?tub))))))

(define (problem tub-prob-1)
(:domain tub)
(:objects tub1 - Tub my-boat - Boat)
(:facts (= (faucet-rate tub1) 1.0)

(= (volume tub1) 10.0))
(:init (current-value (water-in tub1) 0.0))
(:goal (exists (tub - Tub)

(and (floating my-boat tub)
(not (overflowing tub)))))

(:metric minimize (total-time)))

Figure 1: Simple domain involving processes



& Misra 1988; Roscoe 1998), in that no two actions occur
at exactly the same time. If several bathtubs are turned on
at the beginning of the plan, we model that by assigning an
arbitrary sequence to the agents’ actions and treating consec-
utive actions as separated by an infinitesimal slice of time.
Remember that this applies only to the actions of turning on
the faucets; the fillings of the bathtubs occur in parallel.

In the rest of this paper I will explain how ER planners
work, and how to extend them to reason about autonomous
processes.

Estimated-Regression Planning
Optop is a “state-space” planner. More precisely, the space
it searches is a space of plan prefixes, each of which is just
a sequence of steps, feasible starting in the initial situation,
that might be extendable to a solution plan. In the context
of considering a particular plan prefix, the term current situ-
ation will be used to refer to the situation that would obtain
if these steps were to be executed starting in the initial situ-
ation. Each search state consists of:

1. a plan prefix P

2. the resulting current situation

3. a score

The original scoring metric was the length of P + the
estimated completion effort for P , which is an estimate of
the cost of the further steps that will be needed to get from
the current situation to a situation in which the goal is true.

The estimated completion effort for P is obtained by con-
structing a regression-match graph, which can be considered
a “subgoal tree with loops.” The nodes of the tree are di-
vided into goal nodes and reduction nodes. A goal node G
is a literal to be made true.2 If G is not true in the current
situation, then below it are zero or more reduction nodes,
each corresponding to an action that might achieve it. A
reduction (node) is a triple 〈G, M, {P1, . . . , Pk}〉, where G
is a goal node, M is an action term, and each Pi is a goal
node. Ignoring the possibility of variables in goals, in a re-
duction the conjunction of the Pi are sufficient to make M
feasible and G one of M ’s effects. There is a reduction edge
from any goal node G to every reduction with G as its first
component, and a link edge to Pi from a reduction whose
third component includes the goal node P i. If Pi occurs in a
reduction, it is said to be a subgoal of that reduction.

The structure is not a tree because there can be multiple
paths from one goal node to another through different re-
ductions, and there can be a path from a goal node to itself.
What we are interested in are certain cycle-free subgraphs,
called “reduction trees,” because they correspond to (appar-
ently) feasible ways of achieving goals. The size of the sub-
graph below a goal node gives an estimate of the difficulty
of achieving it. The estimate neglects step ordering, and de-
structive and constructive interactions among steps, but tak-
ing those phenomena into account is an exponential process,

2It also contains a set of constraints on its free variables, if it
has any, but space limits prevent me from saying more, except for
some brief remarks in the Conclusions.

whereas the regression-match graph tends to be of polyno-
mial size (as a function of the size of the problem and the
size of the solution).

Optop avoids variables in goal nodes by its treatment of
conjunctive goals. Given a conjunctive goal H1 ∧ . . . ∧Hn,
Optop finds maximal matches between it and the current sit-
uation, defined as substitutions that, roughly, eliminate all
the variables while making as many of the H i true in the
current situation as possible (McDermott 1999). However,
in domains with numbers, an unsatisfied Hi may have to be
left with a variable. In that case, the exact meaning of a re-
duction becomes slightly harder to state (McDermott 2002).

Optop builds the regression-match graph by creating an
artificial goal node top as the root of the “tree,” then maxi-
mally matching the end goal to the current situation, produc-
ing a set of reductions, each of the form 〈top, done, {P i}〉.
It then examines every Pi in every reduction, finds actions
that would achieve it, and maximally matches their precon-
ditions to produce reductions for Pi. The process normally
just keeps running until no more goal nodes have been gen-
erated, although there is a depth limit on the graph to avoid
runaway recursions in perverse domains.

Having generated the graph, its “leaves” are reductions all
of whose subgoals are true in the current situation. We call
these feasible reductions. The action of such a reduction,
called a recommended action, is feasible in the current situ-
ation, and is therefore a candidate for extending the current
plan prefix.

We assign completion effort estimates to every node of the
graph by assigning effort 0 to feasible reductions, assigning
effort ∞ to all other nodes, then recursively updating the
efforts according to the rules:

eff(G) =




0
if G is true
in the current situation

minR∈reductions(G) eff(R)

otherwise

eff(〈G, M, {Pi}〉) = 1 +
∑

i

eff(Pi)

until all the values have stabilized.
As I said above, we are interested in extracting reduction

trees from the regression-match graph. A reduction tree is
a rooted tree, whose root, which coincides with the artifical
top node, we will call Etop. Each node E of the tree has a
goal G(E) and a reduction R(E). If G(E) is true in the cur-
rent situation, then R(E) = φ; otherwise, for some reduc-
tion 〈G, M, {P1, . . . , Pk}〉 in the regression-match graph,
R(E) = 〈G, M, {E1, . . . , Ek}〉, where G(Ei) = Pi, and
where each Pi does not occur as the goal of any ancestor
reduction in the tree.3

3Reduction trees are actually DAGs, but the planner ignores
that fact, and treats two identical subtrees at different places in the
“tree” as if they were different. So in practice reduction “trees”
might as well really be trees.



The completion effort estimate for a reduction tree is de-
fined by

eff(E) =




0
if G(E) is true
in the current situation

eff(R(E))

otherwise

eff(〈G, M, {Ei}〉) = 1 +
∑

i

eff(Ei)

A reduction tree for recommended action A is a reduction
tree that includes A in a feasible node. A minimal reduction
tree for A is a reduction tree for A that has minimal com-
pletion effort estimate. As an example, consider a simple
blocks world with one action (move x y). The initial situ-
ation has (on C A), (on A table), and (on B table).
The goal is (and (on A B) (on B C)). The reduction
nodes of the regression-match graph are:

〈top, done, {(on A B), (on B C)}〉[2]
〈(on A B), (move A B), {(clear A)}〉[2]
〈(clear A), (move C table), {}〉[1]
〈(on B C), (move B C), {}〉[1]

The numbers in brackets are the completion-effort estimates.
The recommended actions are (move B C) and (move C
table). The following tree is a reduction tree for both ac-
tions:

(on A B)
Do (move A B)

(clear A)
Do (move C table)

(on B C)
Do (move B C)

Optop will try both recommended actions, and will real-
ize that (move B C) is a mistake as soon as it recomputes
the regression-match graph on the next iteration of its outer
search loop.

A recent improvement to Optop is to have it edit
regression-match graphs for each plan prefix rather than re-
compute them each time, by copying the graph for the pre-
fix’s predecessor, discarding and re-matching all nodes with
effort ≤ 1, on the grounds they are most likely to yield new
recommended actions. The resulting graph is not quite as
accurate as the one obtained by recomputing from scratch,
but it usually contains significantly fewer nodes. Occasion-
ally the edited graph recommends actions that are not actu-
ally feasible; in that case Optop discards it and regenerates
the graph from scratch. In the “convoys” domain to be de-
scribed in section , reusing regression-match graphs cuts the
total number of goal nodes, and therefore maximal matches,
by about 45%.

Another improvement in Optop is to avoid maintaining
an index of all the facts true in a situation; instead, each
situation contains an index of the differences between it and
the initial situation. This device is very useful for domains
with large initial situations.

Processes and Objective Functions
We now describe the extensions to Optop to handle au-
tonomous processes and objective functions. Both rely on
the concept of fluent, a term whose value varies from sit-
uation to situation. Fluents have been in PDDL from the
beginning, but are just now beginning to be noticed, notably
in the AIPS02 competition (Fox & Long 2001). The value
of a fluent can be of any type, but we assume from here on
that they all have numerical values, some integer (the dis-
crete fluents), some floating-point (the continuous fluents).
A primitive fluent is a term like (water-in tub21); a non-
primitive fluent is the arithmetic combination of primitive
fluents.

We formalize a process as an action-like entity which has
a :condition field instead of a :precondition; when-
ever the condition field is true, the process is active. There
are three fields specifying the effects of the process. The
:start-effect and :stop-effect fields specify what
happens when the process becomes active or ceases to be
active. The :effect field specifies what happens at every
point in time when the process is active. For this to be useful
we require a new kind of effect:

(derivative q d)

which means that the derivative of continuous (primitive)
fluent q is d. Although “derivative” sounds like we might be
able to reason about arbitrary differential equations, for now
we will assume that d is always a constant, i.e., that all fluent
changes are linear.

An objective function is a measurement of the cost of a
plan, a value to be minimized. We will take this to be the
value of some given fluent in the situation when the end
goal is achieved. It turns out that the extensions to Optop to
handle objective functions and those to handle autonomous
processes are closely related. Both extensions require the
planner to abandon “step count” as a measure of the cost of
a plan. We can still use it as a crude heuristic for managing
the regression-match graph, but once the planner has found a
feasible action, it must extract from the graph an “expected
continuation” of the plan, and use that to generate a more
precise estimate of the value of the action.

Let’s look at an example (see figure 2). A problem in this
domain involves convoys moving through a road network.
The speed a convoy can attain degrades quadratically with
the number of convoys it has to share its current road seg-
ment with. There are no unsolvable problems in the domain
(assuming the road network is connected), but there are a
lot of decisions about which way to send a convoy and how
many convoys to put on a road segment at the same time.

Clearly, a solution to a problem in this domain will con-
sist of issuing a set of orders to all the convoys that have to
get somewhere, interspersed with “waits” in which time is
allowed to pass. Exactly what the planner is waiting for will
be explained later.

The first step in getting an ER planner to handle pro-
cesses is to get it to regress through process descrip-
tions. Given a goal of the form (< (dist convoy-13
dest-2) 3.0), it sees that the process instance (rolling
convoy-13 pt1 dest-2) would change the derivative of



(define (domain agent-teams)
(:types Agent Order)
(:predicates

(told ?a - Agent ?r - Order))
(:action

(tell ?a - Agent ?r - Order)
:effect

(and (forall (?r-old - Order)
(when (told ?a ?r-old)

(not
(told ?a ?r-old))))

(told ?a ?r)))

(define (domain convoys)
(:requirements :fluents :processes)
(:extends agent-teams)
(:types Convoy - Agent Point - Obj)
(:parameters (temporal-grain-size 1.0)

(temporal-scope 10.0e10)
- Float)

(:predicates
(at cv - Convoy pt - Point)
(between cv - Convoy

pt1 pt2 - Point)
(connected pt1 pt2 - Point))

(:functions
(dist cv - Convoy pt - Point)
- (Fluent Float)
(traffic pt1 pt2 - Point)
- (Fluent Integer)
(base-speed cv - Convoy)
(geo-dist pt1 pt2 - Point)
- Float
(to-go pt1 pt2 - Point)
- Order)

(:facts
(forall (cv - Convoy pt1 pt2 - Point)

(<- (feasible cv (to-go pt1 pt2))
(at cv pt1)))))

(:process (rolling ?cv - Convoy
?pt1 ?pt2 - Point)

:condition
(and (told ?cv (to-go ?pt1 ?pt2))

(connected ?pt1 ?pt2)
(or (at ?cv ?pt1)

(between ?cv ?pt1 ?pt2))
(> (dist ?cv ?pt2) 0))

:start-effect
(and (not (at ?cv ?pt1))

(between ?cv ?pt1 ?pt2)
(increase (traffic ?pt1 ?pt2)

1))

:effect
(and (derivative

(dist ?cv ?pt1)
(/ (base-speed ?cv)

(sq (fl-v (traffic
?pt1
?pt2))))

(derivative
(dist ?cv ?pt2)
(/ (- (base-speed ?cv))

(sq (fl-v (traffic
?pt1
?pt2)))))

:stop-effect
(and (not (between cv ?pt1 ?pt2))

(at cv ?pt2)
(decrease (traffic ?pt1 ?pt2)

1)
(forall (pt3 - Point)

(when (connected pt2 pt3)
(assign

(dist cv pt3)
(geo-dist pt2

pt3))))))

Note: (sq (fl-v f)) is the square of the value of fluent f .

Figure 2: Convoys domain

(dist convoy-13 dest-2), where pt1 is as yet uncho-
sen. To make this instance active requires that all of the
following be achieved (assuming that a convoy’s base speed
is positive):

*(told convoy-13 (to-go pt1 dest-2))
*(connected pt1 dest-2)
*(or (at convoy-13 pt1)

(between convoy-13 pt1 dest-2))
*(> (dist pt1 dest-2) 0)

Optop, as usual, tries to find a pt1 that makes as many of
these conjuncts true as possible. If convoy-13 is at a point
connected to dest-2, then one obvious choice is to bind

pt1 to that point. The only unsatisfied goal would be (told
convoy-13 (to-go pt1 dest-2)), which becomes a
new goal node in the regression-match graph. If there is
no such pt1, then for every point connected to dest-2, we
get a maximal match with two unsatisfied goals, which gives
rise to a reduction with two subgoal nodes, one to get to the
candidate jumping-off point, and one to tell the convoy to go
to dest-2.

The novelty in the reduction we get in this case is that it
does not contain an action term, but a process term. The
idea is that achieving the subgoals will cause the process
to become active, after which simply waiting will cause the
supergoal (< (dist convoy-13 dest-2) 3.0) to be-
come true.



A Theory of Waiting
Actually, “simply waiting” is not so simple. The planner
can’t just wait for the process it created to terminate, because
other processes are going on simultaneously. These pro-
cesses may have useful effects that the planner should take
advantage of (or, of course, deleterious effects that should
cause the planner to backtrack in plan-prefix space). Other
active processes may even cause the parameters of this pro-
cess to change, thus changing the derivates of the fluents it
affects.

Hence whenever an action is executed, Optop must con-
struct a process complex attached to the resulting situation,
with the following information:

1. All the active processes in this situation.

2. For each primitive fluent affected by active processes, a
process model explaining how it changes over time.

3. A list of triggers, each a process model for a fluent (not
necessarily primitive), plus a list of effects that will result
when the fluent becomes non-negative.

4. The trigger-time specification, which specifies the next
time point at which one or more trigger fluents will be-
come non-negative, plus the effects that will then occur.

How the process complex is built is discussed below.
The trigger-time specification is needed when the planner

is contemplating waiting for something to happen, instead
of taking another action. In that case, time is advanced to
the trigger time, all the primitive fluents are changed in ac-
cordance with their process models, and a new situation is
produced in which the expected events have occurred.

Therefore, although the regression-match graph contains
reductions that appear to depend on waiting for a particular
process to reach some conclusion, when it comes time to
extend the plan prefix, and one of those reductions is chosen,
what actually happens is that the planner just adds a wait to
the plan prefix, advancing to the current situation’s trigger
time. After that it recomputes the regression-match graph
(by editing the old one if possible), and proceeds just as it
does when taking an ordinary action.

Choosing The Next Action
Because autonomous processes can run in parallel, the time
taken by a group of them is usually less than the sum of the
times of each process in the group. Obviously, if we want
to take advantage of this fact, we must be able to incorpo-
rate “total time taken” (makespan) into the objective func-
tion used by the planner. This requires a radical change to
the way Optop works.

The original Optop used the step counts derived from the
regression-match graph directly to provide an estimate of the
work remaining if a particular action is chosen to execute
next. But if we allow an arbitrary fluent as an objective func-
tion (and we might as well), the regression-match graph will
not provide an estimate of it. We must go one step further,
and, for each recommended action derive a plausible projec-
tion from a minimal reduction tree for that action. A plau-
sible projection is obtained by “projecting” (simulating the
execution of) the reduction tree bottom up, starting with the

recommended action. The resulting projection terminates in
a final state (which we hope is also a goal state), and the
planner can measure the objective function there.

Unfortunately, the plausible-projection algorithm turns
out to be quite tricky. There are two main issues:

1. In what order should the planner execute the actions in the
reduction tree?

2. What should it do if the next action is not feasible?
The first issue is hard for obvious reasons: figuring out

the order in which to do a set of apparently relevant steps is
often the critical problem for a planner. I have implemented
a simple depth-first, left-to-right, post-order traversal of the
tree. That is, no action is executed until all the actions be-
low it in the tree have been executed, and after executing an
action, the next one to try is the leftmost unexecuted descen-
dent of its parent (which may be the parent itself).

For instance, in the following schematic reduction tree
(showing actions but no subgoals):

A1

A2 A5

A3 A4 A6

A7

the algorithm projects the actions in order A3, A4, A2,
A7, A6, A5, A1.

Here’s where the second issue raises its head. Because
we’ve picked an arbitrary order, it can easily happen that,
e.g., in the situation after A4 is executed, A7 is not feasi-
ble. A related, but easier, issue is that the purpose of A7 may
already have been achieved, either because A7 occurred ear-
lier in the tree, or the purpose was achieved by other means.
In either of these cases, the plausible projector just skips the
redundant action.

The hard case is when an action (or process’s) goal is not
true, and the action is not feasible (or the process is not ac-
tive). In such a case, the plausible projector must force the
action to be feasible or the process to exist. It does this by
calling the maximal matcher to find the missing pieces of the
action or process’s condition, then adds those missing pieces
to the current projected situation.

Note that adding a missing piece can result in a physically
impossible situation. For example, if a process requires an
object B to be at a different location L ′ than L, the place it
is projected to be, the feasibility forcer will cheerfully assert
that it is at L′. From then on, the plausible projector will
assume the object is in two places, at least until it projects a
move to L. This tactic may sound odd, but it is in keeping
with the overall idea of using a relaxed space in which dele-
tions are ignored to evaluate plans. During plausible pro-
jection, the planner performs deletions when it projects an
action, but also tosses in force-feasibility assumptions when
it needs to.

We can now summarize the planning algorithm as shown
in figure 3. The algorithm will return FAILED if it runs out of
plan prefixes, but in practice that’s unlikely; it usually runs
forever if a problem is unsolvable.



search-for-plan(prob, metric)
let Q = queue of scored plan prefixes,

initially containing only the empty prefix
(while Q is not empty

(Remove the plan prefix P with minimum score from Q;
If P is a solution to the problem, return it
Compute a regression-match graph relating the goal of prob

to the situation reached after P, editing the regression-
match graph of P’s predecessor if possible;

For each action A recommended by the graph,
Let R = some minimal reduction tree for A

(Plausibly project R;
Evaluate the metric in the resulting situation;
Put the new prefix P+A on Q with that value as its

score));
return ’FAILED)

Figure 3: The overall Optop algorithm

Computing Process Models
During both plausible projection and “real” projection (i.e.,
the sort that happens when the planner extends a plan pre-
fix by one step), the planner must build a process model,
by examining every process definition and finding active
and “dormant” instances. To explain this distinction, I will
first note that the condition of a process definition can be
separated into discrete and continuous parts. The contin-
uous parts are inequalities on real-valued fluents; the dis-
crete parts are all other formulas. If we put the condition in
disjunctive normal form, and collect all the disjuncts whose
discrete conjuncts are the same, the condition will look like
this:

((d11 ∧ d12 ∧ . . . ∧ d1n1∧((c111 ∧ c112 ∧ . . . ∧ c11k11)∨(c121 ∧ ... ∧ c12k12)∨ . . .
∨(c1m11 ∧ ... ∧ c1m1k1m1

)))
∨(d21 ∧ . . . ∧ d2n2∧((c211 ∧ . . . ∧ c21k21)∨ . . .

∨(c2m21 ∧ ... ∧ c2m2k2m2
)))

∨ . . .
∨(dp1 ∧ . . . ∧ dpnp

∧((cp11 ∧ . . . ∧ cp1kp1)
∨ . . .
∨(cpmp1 ∧ ... ∧ cpmpkpmp

)))

I’ll use the notation di to refer to the conjunction of dis-
crete conjuncts di1 ∧ . . . ∧ dini . Similarly, ci refers to the
disjunction of continuous conjuncts associated with d i; cij

is then the j’th conjunction in that disjunction. A process in-
stance is dormant if one of the di corresponding to it is true,
but no corresponding c disjunct is true. A process instance
that is neither active nor dormant is comatose.

Theorem: If the planning agent takes no action, then no
process instance changes state (within the set {active, dor-
mant, comatose}) until some ci corresponding to a true di

changes truth value.

Proof: None of the di can change truth value until some
process starts or stops. But there must be an earliest starting
or stopping event, so the di stay the same until then. Hence
the only thing that could make a process start or stop is for a
ci to change truth value; furthermore, the corresponding d i

must be true, or ci’s truth value would be irrelevant. QED
Hence the planner needs to include in each process com-

plex a model of how each changing primitive fluent is chang-
ing. For every active or dormant process, it must also in-
clude in the process model, for each fluent mentioned in c i

for a true di, a model of how it is changing and when c i

will become true. It does not need to do anything similar for
comatose process instances.

In order to compute the trigger time, the planner must
compute the earliest time at which some cij will become
true. It approximates this computation by computing

max1≤q≤kimi
trigger-time(cijq)

That is, it finds the earliest time before which each of these
conjuncts will have become true. (It ignores the possibility
that some may have become false again by that point.)

The two activities of building the fluent-change models
and computing when cij will become true are largely inde-
pendent and subject to different computational constraints.
In the current implementation, all fluent-change models
must be linear. The subroutine that predicts when c ij will
become true requires only that the fluents it mentions change
monotonically. It does a binary search among all the fluents
mentioned in all the ci for the one that reaches its threshold
first.

Both of these modules can be generalized. Indeed, there
is no reason why the system should not be able to handle
arbitrary differential equations. The idea would be to call an
external solver (presumably some specialized Fortran pro-
gram), telling it to simulate the differential equations nu-
merically and stop when a list of thresholds is crossed. For
reasons discussed below, this is not the top priority for mak-
ing the planner practical.



source1

source2

sourcen

sourcen+1

source2n

mid-s mid-d

dest1

dest2

destn

destn+1

dest2n

Figure 4: Schematic structure of “convoys” domain of size
n

Results
The new version of Optop has been tried on a va-
riety of domains, including some of those involving
durative actions from the IPC3 problem suite (avail-
able at http://www.dur.ac.uk/d.p.long/competi-
tion.html). In those problems, durative actions are trans-
lated into processes, so that every action takes two steps:
start the action, wait for it to stop.

A more interesting test of the planner is for processes that
cannot be simulated by durative actions, such as the convoy
domain described earlier. The examples we will examine
for the rest of this section are a scalable test suite of styl-
ized road graphs in this domain. The problem of size n in
this suite has 2n convoys, which start at 2n different start-
ing points (“sources”) and must get to 2n different desti-
nations (“dests”). The graph connects sources 1, . . . , 2n to
point mid-s. mid-s connects only to mid-d, which then
connects to dests 1, . . . , 2n. In addition, source n + k, 0 <
i ≤ 2n, connects directly to dest n+k. Hence all of convoys
1, . . . , n must go through the bottleneck mid-s−mid-d, but
convoys starting at points n + 1, . . . , 2n can bypass the bot-
tleneck. See figure 4.

Table 1 shows the performance of Optop on convoy prob-
lems of various sizes. In each case, Optop finds an optimal
plan embodying the following scheme: Start all the convoys
moving. Numbers 1 to n go to mid-s. Numbers n+1 to 2n
go directly to their corresponding dests. When numbers 1
to n arrive, they are sent one-by-one to mid-d. (Numbers
n + 1 to 2n are still en route, of course.) As each convoy
arrives at mid-d it is sent to its respective destination. The
distance from each source to each destination is 30 km; the
mid-s−mid-d bottleneck is 10 km. Each convoy travels at
10 km/hr. Hence the optimal plan takes 3 + n − 1 hours.
Figure 5 shows the solution found by Optop for the problem
of size 3 (i.e., with 6 convoys).

The times required to find solutions to problems of dif-
ferent sizes are given in table 1.4 Optop does no search

4Bear in mind that if Optop were recoded in C++ the run times
might be significantly lower; but their growth as a function of prob-
lem size would presumably be similar.

at all in this domain; every plan prefix it considers is part
of its final answer. The reason is that the regression-match
graph plus the plausible projector allow Optop to look all the
way to the end of the problem from the very beginning. The
price paid for this guidance is the cost of constructing the
regression-match graph. The size of the graph is shown in
the column labeled G-Nodes, which gives the total number
of goal nodes generated in the course of solving the prob-
lem. This doesn’t count nodes carried over from one search
state to a successor. The number of maximal matches (in the
column headed Matches) is greater than the number of goal
nodes because “old nodes” (those carried over) may need to
be re-matched. The time per step for the output increases
rapidly, but the time per goal node and per maximal match
rises more slowly. The biggest single reason for Optop’s less
than stellar performance is that most of the matches it per-
forms on a plan prefix return identical results to the matches
on the same goal nodes in the prefix’s predecessor. More
research is needed on recognizing when this work does not
have to be redone.

The other parts of the program, including the plausible
projector and the process-complex constructor, may sound
complicated, but actually run quite fast; most of the time is
spent in the regression-match-graph builder.

I should point out that the rate of growth of the regression-
match graph with problem size (indicated in the Nodes/step
column of table 1) is essentially the same phenomenon that
occurs in many planners that transform all problems into
propositional form by finding all possible instantiations of
action definitions. The principal difference is that these
planners pay the price just once, before beginning the search
for a solution.

Related Work
The idea of modeling processes in terms of their beginnings
and endings is not novel. For an elegant logical treatment,
see (Reiter 2001). The notion that in simulating processes
one can jump to the next moment at which something quali-
tative changes is also fairly standard, and was exploited in a
planning context by (Atkin, Westbrook, & Cohen 1999).

Several recent planners handle durative actions, or ac-
tions with costs, or both (Smith & Weld 1999; Do & Kamb-
hampati 2001). I am not aware of any domain-independent
planner that handles truly autonomous processes as well as
arbitrary objective functions. There has been a significant
amount of work in areas such as contingent planning, where
a planner must deal with ignorance about the world, includ-
ing the effects of some of its actions. But such issues are
completely orthogonal to the issues discussed here.

A preliminary report on this work appeared in the AIPS
2002 workshop on multiagent planning (McDermott &
Burstein 2002).

Conclusions and Future Work
My conclusions contain good news and bad news. The good
news is that estimated-regression planners do indeed have
the flexibility to generalize to a wide variety of domains,



Time 0
Action: (tell convoy-6

(to-go source-6
dest-6))

Start: ((rolling convoy-6
source-6 dest-6))

Action: (tell convoy-3
(to-go source-3

mid-s))
Start: ((rolling convoy-3

source-3 mid-s))
Action: (tell convoy-2

(to-go source-2
mid-s))

Start: ((rolling convoy-2
source-2 mid-s))

Action: (tell convoy-1
(to-go source-1

mid-s))
Start: ((rolling convoy-1

source-1 mid-s))
Action: (tell convoy-5

(to-go source-5
dest-5))

Start: ((rolling convoy-5
source-5 dest-5))

Action: (tell convoy-4
(to-go source-4

dest-4))
Start: ((rolling convoy-4

source-4 dest-4))
Action: WAIT

Time 3601
Stop: ((rolling convoy-3

source-3 mid-s)
(rolling convoy-1

source-1 mid-s)
(rolling convoy-2

source-2 mid-s))
Action: (tell convoy-3

(to-go mid-s
mid-d))

Start: ((rolling convoy-3
mid-s mid-d))

Action: WAIT

Time 7202
Stop: ((rolling convoy-3

mid-s mid-d))
Action: (tell convoy-2

(to-go mid-s mid-d))
Start: ((rolling convoy-2

mid-s mid-d))
Action: (tell convoy-3

(to-go mid-d dest-3))
Start: ((rolling convoy-3

mid-d dest-3))
Action: WAIT

Time 10801
Stop: ((rolling convoy-6

source-6 dest-6)
(rolling convoy-5

source-5 dest-5)
(rolling convoy-4

source-4 dest-4))
Action: WAIT

Time 10802
Stop: ((rolling convoy-3

mid-d dest-3)
(rolling convoy-2

mid-s mid-d))
Action: (tell convoy-1

(to-go mid-s mid-d))
Start: ((rolling convoy-1

mid-s mid-d))
Action: (tell convoy-2

(to-go mid-d dest-2))
Start: ((rolling convoy-2

mid-d dest-2))
Action: WAIT

Time 14403
Stop: ((rolling convoy-1

mid-s mid-d)
(rolling convoy-2

mid-d dest-2))
Action: (tell convoy-1

(to-go mid-d dest-1))
Start: ((rolling convoy-1

mid-d dest-1))
Action: WAIT

Time 18004
Stop: ((rolling convoy-1

mid-d dest-1))

Times are in seconds; they are not exact multiples of 3600 (= 1 hr) because arithmetic in trigger-time finder is not exact.

Figure 5: Plan found for 6 convoys (n = 3)
.



Size Steps G-Nodes Matches Time T/step T/node T/match Nodes/step
1 4 178 340 3455 864 19 10 44
2 8 913 1637 17614 2201 19 10 114
3 12 2334 4076 49578 4131 21 12 194
4 16 4715 8107 112550 7034 23 13 294
5 20 8278 14094 242650 12132 29 17 414
6 24 13251 22409 478194 19924 36 21 515

Steps is the number of steps in the plan (not including waits). G-Nodes is the number of goal nodes constructed. Matches is
the number of maximal matches that were performed. Time is the planner’s running time in milliseconds. T/step is the time per
step in the solution plan. T/match is the time per maximal match.

Table 1: Results for the convoy domain

including the web-service domain described in (McDermott
2002), and the sort of autonomous processes described here.

The bad news is that building the regression-match graph
is too expensive. As far as I can tell, this conclusion has
nothing to do with processes per se, but is merely the obser-
vation that for large problems Optop can’t keep up with plan-
ners based on Graphplan (Blum & Furst 1995), i.e., most
“modern” planners. I remain hopeful, however, that ways
can be found to speed up the process of building or editing
the regression-match graph. The reason to pursue this idea
is that the Graphplan trick of reasoning about all possible
feasible actions is just not going to work when actions can
have real-valued parameters.

The simple Convoys domain can be made more realistic
in several ways. One could distinguish between paved and
unpaved roads, provide predictable weather events that in-
fluence the passability of the roads, make the interference
between convoys less heavy-handed, and so forth. Most of
these changes would make it harder to construct a series of
test problems; and would also probably make the domain
easier, by eliminating the symmetry it now contains.

I can’t claim to have solved the problem of optimally co-
ordinating processes. For one thing, Optop handles only
search-based optimization, not parameter-based optimiza-
tion. That is, given a choice between various actions, it will
often pick the one that yields the best final situation. But
if an action has an uninstantiated free variable, it uses a lo-
cal constraint solver to find a value for it that satisfies all the
known constraints, without regard to the impact of that value
on the value of the objective function in the final situation. It
would be nice if some values could be left as free variables,
so that in the final situation one had something to optimize.
Alas, there is no obvious way to do this and still be able to
run the plausible projector. Of course, if the parameter space
is multidimensional, finding an optimal point in it is hard no
matter how complex the interaction is between the optimizer
and the planner.

References
Atkin, M.; Westbrook, D.; and Cohen, P. R. 1999. Capture
the Flag: Military simulation meets computer games. In
Proceedings of AAAI Spring Symposium Series on AI and
Computer Games, 1–5.

Blum, A. L., and Furst, M. L. 1995. Fast planning through

planning graph analysis. In Proc. Ijcai, volume 14, 1636–
1642.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2).
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A fast and
robust action selection mechanism for planning. In Proc.
AAAI-97.
Chandy, K. M., and Misra, J. 1988. Parallel program
design : a foundation. Addison-Wesley.
Do, M., and Kambhampati, S. 2001. Sapa: A Domain-
independent Heuristic Metric Temporal Planner. In Proc.
ECP-01.
Fox, M., and Long, D. 2001. Pddl.
2.1: An Extension to PDDL for Express-
ing Temporal Planning Domains available at
http://www.dur.ac.uk/d.p.long/pddl2.ps.gz.
McDermott, D., and Burstein, M. 2002. Extending an
estimated-regression planner for multi-agent planning. In
Proc. AAAI Workshop on Planning by and for Multi-Agent
Systems.
McDermott, D. 1996. A Heuristic Estimator for Means-
ends Analysis in Planning. In Proc. International Confer-
ence on AI Planning Systems, 142–149.
McDermott, D. 1998. The Planning Domain Definition
Language Manual. Technical Report 1165, Yale Computer
Science. (CVC Report 98-003).
McDermott, D. 1999. Using Regression-match Graphs to
Control Search in Planning. Artificial Intelligence 109(1–
2):111–159.
McDermott, D. 2002. Estimated-regression planning for
interactions with web services. In Proc. AI Planning Sys-
tems Conference 2002.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
The MIT Press.
Roscoe, A. 1998. The theory and practice of concurrency.
Prentice Hall.
Smith, D. E., and Weld, D. S. 1999. Temporal planning
with mutual exclusion reasoning. In Proc. Ijcai, 326–337.


