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Abstract: The acronym “GOFAI,” coined by John Haugeland to describe
the research strategy supposedly embraced by early AI, has had staying
power. I introduce the term symbolicism for this “paradigm” (which is
closely related to Newell and Simon’s physical symbol system hypothesis),
although the theory, or ideology, behind it is much less rigorous than it first
appears. Computers are not “interpreted formal systems” in any interesting
sense, and AI programs, even theorem provers, do not rely heavily on formal
systems. Hence the only thread that supposedly binds early AI programs is
their use of semantically interpreted symbols. Unfortunately, Haugeland’s
treatment of semantics is defective, and never addresses how symbols are
tied to the things they denote, because the concept of “interpretation” is
mixed up with concepts that should be treated as purely syntactic. All this
confusion, combined with the tremendous influence of Haugeland’s work
and that of Newell and Simon, has been an important factor in the turn
away from representation and computationalism generally on the part of
cognitive scientists. I close with brief sketches of alternative treatments of
“robosemantics” and the history of AI.
Keywords: AI, GOFAI, history, semantics, representation, cognitive science

1 Introduction

One of the most enduring acronyms in cognitive science was coined by John
Haugeland in his book Artificial Intelligence: The Very Idea (Haugeland,
1985).2

. . . [N]ot just any intelligent artifact would be Artificial
Intelligence—not in our sense, anyway. This is not to deny, of
course, that there are many theories of the mind, including in-
teresting non-AI mechanisms and computer models. The point,
rather, is to maintain conceptual clarity by keeping tight reins

1With apologies to Edsger Dijkstra (1968).
2In citations, AIVI. Except where noted, any emphasis is always present in the original.

1



on terminology. To mark the intended careful usage, I have cap-
italized “Artificial Intelligence” throughout; but, lest that not
be enough, or if someone wants these words for another role,
we may also speak more explicitly of what I shall call Good
Old Fashioned Artificial Intelligence—GOFAI, for short. (AIVI,
p. 112)

Haugeland identifies these as “the claims essential to all GOFAI theories”
(p. 113):

1. our ability to deal with things intelligently is due to our
capacity to think about them reasonably (including sub-
conscious thinking); and

2. our capacity to think about things reasonably amounts to
a faculty for internal “automatic” symbol manipulation.

Right away it is clear that this is really one claim imputed to the pro-
ponents of GOFAI, because the phrase “think reasonably” in clause 1 is
immediately cashed out as use of the “faculty for internal ‘automatic’ sym-
bol manipulation.” We can paraphrase that claim as

[O]ur ability to deal with things intelligently is due to our
. . . faculty for internal “automatic” symbol manipulation.

I will argue that what Haugeland means by “internal ‘automatic’ symbol
manipulation” is so unclear that it is impossible to see how it might explain
“our ability to deal with things intelligently.” His crucial discussion of the
meanings of symbols is wide of the mark; it fails to even try to explain how
symbols can be about things. As a result of these flaws, his book, though
widely cited, is poorly understood. It has been used by many different people
to justify many different views of artificial intelligence. On the whole, it has
exerted a baleful influence on the ties between AI and the rest of cognitive
science.

Here’s how the paper is organized: In section 2 I describe Haugeland’s
account of GOFAI in greater detail, explaining where I think it is mistaken
either philosophically or historically. A subsection deals with the work of
Newell and Simon on their “physical symbol system” hypothesis (Newell
and Simon, 1976, Newell, 1980), which is often linked with Haugeland. In
section 3 I discuss the remarkable influence Haugeland’s and Newell and
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Simon’s ideas have had, even though everyone seems to have a somewhat
different idea of what they meant, and conclude that the net effect of this
confusion has been to “poison the well” for computationalism in cognitive
science. In section 4 I propose a better way to think about formal systems
and their semantics in the context of cognitive science. Section 5 sketches
an alternative history of AI, with a different view of what’s has and hasn’t
changed since the early period. Section 6 is a summary of the important
conclusions.

1.1 Previous Work

In the five years after its publication, Artificial Intelligence: The Very Idea
was reviewed several times, almost always favorably (Andrew, 1987, Ford,
1987, Ogilvie, 1986, Pohl, 1988, Richmond, 1991, Vellino, 1986, Eckardt,
1988). I have been able to find only two reviews that raised concerns. Ne-
ander (1988) praises the book, but is especially bothered by its neglect of
analog computations, and even of some ordinary digital algorithms, such as
those involved in computer vision.

Yet as Haugeland . . . notes, ordinary digital computers can
and do manipulate images: rotating them, or comparing two of
them to extract a depth analysis of the visual field, for example.
Haugeland maintains that when they do this the process is not
pseudo-linguistic and so it is not computation ([AIVI] p. 228).
This is an ad hoc ruling, and one from which it follows that not
all computing is computation. (Neander, 1988, p. 270)

I take a similar position here (see section 2.1).
The only really negative review of AIVI that I have been able to dig

up is that of Flanagan (1986). His main target is Haugeland’s attempt to
explain how a computing system can succeed in referring to something, the
problem of original meaning, or naturalizing semantics (Dretske, 1995), or
psychosemantics (Fodor, 1988). He summarizes by concluding that ”I don’t
see that he [Haugeland] has made a dent” in the problem.

I agree completely with this criticism, too, although I diagnose Hauge-
land’s failure rather differently (section 2.2) and of course I am more hopeful
about the eventual success of computationalism in naturalizing meaning.

All of these book reviews were quite short. A detailed critical treatment
of AIVI is long overdue.3

3Because it took so long for this paper to gestate, John Haugeland died before I had
written much down (except for a few cryptic remarks in McDermott (2001b, ch. 2)). So I
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Another theme in this paper is the unproductive estrangement between
AI and other areas of cognitive science, especially cognitive psychology. For
an excellent essay going deeper into this topic, read (Forbus, 2010).

2 Haugeland’s GOFAI

John Haugeland had a gift for a turn of phrase. The title of his book, Arti-
ficial Intelligence: The Very Idea, is a good example, as is, of course, “Good
Old-Fashioned AI,” not just because it makes a goofy meme, but because it
connotes something that was once fashionable and is now remembered only
by old people swapping stories on the porch.4

The acronym is not introduced until page 112. By that point, he has
described computers in great detail, and a theory of what their symbol
manipulations mean. A picture of a research paradigm is meant to have
jelled. The discussion occupies two parts: Chapter 2, which describes formal
systems, and the first half of chapter 3, which concerns the semantics of such
systems. We start with the first of these, leaving chapter 3 until section 2.2.

Fans of AIVI will notice that there are whole chapters that will receive
almost no attention in what follows. These are well worth reading, especially
the description of Babbage’s analytical engine in chapter 4, some details
about early heuristic programs in chapter 5, and some useful discussion of
possible limitations of computationalism in chapter 6. Some parts should
come with a caveat, especially the section on the “frame problem” in chapter
5. This phrase is the label philosophers use to cover their diagnoses of
brittleness in AI systems. A system is brittle if it breaks down outside
of a narrow comfort zone. It’s hard to diagnose the cause of a program’s
brittleness, or any other bug, when you don’t really understand how it works.
Philosophers’ guesses are usually of little value. See McDermott (1987).

But most of this later material has little bearing on my focus in this
paper, which is what, if anything, GOFAI is supposed to refer to.

lost my chance to get his feedback. When we were both young I always found John to be
generous and supportive. He gave me the opportunity to read and comment on a draft of
Artificial Intelligence: The Very Idea, and he graciously acknowledged my (tiny) input in
the published version. I recall thinking the book was a mildly critical but possibly useful
piece of publicity for AI. I heartily wish I had kept the conversation with John going, so
that each of us could have been more sensitive to the ways the other’s views were evolving.

4Me, for example.
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2.1 Formal Systems

On p. 48 of AIVI, Haugeland defines a computer as an “interpreted automatic
formal system.” In order to explain the meaning of this key phrase, he starts
with a chapter on automatic formal systems (chapter 2), and succeeds pretty
well in explaining what that part means (saving the word “interpreted”
for chapter 3). The discussion has some faults, however. It emphasizes
games, explaining lucidly the difference between digital games like chess and
nondigital games like billiards. But in a nontrivial game or puzzle there is a
choice of moves. A computer, however, is, or is described by, a deterministic
formal system.5

In a nondeterministic system, there are many sequences of “moves” that
can be made. The resulting states are all “valid” in some sense, but typically
only a minority, often a tiny minority, are useful for governing behavior.
It is easy to create a formal system to generate all possible continuations
from a chess position, but most moves will lose to a good opponent. It is
almost as easy to generate all proofs in formal number theory, but most
of the proofs are of uninteresting theorems. A computer simulates such a
nondeterministic formal system by exploring some of the paths down which
the nondeterministic system might go and ignoring the rest. It backs out
of blind alleys and stops when it finds the best answer, or a good-enough
answer.6 This process goes by the label search. Sometimes (as on p. 76),
Haugeland speaks of the legal-move generator as a player, using the term
referee for the part of the program that handles the search (and decides
when the game is over, among other tasks). But he seems to want these
categories to apply to all computers, as we will see shortly.

Throughout AIVI, Haugeland seldom distinguishes between computers
and computer programs. It is true that the distinction is often not terribly
important; a program can establish a virtual machine that we can pretend
is the actual formal system of interest. But in this context the ascent to
virtuality is used to duck the issue of how a physical computer can instantiate
a formal system. Not until chapter 4 does the book get down to describing
real computers. (Chapter 5, entitled “Real Machines,” is actually about real
programs; the same maneuver again, with an even more obscure purpose.

In the discussion of formal systems in chapter 2 it is always assumed that

5The truth is more complicated than was apparent in the 1980s. Modern computers
often consist of multiple cores without a well defined global state, and hence no useful de-
scription as a state-transition system (Patterson and Hennessy, 2009). But for expository
purposes we can accept this simplification; the full truth does not alter the point being
made.

6See any intro-AI textbook, such as (Russell and Norvig, 2010, ch. 5) for the details.
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some agent is producing and manipulating tokens from an alphabet. The
agent must use finite resources to do these manipulations, and they must
not require intelligence or insight. All manipulations must be reducible to
a finite number of primitive operations. So all the agent has to be able to
do is to carry out those primitives, and to combine them into sequences,
conditionals, and loops. (The agent also requires a storage medium, pos-
sibly an unbounded amount. Turing (1936) gets down to the nub of the
issue much quicker, but of course assuming a higher degree of mathematical
sophistication in his audience.)

To create a digital computer, to make a formal system automatic, in
other words, Haugeland has to get the anthropomorphic agent out of there,
and replace it by an electronic circuit. He never actually does. Instead the
player and referee stick around, the players being components that perform
arithmetic operations, such as multipliers and adders, and the referee being
the part that finds the next instruction and decodes it. “What do algo-
rithms have to do with automatic formal systems? In a way, everything.
. . . Suppose each primitive operation gets assigned a single player . . . , and
suppose the referee has all the primitive recipe-following abilities. Then,
roughly, the referee can follow the recipe, signaling the players in the right
order . . . ” (AIVI, p. 80).

On the same page, he says, “But what about these primitive abilities?
Well, whenever an ability can itself be specified by an algorithm (in terms
of simpler abilities), then that whole ability can count as a primitive in a
higher-level algorithm. The only restriction is that all the required abilities
eventually get analyzed into ground-level abilities that are really primitive—
abilities so ‘mindless and mechanical’ that even a machine could have them”
(AIVI, p. 80). “Connection to physics is made at . . . the level of operations
so primitive that they can be carried out by mindless mechanisms” (p. 82).
But so far the treatment of the machine has been at the level of metaphor; it
is imagined as a person playing or refereeing a game. The neophyte reader
is not sure that there is such a thing as a “mindless mechanism,” or in what
it might consist.

The discussion has perhaps been useful for readers interested in basic
algorithms, for tasks like multiplication of long numbers. But it has left
us confused about what role nondeterminism plays in the operation of a
computer or program, and what fills the role of “referee” in a real com-
puter. Many readers must conclude that all programs, or a large fraction,
are devoted to performing search through nondeterministic alternatives.

But computers do lots of other things, obviously. Suppose we connect a
computer to motors controlling a ping-pong paddle — a real, physical one.

6



The computer also has a camera giving it a view of the ping-pong table
and the ball in flight. The signals coming from the camera are digital, and
the signals sent to the motors are digital.7 It plays ping-pong fairly well.
Is the program a formal system? If not, why not? Ping-pong doesn’t fit
Haugeland’s (or anyone else’s) notion of a formal or digital game, but here
we have a digital system playing it. What went wrong?

The problem is that the metaphor of a formal game got used in too many
ways. Sometimes it refers to a problem domain a program is trying to solve.
Here it matters that the domain be characterizable as a nondeterministic
formal system. But sometimes it just refers to a program, such as one for
multiplying Arabic numerals, or one for choosing a good chess move — or
tracking a ping-pong ball through a series of images. If Haugeland wants to
say that there is always a “referee” and a “player” in a digital system, those
terms are completely divorced from the game being played; they are just
similes for the instruction decoder and branch logic and the arithmetic oper-
ations, and not very good similes. The “referee” in a deterministic computer
does not make choices or enforce rules; it decodes instructions and compara-
tor states. Even here, the word “decodes” connotes too much. The bits of an
instruction code are run through the electronic gates of the decoder and out
the other side come bits that allow information to flow, or block information
from flowing, through other circuits. There is no longer any question of a
formal game being played. The program in question might play an informal
game like ping-pong, or do some other arbitrary task (cf. Neander (1988)).

Just before the acronym GOFAI is introduced, Haugeland tries to straighten
this confusion out and only deepens it. (We’re skipping ahead to chapter 3,
briefly.) He draws a distinction between Type A and Type B systems (AIVI,
pp. 110–112). Type As are those for which there is a characterization of
the “legal moves” by way of a formal system, plus a referee that searches
among the legal moves. This module is characterized with these phrases (all
from AIVI, p. 111):

• “automated in a sophisticated manner”

• (selects legal moves that are) “not . . . merely . . . intelligible, but also
. . . clever, well motivated, interesting, and all that”

• “chooses something interesting or clever” (from the legal moves)

• “superimposed level of wit and insight”

7Reality is continuous, so the boundaries around the digital realm are crossed by trans-
ducers and effectors that transform energy into digital signals or vice versa.
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A Type B program is one for which no formal system can be extracted.
The only description we have left are those vague phrases, and this: “The
really exciting prospect . . . is building systems . . . that are not restricted
to domains where a suitable division (formalization) can be found” (AIVI,
p. 111). It seems that so far we have established absolutely no constraints
on intelligent programs except that they be intelligent. And Haugeland ac-
knowledges that any non-GOFAI system can be simulated using a computer.
“. . . Should any . . . non-GOFAI . . . theory of intelligence . . . succeed, then
it ought to be possible in principle to build an intelligent artifact that works
as the theory says. . . . It should also be possible . . . to simulate that intel-
ligence on a computer” (AIVI, p. 112). But simulating a system does not
mean instantiating it, unless it manipulates symbols. “The thesis of GOFAI,
however, is not that the processes underlying intelligence can be described
symbolically (a feature shared by hurricanes and traffic jams), but that they
are symbolic (which differentiates them utterly from hurricanes and traffic
jams)” (p. 113).

To characterize his argument somewhat fancifully, Haugeland starts by
cranking up the magnification on his microscope so that crystalline formal
systems occupy almost all of the field of view. He then zooms slowly out
until the formal crystals are revealed to be a few grains of sand on a pair
of flip-flops after a trip to the beach; and finally, when describing Type B
systems, reaches in and brushes the sand out of the picture completely. And
yet the idea that he’s talking about a vast and austere Sahara of formal
systems hangs in the air, when all he’s really left with is a pair of flip-flops.
The concept of symbol has drifted free from the formal context where it
started, yet many of the connotations of formal systems are still supposed
to apply to symbol-manipulating programs.

Curiously, according to the index, there is absolutely no mention of sym-
bols back in Chapter 2. Yet all of this material concerns manipulation of
‘tokens,” and in the description of what it means to be digital, this idea is
hammered on. “A digital system is a set of positive and reliable techniques
(methods, devices) for producing and reidentifying tokens, or configurations
of tokens, from some prespecified set of types” (AIVI, p. 53). These tokens
are not symbols, however. How could they be? If digital systems intrinsi-
cally produce symbols, then a robotic ping-pong player would spew them
forth in great abundance.

The concept of symbol bears a heavy weight for something so obscure.
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2.2 Symbols and Semantics

Let us put the syntactic confusion about symbols aside, because there is
another source of great puzzlement we need to deal with. Remember that a
computer is supposed to be an interpreted formal system (p. 48). Chapter
3 of AIVI is aimed at explaining this part of the definition.

Haugeland begins by entertaining the idea that thoughts might be like
linguistic utterances. Immediately the question arises what the thoughts
mean, how they are to be interpreted. Haugeland argues that “the basic
principle of all interpretation is coherence. . . . There are two sides to the
coherence principle, one for what you start with (your ‘data’) and one for
what you get (your ‘renditions’ of the data). Specifically, you must start
with an ordered text, and you must render it so that it makes reasonable
sense” (AIVI, p. 94).

I think this is quite right, but it overlooks an important step: finding the
“texts” in the first place. What you start with is a set of physical situations
which must be mapped onto the signals they are supposed to be. A classic
example is the hieroglyphic writing system used by Egyptian priests for
inscriptions on royal tombs and monuments. The people who understood
the system died out, or rather their culture did, and for centuries thereafter
hieroglyphics were viewed as a mysterious pictographic code that would
reveal vast wisdom if successfully deciphered (Pope, 1999). But would-be
decipherers usually misparsed the pictorial elements of the script. They
didn’t realize which groupings of elements constituted the characters of the
alphabet. They didn’t realize that it was an alphabet.8

Let’s use the term decoding (McDermott, 2001b) for a way of mapping
physical state types to abstract symbol strings.9 The first proper decoding
for hieroglyphics was worked out only in the nineteenth century, by Jean-
François Champollion (Pope, 1999).

Or consider Haugeland’s example of potato-shaped Plutonians whose
“tiny leaf motions turn out to be . . . translatable conversations, about us,
the weather, astrophysics, and what have you” (AIVI, box 3, p. 96). For the
leaf motions to be translatable, they first have to be recognized as a language
of some kind. Some aspects of the motions are important in defining the
symbol types composing that language, and some are not.

8Adorned with various nonalphabetic features.
9There’s no reason to confine ourselves to linear sequences of characters, rather than

arrays, trees, or some other arrangement, but for theoretical purposes strings will suffice.
Or so Turing argued when he made the tapes of his machines one-dimensional (Turing,
1936). I believe a complete theory would have to include analogue signals as well; see
section 4.
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Haugeland’s key example is of someone trying to decide among three
different decipherings of a cryptogram (AIVI, table 1, p. 102). Only the
third makes the cryptogram into a set of true mathematical statements.
(The first makes them gibberish, and the second makes them into a set
of false statements.) The coherence principle then states that the third
deciphering is the correct one, because it makes the most “sense.” (The
null hypothesis, that a long random string of characters has a one-to-one
mapping that produces a set of true equations, is ridiculously improbable.)

This example is chosen, I think, as an idealization, but it idealizes too
severely. The alphabet used on the encoded side is the standard Roman
uppercase letters. On the decoded side it is assumed to be decimal digits
plus arithmetic symbols such as “×” and “=”. Where this constraint came
from is not clear.

If we care about what brain patterns or mental representations mean,
then two elements are missing:

1. Nature does not tell us in advance what aspects of the physical situa-
tion form repeatable patterns; the relevant decoding must be inferred.

2. The cryptogram example stops when true arithmetic statements are
found. In a realistic case, that would just enable us to ask the next
question: What is being counted or measured by the numbers being
added, subtracted, etc.? Is the person computing 8 × 8 × 8 trying to
guess the number of jellybeans in a cubical box?

The letter cypher is described as a “strange game” that Athol has “dis-
covered” (AIVI, p. 100), but he has obviously not discovered it in the sense
that one normally discovers games. He has apparently come across some
enciphered material. When deciphered, the result is a list of simple arith-
metical truths such as 8× 8× 8 = 24 or 2/2 = 1. It’s unlikely that someone
would write down “2/2 = 1” for any purpose except homework, so it seems
that some bored child has enciphered their homework.

From this example the conclusion is what Haugeland calls the “Formal-
ist’s Motto”:

If you take care of the syntax, the semantics will take care of
itself.

But there’s a sense in which he hasn’t even started to discuss semantics.
I’ll demonstrate by examining his other primary example, a cryptogram

Abcd aefg ahf ijkkg
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that can be deciphered, assuming a letter-permutation cipher, in only three
reasonable ways (AIVI, pp. 95–97):

Dumb dogs dig wells.
Cold cats cut riffs.
Rife rats rot hulls.

(Two unreasonable decipherings are “Volt viny van ruddy” and “Zyxw
zvut zsu rqppt.”) His point is not that cryptograms are ambiguous, but the
contrary, that the longer the cryptogram the less likely it is that there exists
more than one deciphering that looks like a message someone might want to
send. In Haugeland’s short and contrived case even the syntactically correct
decipherings don’t look much better than “Volt viny van ruddy,” but the
probability of recovering a syntactically legal English sentence by chance is
so low that if you find a decoding that pulls the trick off, it’s probably right.
(If you can’t think of any reason why your adversary would talk about dumb
dogs or riff cutting, that’s okay; there’s probably another layer of code to
get through.)

Analyses such as these do not begin to penetrate the real problem of
semantics, which is to explain how symbols can mean something even if
there is no audience (Fodor, 1988). How does the principle of coherence
apply to symbol systems in the heads of animals or robots? If brains are
what animals use to compute things, presumably the symbols they use refer
to things in their environment, such as terrain features, familiar places, and
other animals.10 Fodor (1988, p. xi) puts the problem thus: “How can
anything manage to be about anything; and why is it that only thoughts
and symbols succeed?”

The distinction I’m making will be clarified by a more realistic example
of cryptanalysis, drawn from the story of the Allies’ success in breaking
German ciphers in World War II (Hinsley and Stripp, 1993). For reasons
I need not go into, a crucial technique in figuring out the fresh settings
of German ciphers every day was to look for expected pieces of plaintext
(“cribs”). One of the weirdest techniques used was to send out airplanes
to lay mines in places where the Germans were likely to find and clear
them. The Germans were then sure to transmit reports of fresh mines being
seen in these areas. If the British used as cribs the word Sperrnachrichten
(“minefield alert”) and the coordinates where the mines had been laid, they
could infer the cipher settings.11

10And object properties, animal species, and other abstractions, but I am neglecting
this dimension of the meaning problem, and several others.

11This was called Operation Garden by the cryptanalysts (Morris, 1993, p. 235).
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The point is that semantics started after a message had been deciphered
to yield a series of German words. Behind the words lay the entities in
the world that the words referred to, particular mines and particular geo-
graphical locations. Of course, the British cryptographers didn’t care about
mines they themselves had laid; they wanted to know about the locations
of German wolfpacks and Fliegerkorps.

Fodor’s conundrum now presents itself. The meanings of wartime ci-
phers, or any other ciphers, are ultimately set by their users. A pattern of
signals refers to a set of coordinates because the transmitter intends them
to, and the receiver expects the transmitter to have had that intention; they
are working from the same protocol. But inside an autonomous computa-
tional system there is no one corresponding to the sender or transmitter.
One might argue that the programmer is the ultimate arbiter of what the
symbols used by programs mean, but that solution will not work if we want
to treat animals as autonomous computational systems.

One conclusion is that therefore animals (especially the human kind) are
not computational systems. This conclusion is often drawn in more or less
this way (e.g., by Searle (1990), McGinn (1991), Jacquette (2009)), as I’ll
discuss in sections 3 and 6. The opposition has had trouble making itself
heard. There are two main reasons for this.

1. Under the influence of Haugeland’s analysis, and (unfortunately) a
faulty but influential analysis of cognitive psychology from within the
field by Allen Newell and Herbert Simon (1976), the excitement caused
by neural networks in the 1980s (Rumelhart et al., 1986) led to the
idea that the computations performed by brains belong to a differ-
ent paradigm from the “physical symbol systems” Newell and Simon
thought were important. (See below, section 2.3.)

2. The philosophers most concerned with “psychosemantics,” such as
Fodor (1988, 1990) and Dretske (1981, 1995), muddied the waters by
mixing up the theory of symbol meanings with the theory of word
meanings.

I’ll spend most of my time discussing the first issue, and just say a
bit about the second problem here. It may seem harmless to mix up the
theory of mental symbols with the theory of words. Aren’t words the central
exemplar of mental symbols? No. For one thing, there are probably many
more internal symbols than there are words. Although many symbols have
no meanings in the sense we are interested in — like parentheses, they do
not refer to or mean anything — the number of meaningful internal symbols
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must still dwarf the number of words (Millikan, 1984). Second, the focus
on words tends to foreclose the possibility of nonhuman animals having
symbols. Third, anything we can become conscious of, including words and
their occurrences, can be distorted in the peculiar way we induce by filtering
some beliefs through self-models (Graziano and Kastner, 2011, Metzinger,
2003, McDermott, 2001b). We think we know the meanings of words. To
put it in the first-person singular, I seem to be the arbiter of what my words
mean to me. Whether this is true or not for words (and I doubt it is), it
is certainly not the case for symbols whose existence I am not even aware
of. I think I know the meaning of “cow,” which leads me to believe that
I know the meaning of COW (the internal symbol tokened when I have
cow perceptions or think cow thoughts). My certainty that “cow” doesn’t
mean “cow or horse seen in fog” (the standard example of the disjunction
problem (Fodor, 1988)) is irrelevant when it comes to figuring out what a
given internal symbol means. In other words, I deny Cummins’s dictum
that a theory of meaning “. . . must provide an account of what it is for
a system to understand its own representations: Intentional states of S =
contentful states of S that S understands” (Cummins, 1983, p. 68).

2.3 Physical Symbol Systems

The idea that AI depends on symbol manipulation is usually credited to
Allen Newell and Herbert Simon. In their Turing Award lecture of 1975
(Newell and Simon, 1976), “Computer Science as Empirical Inquiry: Sym-
bols and Search”,12 they named and conjectured the truth of the physical
symbol system hypothesis, that “a physical symbol system has the necessary
and sufficient means for general intelligent action” where a “physical sym-
bol system consists of a set of entities, called symbols, which are physical
patterns that can occur as components of another type of entity called an
expression (or symbol structure)” (CSEI, p. 116).

A physical symbol system is a machine that produces through
time an evolving collection of symbol structures. Such a system
exists in a world of objects wider than just these symbolic ex-
pressions themselves.

Two notions are central to this structure of expressions, sym-
bols, and objects: designation and interpretation.

12But of course they distilled this lecture from two decades of work. In citations, I’ll
refer to this paper as “CSEI.”
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Designation. An expression designates an object
if, given the expression, the system can either affect
the object itself or behave in ways dependent on the
object.

In either case, access to the object via the expression has
been obtained, which is the essence of designation.

Interpretation. The system can interpret an ex-
pression if the expression designates a process and if,
given the expression, the system can carry out the pro-
cess.

Interpretation implies a special form of dependent action:
given an expression the system can perform the indicated pro-
cess, which is to say, it can evoke and execute its own processes
from expressions that designate them. (CSEI, p. 116)

The meaning of this passage is terribly obscure. In truth, Newell and
Simon did not have anything to say about how a physical symbol system
(PSS) could refer to the “wider world” of objects outside the system, but
they did believe they had achieved some understanding of some of the issues
involved in semantics, as I’ll explain. But choosing the words “designation”
and “interpretation” seems perverse given that these terms have been used
by formal semanticists in ways quite different from what Newell and Simon
are talking about.

It’s clear how within the computer one expression can refer to another
(allowing the system to “affect the object itself”). The simplest such re-
lation is that between a short (say, 32-bit) binary string and the location
addressed by that string, a relation defined by the circuitry of any modern
computer. A bit string used this way is called a pointer. Because the loca-
tion addressed may be the start of a block of data, including more pointers,
such a binary string can stand for a block of data of arbitrary size and flex-
ible boundaries. There isn’t much more to the idea of data structure than
this. I don’t think Newell and Simon would disagree that we can treat their
words “symbol” and “expression” as synonymous with “pointer” and “data
structure,” respectively.

These simple, interlinked concepts make it possible to write a universal
algorithm that interprets an appropriate data structure as a program. The
data structure then denotes a procedure, as Newell and Simon suggest. “A
physical symbol system is an instance of a universal machine” (Newell and
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Simon, 1976, p. 117). In (Newell, 1980), Newell’s amplification of CSEI, he
is even more specific: the programming language “. . . Lisp is a close approx-
imation to a pure symbol system. . . ” (p. 138). Remember that Newell and
Simon are arguing that for a system to be intelligent it is necessary that it
be a PSS. Their subject matter was conscious problem solving (Newell and
Simon, 1972), and one can argue that, given enough instruction (plus pencil,
paper, and literacy), a person can carry out an arbitrary procedure.13 But
it seems clear now that this was a mistake if it was intended to provide a
foundation for psychology. It would be more accurate to think of the brain
as comprising many neuron populations with specific computational behav-
iors and the ability to learn, within narrow ranges (Botterill and Carruthers,
1999).

If the brain is neither digital nor programmable in any important sense,
why are algorithms so useful in expressing cognitive-scientific hypotheses?
There are a few possible answers, any of which can be correct, depending
on context:

1. Algorithms can be solutions to AI problems that are divorced from
any connection to psychology.

2. If one accepts David Marr’s 1982 characterization of computational
methodology in psychology, there is a level of algorithmic analysis
between domain analysis and implementation.

3. Algorithms can be used to express parallel (multi-thread) algorithms
as well as serial ones. The brain might contain a system consisting of
several (or perhaps very many) subsystems running in parallel, and an
algorithmic notation can capture how they interact, at some level of
abstraction.

4. More loosely, an investigator might conjecture that a computer, con-
sisting of one or a few elements running very fast, might perform a
huge number of operations mostly serially, while a brain, consisting of
a “massive” number of elements running slowly but in parallel, might
perform the same operations (in some sense) simultaneously. The se-
rial version of the algorithm might help prove that performing those
operations would be sufficient for the task at hand, bolstering any di-
rect evidence that neural assemblies in the brain actually do perform
them.

13Or perhaps they had in mind plans that people figured out for themselves and then
executed repeatedly; these may not, however, be a universal basis for computation.
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It’s important to realize that programs are not constrained to represent-
ing logical rules, nor do Newell and Simon ever claim that they are. It is
curious that so many of their readers have come away thinking they did
(see section 3). One reason may be that the first application they presented
to the world was the LT program — “LT” for “Logic Theorist” — which
proved theorems in the propositional subset of the formalism of Principia
Mathematica (Newell et al., 1957, Newell and Shaw, 1957). It is easy to
forget that the memories and CPUs of computers available in 1955 were so
small and slow that there weren’t that many domains to choose from, and
propositional inference was one of the few.14 Other than that, the domain
had no special significance for them, and they tried to generalize as soon as
they could to broader classes of problem (Newell et al., 1959).15

Newell and Simon also declare that a physical symbol system is a “suf-
ficient means” for intelligence. I suppose they meant that once you had a
PSS you could program it with any algorithm required for intelligence. This
is a blunder, akin to saying that there is nothing more to materials science
than the periodic table. I can’t imagine what they were thinking, except
possibly that the ability to program in a high-level language made things so
much easier than programming in machine language that there wasn’t much
else to say.16 If this is what they meant, it’s belied by Newell’s own research
later in his career into even higher-level notations for procedures, such as
production systems with general chunking mechanisms (Newell, 1994).

However, these missteps by Newell and Simon should not distract us
from their contributions to computer science. They were the first to see the
key role of data structures and search in getting computers to perform tasks
that were considered “intellectual.” They took for granted that symbols,
pointers, and data structures could be found in the brain, a position that has
become unfashionable (see section 3), but that is still in the running (Fodor,
2008, Gallistel and King, 2009). What they did not do was illuminate the

14LT ran on the JOHNNIAC computer at the RAND corporation. This computer
had about 20 Kbytes of magnetic-core storage and another 46 Kbytes of magnetic-drum
memory (Newell and Shaw, 1957), which held the program.

15By the 1970s, computers were bigger: most sites on the ARPAnet, which included all
American AI labs, had PDP-10s with 2 Mbyte of main memory (Wikipedia, 2015). The
average millenial carries a much more powerful computer in their pocket. It is odd how
seldom it is suggested that the main reason we studied “microworlds” back then was that
we only had micromachines.

16Compare the similar exuberant statement by the inventors of the FORTRAN pro-
gramming language: “So far, those programs having errors undetected by the translator
have been corrected with ease by examining the FORTRAN program and the data out-
put. . . ” Backus et al. (1957, p. 197).
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semantics of symbols.

2.4 Why Interpreted?

We return to Haugeland’s proposal that a digital computer is an interpreted
formal system. One way to analyze this is simply to parse “interpreted” as
“instantiated.” As discussed in section 2.1, a computer synchronized by a
single clock may be described by a formal system that describes its behavior
in discretized time as a function of the inputs it receives. The computer,
so long as it doesn’t break down, is a model of the formal system in that
there is a mapping from the formal system to the physical one that makes
the formal system “true,” in the sense that its initial state corresponds to
an actual physical state and its rules are “truth preserving” — they never
produce a state that does not follow from an actual state (Smith, 1988).
I put quotes around the words “true” and “truth preserving” because the
formal objects in question need not be of the type that we normally associate
with those phrases.

Unfortunately, this sense of “interpreted formal system” does not seem
to be the sense Haugeland cares about, or that anyone should care about.
Normally the phrase refers to a formal system plus an interpretation chosen
by a person. The claim that a computer is an interpreted formal system all
by itself is intelligible only if the computer is a model of a formal system as
just described, but, when a computer does a job for someone, the semantics
of the symbols it manipulates have nothing to do with the semantics outlined
above. If a computer signals a chess move in a game with a human opponent,
what people care about is the semantics in which the signal denotes a move
in the ongoing game, a move the machine (or, usually, its human handlers)
are committed to. This level of symbol and semantics obviously has nothing
to do with the level in which state-transition rules denote transformations
of bits by circuitry and output of ASCII characters.

Curiously, in an earlier paper Haugeland (1978) had made exactly the
same point in discussing Lucas’s (1961) argument that Gödel’s theorem
makes AI impossible: “The error here is in neglecting that an interpre-
tation of an object as a mathematician and an interpretation of it as a
theorem-proving Turing machine would be on vastly different dimensions.
The outputs put forward as proofs and truth claims on one bear no interest-
ing relation to those put forward on the other” (Haugeland, 1978, p. 220f).
This earlier paper by Haugeland explores many of the same concepts and
claims as AIVI, only transposed to the domain of cognitive psychology, and
addressed to a more sophisticated audience. It insists just as strongly that
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semantics be an intrinsic property of a symbolic system: “A quasilinguistic
representation is a token of a complete type from an intentionally interpreted
articulated typology” (Haugeland, 1978, p. 218 (emphasis in original)). The
densely phrased predicate here may be unpacked thus: An articulated typol-
ogy is (roughly) a language; a token of a type from that typology is a physical
instance of a string from that language. The requirement that the typology
be “intentionally interpreted” before its computational role and causal con-
nections are delineated corresponds to the requirement that a computer be
an “interpreted automatic formal system” (AIVI, p. 48).

Following this clue, we can find another way to understand Hauge-
land’s requirement by returning once more to the concept of a Type A
program (AIVI, p. 110f) and assume he had in mind the classical mem-
ber of this category: a theorem prover that operates by putting axioms
together to make deductive conclusions.17 If the axioms are about chess,
then the conclusions might include statements about legal moves, or per-
haps even good moves. Now suppose the theorem prover is connected via
input and output transducers to the board, the input transducers produc-
ing new axioms about the opponent’s current move, the output transducers
making conclusions about the computer’s next move true by actually moving
pieces.18 These transducers enforce the desired interpretation of the formal
system.19

This chess-playing, theorem-proving robot is close to being an inter-
preted formal system in Haugeland’s sense, but not that close. Even though
it’s a type-A program, the code that runs the transducers and makes the
choices of which inferences to try is not itself part of the formal system, and
is usually larger than the formal system. The system is not “interpreted”
because it is a computer or because it is Type A, but because of its sensors
and effectors.

We’ve come to the end of section 2, the central argument of this paper,
so I’ll summarize the critique of GOFAI:

1. GOFAI is supposed to be a paradigm for AI research. It is supposedly

17Indeed many theorem provers did and do work this way. Most of the exceptions are
interactive theorem provers, in which a human is a partner in finding proofs of theorems.

18The classical AI system that comes closest to this picture is Shakey, the robot de-
veloped at SRI by Fikes et al. (1972). Shakey didn’t play chess, but did solve problems
involving pushing and stacking boxes.

19A simple chess-playing computer with no effectors and sensors except the keyboard
still succeeds in referring to the pieces and making moves, I would argue, even though the
operator does the actual seeing and manipulating. But explaining why exactly is beyond
the scope of this paper.
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based on the idea that human thought is ultimately analyzable as a set
of formal systems, for which the computer, the ideal formal system, is
the perfect simulation vehicle.

2. Upon inspection, the idea breaks apart into a bunch of concepts that
don’t fit together. On the one hand, digital computers are supposed to
be formal systems intrinsically (AIVI, p. 48); on the other hand, even
non-GOFAI systems can be simulated on a computer (AIVI, p. 112).

3. A large class of GOFAI programs are what Haugeland calls “Type
B”: they don’t contain any identifiable formal system defining “legal
moves.” There are no constraints placed on a type-B algorithm, except
that it must manipulate symbols.

4. This last-ditch constraint evaporates because the concept of symbol
is so nebulous. On the one hand, digital computers seem to produce
symbols by their very nature (AIVI, ch. 2). On the other hand, nothing
is said about whether there are interesting thinking systems that don’t
compute, don’t use symbols, or both. The prime candidate is the brain,
of course, but nothing is said about whether the brain uses symbols,
and if so what symbol tokens might look like in a brain, or whether a
brain can do without symbols entirely.20

5. Haugeland leans heavily on the requirement that symbols and com-
putations be imbued with meaning at a low level. But little is said
about what would give a token a meaning. The Formalists’ Motto
(“Take care of the syntax and the semantics will take care of itself”)
is a straw man. A chess-playing robot must work to maintain the link
between the symbols and the physical pieces; semantics never takes
care of itself.

6. In the end all this is not surprising, given John Haugeland’s philosoph-
ical orientation. He believed the solution to the problem of “original
meaning” (see below, section 4) lay in the practices of human commu-
nities (Haugeland, 1990). Robots are left out in the cold.

20(Haugeland, 1978) is more forthcoming on this issue, discussing the possibility of
hologram-like models accounting for some features of the way the brain seems to work.
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3 The Influence of Haugeland and Newell and Si-
mon

It would be difficult to overestimate the influence of Haugeland’s 1978 and 1985
analyses, abetted by those of Newell and Simon (1976, Newell (1980)). These
papers have had a steady stream of citations, continuing to this day.21 For
example, Nowachek (2014) describes the physical-symbol-system hypothesis
and GOFAI as underwriting a theory of learning as “an operation of for-
mal rule-based symbol manipulation” (p. 67). There is nothing unusual or
noteworthy about this paper except that it’s recent and not atypical. Those
who find the GOFAI theme illuminating tend to be critical of those who
supposedly espoused it. Quoting (Nowachek, 2014) again: “After only a few
years of operation the GOFAI research program came to a grinding halt due
to its own ontological limitations and the increasing philosophical criticism
of it” (p. 68).

For want of anything better, I will use the word “symbolicism” to mean
“good old-fashioned AI” as theoretically characterized by Haugeland and by
Newell and Simon. I introduce this somewhat awkward22 term because the
belief that there is a fundamental research paradigm here is so widespread,
even though there is little agreement on what that paradigm is. Drey-
fus (Baumgartner and Payr, 1995, p. 71) sees early AI researchers reenacting
the “rationalist” tradition in philosophy, opposed to the “empiricist” tradi-
tion. Winograd and Flores (1986) also describe GOFAI as “rationalist,” but
they lump empiricism in with rationalism. (Both they and Dreyfus see Hei-
degger’s worldview as an important alternative to symbolicism, although
whether it’s possible to have a Heideggerian AI is still unclear (Dreyfus,
2007).)

I should mention that Haugeland studied with Dreyfus, and acknowl-
edges his special influence in (Haugeland, 1978). So why not include Drey-
fus’s 1972 book What Computers Can’t Do in my tiny list of key sources
of the theory of symbolicism? The problem is that Dreyfus doesn’t supply
much of an analysis of symbolicism (and doesn’t use that name, of course,
since I just made it up). In (Dreyfus and Dreyfus, 1988, p. 34) (with his
brother Stuart), he summarized the physical-symbol-system hypothesis thus:

Newell and Simon hypothesised that the human brain and the

21Haugeland’s meme is so pervasive that the phrase “good old-fashioned AI” is often
used without attribution, as if it were a piece of folk tradition. (An example is Chemero
(2013).)

22Alternatives such as “gofaianism” are even worse.
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digital computer, while totally different in structure and mecha-
nism, had at a certain level of abstraction, a common functional
description. At this level both the human brain and the ap-
propriately programmed digital computer could be seen as two
different instantiations of a single species of device — a device
that generated intelligent behaviour by manipulating symbols by
means of formal rules.

But of course what Newell and Simon actually said was that a PSS was
“a machine that produces through time an evolving collection of symbol
structures” (CSEI, p. 116). The distinction is of importance, as I’ve argued
in section 2. Describing something as “a machine” puts no constraints on
what it does except being computable; whereas “formal rules” are a quite
special case. But where Haugeland makes a sustained attempt to minimize
the difference, Dreyfus just assumes they’re the same. In the later paper, he
and Stuart Dreyfus draw a contrast between symbolicist and connectionist
approaches to modeling intelligence. They praise the latter,23 but mainly, it
seems, because once a neural net has learned something, it is often hard to
say what it has learned in any terms except improved performance (Dreyfus
and Dreyfus, 1988, p. 46). But lots of computer programs have this property;
the programs that implement neural nets are just one example.

Furthermore, Dreyfus’s attraction to late Wittgenstein and the post-
Husserl phenomenologists, especially Heidegger, as theorists of the human
mind does not provide much inspiration to cognitive scientists, because these
philosophers had no interest or faith in the future of neurophysiology or phys-
iological psychology. It has therefore been difficult to create a Heideggerian
AI or a Wittgensteinian neuroscience.24

Another use of the word “rationalist” to characterize symbolicism comes
from Cummins and Schwarz (1987, p. 47f), who describe it as “. . . the
idea that having a cognitive capacity is instantiating a function that relates
propositional contents, i.e., a function that takes propositional contents as
arguments and values and relates them as premises to conclusion. A cog-
nitive system, in short, is an inference engine, a system that merits an
inferential characterization. Thus, to explain cognition is to explain how a
system can merit an inferential characterization, i.e., to explain how it can
reason.”25 A symbolicist system’s “. . . behavior is cogent, or warranted or

23

24For an attempt at the former see Agre (1997); at the latter, see Shanahan (2010).
25In the footnote immediately following this quote, this view of symbolicism is attributed

to AIVI and a handful of other writers, although it’s not clear which authors Cummins
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rational relative to its inputs and internal states” (Cummins and Schwarz,
1987, p. 47).

As this quote shows, there is a remarkable muddle in the literature about
the differences between programs, algorithms, rule-based systems, inference
engines, and axiomatic systems. The last category is the most formally and
precisely characterized, but also the most restrictive. As in my example of
a theorem-prover-based robot, in practice such “Type A” systems almost
always end up sliding into “Type B” systems, i.e., computer programs, the
least restrictive classification.

Cummins and Schwarz founder on these rocks. “Orthodox AI’s26 pro-
posal is that cognitive systems are computational systems: a cognitive sys-
tem is described by a cognitive function because it computes representations
whose contents are the values of the cognitive function, and computes these
from representations of the function’s arguments” (Cummins and Schwarz,
1987, p. 48). But being “computational” is no guarantee at all that a system
will be “rational,” let alone that it will “merit . . . an inferential characteri-
zation.”

Those with a more friendly attitude toward AI, and less prone to perceive
any “grinding halts” in its history, tend to take a somewhat different view of
symbolicism. Stuart Russell and Peter Norvig, in the leading AI textbook
state that, “GOFAI is supposed to claim that all intelligent behavior can be
captured by a system that reasons from a set of facts and rules describing
the domain. It therefore corresponds to the simplest logic agent described
[in this book]” (Russell and Norvig, 2010, p. 1024). They point out all the
other kinds of agents that AI has studied, which overcome, or may someday
overcome, the problems of the simple “logic agent.” But their view of what
GOFAI is exactly is as subjective as everyone else’s.

There is a strange hunger for paradigms and paradigm shifts (Kuhn,
1962) in the history of AI, by practitioners within the field and outside
observers. The field is really too young for this sort of thing, one would
think. Nevertheless, it has been all too common since the 1980s for cognitive
scientists to discern alternative paradigms that replaced GOFAI, or can
be expected to replace it, or ought to replace it. The early favorite was
connectionism, whose renaissance in the 1980s is documented in (Rumelhart
et al., 1986). Connectionism uses “massively” parallel networks of simple
elements of a few types instead of a single CPU. The simple elements are
supposed to be neuron-like, and the resulting systems are supposed to shed

and Shwarz classify as advocates of symbolicism and which as theorists of it.
26Although Cummins and Schwarz do cite AIVI, they don’t use the acronym GOFAI.
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light on real neural systems. In practice this goal is often secondary or
absent; and the networks are almost always simulated on a digital computer.
One might think these two points would have something to do with each
other, but of course a neurologically plausible system can be simulated on a
digital machine, and a neurologically implausible one can created using lots
of physical elements operating in parallel.

Connectionism is still alive and well, but it couldn’t magically solve
all the problems mainstream AI researchers had discovered. The actual
literature on connectionism is heavily mathematical and algorithmic — not
that easily distinguishable from any other work in computer science (e.g.,
ch. 11 of Hastie et al., 2009).

Possibly because neural-net research turned out not to be a clearcut
“paradigm shift” after all, an even more radical alternative emerged, in the
form of dynamicism (van Gelder, 1998, Spivey, 2007, Shanahan, 2010): the
idea that differential equations, phase spaces, and the other tools of dynamic
systems theory were the appropriate ways to think about cognitive science.27

The variables in these differential equations describe the activation levels of
populations of neurons.

According to van Gelder (1998), dynamicism is opposed to the “com-
putational hypothesis (CH) that cognitive agents are basically digital com-
puters” (p. 615). Newell and Simon and Haugeland are cited, and everyone
seems to harmonize with the “remarkable level of consensus” that exists
regarding the CH (p. 617). In a footnote, van Gelder elaborates: “The ver-
sion of this consensus now most widely accepted as definitive is probably
that laid out in [AIVI]. The account of digital computers here is essentially
just Haugeland’s definition of computers as interpreted automatic formal
systems . . . ” (p. 628).

The muddle has popped up again. First, note that AIVI does not claim
that brains are digital, only that they can be analyzed as manipulating
symbols:

If Artificial Intelligence really has little to do with computer
technology and much more to do with abstract principles of men-
tal organization, then the distinctions among AI, psychology, and
philosophy of mind seem to melt away. . . . Thus a grand inter-
disciplinary marriage seems imminent; indeed, a number of en-
thusiasts have already taken the vows. For their new “unified”

27This is essentially what Bickhard and Terveen (1995) endorse, under the name “in-
teractivism.”
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field, they have coined the name cognitive science. If you be-
lieve the advertisements, Artificial Intelligence and psychology,
as well as parts of philosophy, linguistics, and anthropology, are
now just “subspecialties” within one coherent study of cognition,
intelligence, and mind—that is, of symbol manipulation. (AIVI,
p. 5)

The failure to grasp the distinction between programs and logical rules
can lead to bizarre but understandable arguments such as that of Jacquette
(2009)28 [footnotes mine in what follows; emphasis in original]:

If the mind is machine, then it should be possible to build
a computer with whatever properties cognitive psychology at-
tributes to the mind. This is the hope of mentalistic artificial
intelligence, which seeks to create genuine intelligence in infor-
mation processing machines. [p. 88]29

. . .
There are two kinds of artificial intelligence modeling, known

as rule-structured programming, and connectionist or parallel dis-
tributed processing. Artificial intelligence has traditionally used
the same rule-structured system as other kinds of computer pro-
gramming to instruct a machine to execute commands when
specified conditions are satisfied. Typical lines of code in a
programming language issue commands of the sort: IF X = 0,
THEN GO TO [5] [p. 93].30

. . . A modern digital computer, as we recall, is a universal
Turing machine, capable of performing any and all computable
functions, including those computed by connectionist networks.
The following conclusion therefore seems inevitable. If a con-
nectionist system considered only as such can duplicate any psy-
chological phenomenon, then there is a copycat rule-structured
mentalistic artificial intelligence program that can duplicate the
same phenomenon. Despite the practical advantages of connec-
tionist systems, parallel distributed processing cannot avoid the
philosophical objections raised against mentalistic artificial in-
telligence in rule-structured programming. [p. 102]

28Who cites AIVI, but not Newell or Simon.
29This is essentially the same as Searle’s notion of “strong AI” (Searle, 1980).
30This “rule” seems to be a statement in the BASIC programming language.
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I’m sure it has occurred to more commentators than are willing to admit
it that if formal systems are the essence of GOFAI, and all computers are
“interpreted formal systems,” then the distinction Haugeland was trying
to make collapses, and connectionist systems are as GOFAI as any other
program. Jacquette is to be thanked for unintentionally making the reductio
so clear.

The tendency to see GOFAI in every mention of computation has caused
some cognitive psychologists to avoid the whole confused mess of concepts.
The advent of fMRI technology (Raichle, 1999) for near-real-time brain scan-
ning has provided an alternative for them to rush to (Aue et al., 2009). A
typical significant result is the discovery that moral decisions use differ-
ent brain regions depending on which sort of moral dimension is in ques-
tion (Greene et al., 2004). The neglected question is what is happening
inside these regions. For now fMRI experimenters seem content to analyze
the brain as a system of modules connected by “wires.” A “wire” is some-
times taken as carrying messages in one direction, with feedback for learning
purposes, or as a bidirectional channel. But what is going on inside those
modules? And what is the format of the traffic in the channels in each di-
rection? If we cannot express the answers in the language of the theories of
computation and communication, we must usually be satisfied with superfi-
cial explanations in terms of “association,” “experience,” “images,” and so
forth.

Here is an example from Joseph Haidt and Craig Joseph (2004) in the
context of theories about the neuroscience of moral judgments, although the
details are unimportant:

A useful set of terms for analyzing the ways in which such
abilities get built into minds comes from recent research into the
modularity of mental functioning. An evolved cognitive mod-
ule is a processing system that was designed to handle problems
or opportunities that presented themselves for many generations
in the ancestral environment of a species. Modules are little
bits of input-output programming, ways of enabling fast and
automatic responses to specific environmental triggers. In this
respect, modules behave very much like what cognitive psychol-
ogists call heuristics, shortcuts or rules of thumb that we often
apply to get an approximate solution quickly (and usually intu-
itively) (Haidt and Joseph, 2004, p. 59f).

Jerry Fodor (1983) is cited for the original notion of modularity of mind,
but he must be fuming at the depths to which it has fallen. One of his prime
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examples was the hypothetical module that turns sound sequences into syn-
tactic trees when we hear someone utter a sentence. The computations
required to carry this out are “fast and automatic,” probably “heuristic,”
but they are not “little bits of input-output programming.” I use the word
“computations” here because there simply is no other sort of model in our
toolkit with the requisite power. We must wield the same tools to explain
anaphora resolution, presupposition analysis, face recognition, social-rank
judgment, “theory of mind” (Gopnik and Wellman, 1992, Goldman, 2012),
geographical orientation, and many more operations plausibly handled by
specialized neural circuits. So why have many cognitive psychologists re-
gressed to a simplistic view of what these modules do? The complete story
is probably complicated, but at least part of the blame must rest with the
confused sense in the cognitive-science community that computationalism
was somehow refuted when GOFAI “came to a grinding halt.”

I don’t want to give the impression that everyone in the cognitive-science
community became hostile to computationalism after the first blush of ro-
mance had worn off. Many philosophers, representing a diverse range of po-
sitions about the nature of representation have remained comfortable with
the idea that computation is either the key to the mind or a useful tool for
understanding it, including Georges Rey (1997), Daniel Dennett (2006), and
Jerry Fodor (2008), as have several cognitive psychologists with a philosoph-
ical bent, such as Zenon Pylyshyn (1980, 1984). Those doing research into
analogy (Gentner et al., 2001, Gentner and Forbus, 2011, Itkonen, 2015)
must confront the subject of complex representations head on. And, of
course, post-Chomsky linguists can hardly give up the idea that thought
involves computing with symbolic structures.31

Not every critic of computationalism sees GOFAI and its supposed demise
as crucial events in the history of cognitive science. Stevan Harnad (1990)
blames the “symbol-grounding problem” for the turn towards “nonsymbolic”
systems. He defines a “symbol system” as one that manipulates physical to-
kens of some kind on the basis of “explicit rules.”

The entire system and all its parts – the atomic tokens, the
composite tokens, the syntactic manipulations both actual and
possible and the rules – are all . . . “semantically interpretable”:
The syntax can be systematically assigned a meaning e.g., as
standing for objects, as describing states of affairs.32 (Harnad,

31Endorsement of computationalism should not be equated with endorsement of AI, as
Fodor has made abundantly clear (Fodor, 1978, 1987).

32While I agree with Harnad’s emphasis on semantics, his requirement that the “rules”
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1990, p. 336)

Harnad credits several influences for his concept of symbol system, no-
tably Fodor (1975), Haugeland (1978), Pylyshyn (1980), and Newell (1980).
He makes the same mistake as Newell, Cummins, and others in requiring a
symbol system to have all the structure of a programmable digital computer,
but grants that there are human thought processes that are symbolic. He
arguese that the Achilles heel of this otherwise successful research effort is
that there is no explanation of the semantics within the theory:

Many symbolists believe that cognition, being symbol-manipulation,
is an autonomous functional module that need only be hooked
up to peripheral devices in order to “see” the world of objects
to which its symbols refer (or, rather, to which they can be sys-
tematically interpreted as referring). (Harnad, 1990, p. 338)

Harnad thinks this belief on the part of “symbolists” is overly simplistic, and
that symbolism without symbols “grounded” in the right way can’t be part
of a realistic theory of human cognition. I confess that I don’t see exactly
the problems Harnad sees (Harnad, 2001, McDermott, 2001a), but I agree
that semantics requires attention.

4 Robosemantics

Haugeland got semantics wrong, and his mistakes have unfortunately been
copied by others. In this section I’ll try to suggest ways to correct some of
his errors. Solving all the riddles of semantics is, I am grateful to report,
beyond the scope of this paper.

As I said in section 2.2, Haugeland’s semantic analyses often stop short
of the important issue, because they seem to mistake decodings for interpre-
tations. A decoding is a mapping from a set of possible physical situations
(its domain) to a set of abstract structural descriptions (its range). The
standard case is classifying physical state tokens as occurrences of strings
drawn from a language, but I think it is a mistake to assume that this is the
only case. Here are some other sorts of ranges that decodings can target:

• Real numbers, or probability distributions on real numbers. (Any
analogue computer must be analyzed this way.)

(program) get the same interpretation as the symbols manipulated is the fallacy that I
discussed in section 2.4.
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• Cartesian products of ranges. (E.g, when the physical state consists
of frequency-multiplexed signals that are limited in bandwidth but
otherwise independent.)

• Isolated discrete symbols not drawn from a language. Of course, we
can always consider an isolated symbol to be a token of a length-1
string from a degenerate language; but we can just as well think of a
more complex language as the result of product operations applied to
isolated symbols.

In Chalmers’s (1994) useful analysis of the concept of computation, the
function he calls simply f is a decoding. His analysis is focused on the digital
case, and for this case it seems exactly right to me. Once the concept of
decoding is in place, it can be applied at many loci inside a computational
system: inputs, outputs, storage elements, and subcomponents that are
themselves computational. (There are all sorts of improvements we might
pursue, such as incorporating state information into F , but they’re not
relevant here.)

Decodings are cheap, and worth every penny. A given physical state
type can be decoded in many different ways, all equally “valid.” However,
under almost all of them, the resulting descriptions are not very complex or
“interesting.” For a description to be interesting, it must satisfy a continuity
requirement, which is a refinement of a basic reproducibility requirement. We
can express the latter by saying that if someone claims that a physical system
S computes a function F , then for an arbitrary input x from the domain
of F it must be possible to put S’s input subsystem into an identifiable
state decodable as x, and as a result S must evolve to a point where its
output subsystem is in a state decodable as F (x). The piecewise continuity
requirement is that if it’s possible only to get S’s input subsystem into a
state close to a previous state, that is, to a state decodable as x′ ≈ x,
then except at a few boundaries the result is an output state decodable as
F (x′) ≈ F (x).33

Decodings are like frames of reference in physics, in that one must al-
ways be working within one, but the choice is arbitrary. The wrong choice
of frame of reference can make a mathematical analysis much more difficult;
the wrong choice of decoding can make computational analysis much less
“interesting.” But in each case the wrong choice does not produce false
results; results from different frames do not contradict each other. A system

33Which is why John Searle has a large burden of proof in arguing his 1980 claim that
a wall in his office is decodable as a word processor.
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may compute one function under one decoding and a quite different one
under another, but this is no endorsement of “observer-relativism” or any
other sort of relativism, because one can use it to compute either function,
whether or not anyone ever does use it, or notice that it can be used, that
way. More to the point, if one finds a piece B of an animal’s brain that com-
putes different functions under different decodings, it is a further question
which of these ever governs the behavior of the animal. It’s possible that
B is used to compute both functions, although only one at a time; or that
B’s results are sent to two different destinations, each employing a different
decoding. However, I doubt these doublings ever happen,34 because usually
all but one decoding yield trivial computational descriptions.35

I have perhaps belabored the idea of decoding excessively, but I want
to be clear that in exploring decodings we never get beyond the physical
computational system; we are just redescribing it at an abstract level. The
concept of interpretation is very different: An interpretation is a mapping
from the domain of symbol structures to real-world entities they denote.36

Let’s assume for the sake of concreteness that I have a symbol in my head
representing my first grandchild. I don’t see the kid that often because he
lives 5000 km away, but it seems correct to say that the symbol actually
does stand for, or “denote,” that particular toddler. What makes it the case
that it does? Here the choice of mapping is not arbitrary, and all but one
choice is wrong. So what singles out one interpretation as correct?

This is not the paper to try to provide an answer to this question. I will
content myself with a few scattershot observations:

• We need a term for a “representation,” absent the presupposition that
it refers to or represents anything at all. Contra Haugeland, it is not
a defining feature of such an entity that it come equipped with an

34One counterexample is the way DNA is read in many organisms, including humans.
The same sequence of nucleotides can be read starting in different places, sometimes in
different directions, yielding recipes for protein fragments that to be assembled in different
ways (Lewis, 2001). Evolution is opportunistic, not elegant, so perhaps we should expect
similar kludges in the brain.

35Of course, one can always indulge in tricks such as the following: scale the inputs
and descale the outputs, so that under decoding D1 B computes F1, and under D2 the
input formerly decoded as x is decoded as x′ = 2x and the output formerly decoded as
F (x) is decoded as F (x′/2). I don’t doubt that we can avoid counting this infinitude of
trivial notational variants of an“interesting” function by some technical maneuvers that
are surely beside the point.

36Sometimes the term model is used as a synonym for “interpretation.” I would prefer to
reserve the term “model” (of a given set of belief representations) to mean “interpretation
that makes that set true.”
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interpretation. I will adopt Newell and Simon’s term expression, but
do not assume that I mean Lisp expressions or the like. I recommend
the same flexibility here as in the possible ranges of decodings. In
fact, we can’t escape a broad interpretation of “expression” because
whether a physical state is to be thought of as a token of a given
expression type is always relative to a decoding.

An expression consists of one or more symbols, arranged in linear
sequences, or in more complex structures (trees, graphs, . . . ).

• At the very least, a claim that an expression represents a changing
situation must be backed up by evidence that the expression changes
to reflect the current state of the situation. (To be precise: under a
fixed decoding the state changes to encode a different expression as
the situation changes). Of course, there is always a time lag.

• It is not necessary to narrow down representations so they only occur
in “minds,” or organisms, or robots, or active agents of some kind.
They can occur all over the place; they won’t hurt anything.

• The temptation to differentiate “original” from “derived” meaning, as
emphasized by Haugeland (AIVI, p. 119), must be resisted. Humans
are supposed to be the wellspring of intentionality, the “aboutness”
of thoughts and words, and our artifacts, such as books and DVDs,
mean something only because we invented them specificially to mean
those things. Or that’s the idea anyway.

The problem is that computers, which in normal use are just “super-
books,” whose intentionality is all derivative as far as this theory is
concerned, seem to become a new source of the original sort of inten-
tionality as they become more autonomous. It is hard to believe that
a robot exploring an exoplanet on its own wouldn’t be inventing its
own new symbols to denote the species it discovered.

As argued by Dennett (1987a), cognitive science is committed to ana-
lyzing and explaining human intentionality in the same terms it uses
to explain the intentionality of autonomous robots. One can say that
agent A can confer intentionality on a symbol system S by taking cer-
tain attitudes toward it, and possibly sharing it with other agents. S
then has intentionality that is derived from A, or A’s community, if the
agent learned it from others. But whether one views A’s intentionality
as itself derived is another question.
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• The notion of “intended” interpretation should play no role in psy-
chosemantics. As explained in section 2.2, it is an error to assume
continuity between the meanings of expressions in our heads and what
we consciously think words and other expressions mean. Here as else-
where, cognitive science should remain true to the strategy of finding
a theory of unconscious thought first and then explaining conscious
thought using that theory (Millikan, 1984, Dennett, 1991).

• Most thinkers about intentionality have supposed that the hardest part
to explain is one’s ability to think about nonexistent things such as
Santa Claus, Sherlock Holmes, and the house one would like to build;
and the way groups of people bring things into existence by believing
in them, such as currency, corporations, and countries. But perhaps
all of these can be assimilated to the case of fiction; and fiction can be
explained as a story one is temporarily or permanently committed, to
varying degrees.

• The elephant in the semantic room is the problem of indeterminacy.
The classic source of anxiety on this head is Quine’s (1960) theory
of the “indeterminacy of translation” from one language to another,
extended to all thought processes by Davidson (1973). The paradig-
matic case in recent decades has been the “disjunction problem”: if
the symbol COW is tokened on some foggy evenings by horses, why
don’t we say it means “cow or horse seen on a foggy evening” (Fodor,
1988)?

I believe the “principle of charity” (Wilson, 1959, Field, 1978) can be
adapted to solve this congeries of problems. This is the principle that we
should interpret the words of an unfamiliar language so as to make as many
of its speakers’ utterances true as possible. Suppose we transpose this idea
to representations in an agent’s “brain” the goal being to make as many of
its explicitly represented beliefs37 true as possible. If we combine the princi-
ple of charity with ideas from minimum-description-length theory (Rissanen,
1989, Li and Vitányi, 2009), we might zero in on a single favored interpre-
tation or a small neighborhood of interpretations.

I will say no more about this here, although there is much more to be
said. I’ll close this section with a couple of important reminders.

37Of course, representations are not tagged as being beliefs as opposed to desires, ques-
tions, or something else. To figure out which is which requires figuring out how the repre-
sentations are connected to behavior and to transformations between categories (such as
when plans are concocted to transform desires into intentions).
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Those in pursuit of alternative “paradigms” for cognitive science often
claim they can do without symbols (Shanahan, 2010) or that symbols only
arise at the level of conscious thought, the vast unconscious being “sub-
symbolic” (Smolensky, 1988). But symbols are like money. You can outlaw
money, but something else will come to play the role of medium of exchange.
You can outlaw symbols, but symbols might exist all the same. My favorite
example is Damasio’s theorizing about the unconscious mind in (Damasio,
1999). Much as he would like the brain to be explainable in terms of fairly
clear ideas such as neural “maps,” he must also acknowledge the existence
of what he calls “images.” The initial examples are reasonably clear:

By object I mean entities as diverse as a person, a place, a
melody, a toothache, a state of bliss; by image I mean a mental
pattern in any of the sensory modalities, e.g., a sound image, a
tactile image, the image of a state of well-being. Such images
convey aspects of the physical characteristics of the object and
they may also convey the reaction of like or dislike one may have
for an object, the plans one may formulate for it, or the web
of relationships of that object among other objects. (Damasio,
1999, p. 9)

The beginning of this paragraph combines our introspective understand-
ing of the word “image” with the idea that the neural structures used in
classifying visual, tactile, aural, or olfactory stimuli may be recruited when
an image is activated (LeBihan et al., 1993, Kosslyn et al., 1995). But then
images acquire property associations (likeability, e.g.), and become nodes
in a “web of relationships” with other images. Most images are uncon-
scious (Damasio, 1999, p.319). Eventually the properties and powers of
images expand in indefinite ways:

Images allow us to choose among repertoires of previously
available patterns of action and optimize the delivery of the
chosen action—we can, more or less deliberately, more or less
automatically, review mentally the images which represent dif-
ferent options of action, different scenarios, different outcomes
of action. We can pick and choose the most appropriate and
reject the bad ones. Images also allow us to invent new actions
to be applied to novel situations and to construct plans for fu-
ture actions—the ability to transform and combine images of
actions and scenarios is the wellspring of creativity. (Damasio,
1999, p. 23f)
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By this point it is clear that most of the time most images are playing
exactly the role symbols are supposed to play in computational theories of
mind. My internal representation of my car must include detailed infor-
mation about the visual patterns involved in recognizing it and the motor
schemata used when unlocking it, sitting in it, and driving it. But when
planning to use the car to run errands, the “image” of the car is basically
used as a placeholder, a symbol, taking part in, e.g., representations of plans,
but treated as having little internal structure itself.

So why not just acknowledge that the brain must contain symbols and
expressions — representations in the computational sense?

One . . . reason to be cautious about the term representation
is that it easily conjures up the metaphor of the brain as com-
puter. The metaphor is inadequate, however. The brain does
perform computations but its organization and working have
little resemblance to the common notion of what a computer
is. (Damasio, 1999, p. 321)

In other words, images must be “not-symbols” because people are “not-
computers,” anything but dreary old computers. This sort of reluctance to
accept the ideas of symbol or computation, simply because they seem to
entail that the brain is a programmable digital computer, is not unusual.
Some responsibility for this tendency must lie with Haugeland, who provided
a woolly and confused picture of AI that was hailed as a paragon of clarity.
The typical reader of AIVI is hopelessly lost when it comes to understanding
the differences between axiom systems, programmable digital computers,
and computational models generally, so in rejecting the first two as a picture
of the brain tends to reject the last as well, or to insist that programs are all
right as long as they don’t manipulate symbols, or to cling to Searle’s 1980
distinction between “modeling” the mind and “being” a mind.

5 Whatever Happened to . . . ?

If Haugeland’s exegesis of the early years of AI is not coherent, what shall
we say about them? Was there an AI methodology that Haugeland just
misdescribed? Or is there not much to say about whether there was a
“mainstream” AI and if so what its core ideas were?

Something was different about those early years. I remember them well.
The biggest difference between AI then and AI now is the increase in com-
puting power by several orders of magnitude — but the impact is not what
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one might think. If all you have is slow, tiny computers (measured by avail-
able memory), you tend to require every decision the computer makes to be
“intelligent” in order for the outcome to look intelligent. So there was serious
discussion about the problem with (e.g.) theorem provers being that they
did search, but not “selective” search; their decisions were too “syntactic.”

Having a zippy computer doesn’t magically make life easy, as some pop-
ular accounts might lead one to believe. The first lesson of the computer
age is that having a fast automated calculator does not cross off a category
of problems; it just expands one’s ambitions toward bigger problems of that
category. What changed in my corner of the AI world is that if your program
is making thousands or millions of decisions per second, then the idea goes
by the boards that you need to think through each type of decision as if
it were a conscious deliberation. Instead, like any other computer scientist,
you start thinking about data structures, algorithms, and their time and
space complexities. Of course, in the early 1970s these concepts were still
in their infancy.

The “old-fashioned” way of thinking about how to program a computer
is exemplified well by the way expert systems were built back in the 1980s.38

In a process known as knowledge acquisition (Kendal and Creen, 2007), the
programming team would meet with a group of experts in a domain such
as medicine or computer configuration and try to write down rules that
covered what the experts would do in every situation that could arise. As
the program evolved, its recommendations would be compared with those of
the experts, and discrepancies would be corrected by revising rules or adding
new ones. But it would be a mistake to pick on this KA methodology, since
it was basically the way everyone went about programming computers.39

The “computer as proxy” approach to programming can be contrasted
with a modern approach in which masses of data are used to extract es-
timated probability distributions that are then fed into a Bayes-net solver
to produce maximum-likelihood solutions to diagnostic or prediction prob-
lems (Manning and Schütze, 1999). I have no particular program in mind,
but the paradigm, relying on “big data” as much as possible instead of ex-
perts’ intuitions, is now becoming familiar to any reader of the New York
Times.

There are several trends in AI that my hypothetical scenario exemplifies:

38Perhaps I should call them “GOFES.”
39The obvious exception were the numerical analysts, who knew even before computa-

tion was fully automated that algorithms could not be relied on except in domains where
they could be proven to be stable. Of course, we still use the “anthropomorphize and
debug on corner cases” method in intro-programming courses.
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• AI, which in its early years seemed wedded more to psychology than
any other discipline, now teams with linguists, mathematicians, sta-
tisticans, mechanical engineers, neuroscientists, and anyone else whose
ideas it can use. Meanwhile, psychologists have spurned AI for other
suitors, especially neuroscience.

• Of all these disciplines, statistics has emerged as one of the corner-
stones of AI, replacing logic, which aspired to be the theoretical frame-
work of the discipline back in the 1970s. In those days uncertainty
was the white whale that threatened to sink the logic ship, and how to
represent and reason about it was a matter of considerable debate in
the knowledge-representation (KR)40 community. But following the
work of Judea Pearl (1988) on Bayes nets, all doubts were cast aside
and statistics, Bayesian and non-Bayesian, came to dominate as the
favored technique for uncertain reasoning, and then for reasoning in
general.

• In practical applications of knowledge representation, logic did not
disappear but variables did. Propositional logic yields many tractable
applications, and it interfaces well to statistics, since one can attach
probabilities to symbols representing propositions. Quantified repre-
sentations, including first-order logic, are more expressive, but no one
really knows how to make them work with probability statements.41

There have been advances in first-order theorem-proving algorithms,
but they apply only to domains that can be characterized deductively
using a fixed set of axioms.

• Programs are more rigorously tested than they used to be. In the
1960s and 70s a typical paper might show how a program performed
on three or four examples (and display logs of its runs as if they were
protocols from a subject in a psychology experiment). Nowadays a
program must be tested on public repositories contain hundreds or
thousands of problems in a standard notation, and its speed and cov-
erage compared with those of previous programs on the same problem
sets. Problems not already in the repository must be added to it so
other experimenters can try their programs on them.

40This phrase is the standard way of referring to explicit representations of beliefs,
theories, goals, plans, and other such things (Russell and Norvig, 2010). It has nothing to
do with “knowledge” in the usual sense.

41But see Demey et al. (2014) for a review of proposals in this direction.
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It is important to realize that even when logic seemed to be the theo-
retical armature of AI research, few practitioners used logic for much more
than window dressing. One reason for this was that most inferences are not
deductive. Another was that most programmers find it hard to think in
terms of axioms. A programmer wants to make things happen, but logic is
about timeless truth.42 The Prolog language (Clocksin and Mellish, 2013),
which is based on logic, requires many “extra-logical” enhancements to be
usable for realistic applications. A good programmer must know when to
switch from the purity of logic to the responsiveness of the enhancements.43

I am less familiar with how programmers handle the tools available for sta-
tistical machine learning, but I would not be surprised if there was a similar
disconnect between theory and practice here.

The fact is that there is no real computational theory of inference, intel-
ligent or otherwise, that covers more than a few special cases. It may be that
this is because it is still early days in the AI business, or for a deeper reason:
that a bright line between inference and computation in general simply can’t
be drawn. Whenever a computation is a link in the causal chain from input
to agent behavior, it is part of the “decision theory” for that agent. To
the extent we can classify a class of representations as beliefs, the computa-
tions that lead to the creation of those representations can be classified as
inferences. These computations may be describable as elegant algorithms,
and there may be an explanation of why it’s in the agent’s interests to run
those algorithms and store those representations, but there may simply be
no underlying theory of inference from which these explanations are always
drawn. Such a theory would explain why the agent should believe P at this
time, and not believe Q, taking resource bounds into account. Logic has
aspirations to be such a theoretical framework, as does decision theory, but
for well known reasons they are fall short.

The one constant in the history of AI from 1970 to the present is that
it was and remains empirical. Programs are judged by how well they work
in practice, not by how well they work in theory. If you can prove that
your program has an interesting property, that’s great, but most of the time
you can’t. A chess program is good not because it can be proven to win,
but because it does win. You may prove that it plays a certain endgame

42When someone says they “represented the knowledge procedurally,” they mean, ”I
wrote a program.”

43This is similar to knowing when to switch out of the purely functional subset of a
language like Lisp (Seibel, 2005) or Scala (Horstmann, 2012), with the added complexity
of Prolog’s nondeterminism. It takes years to learn to navigate these waters, and most
programmers never do.
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perfectly, but that’s not usually the central point of the work. The difference
between 1970 and now is that the empirical results are more convincing.44

6 Conclusion: GOFAI, the Very Idea

Haugeland’s notion of “good old-fashioned artificial intelligence” does not
withstand close scrutiny. It overemphasizes the idea of “interpreted formal
system,” leaving us baffled as to how it applies to real computer programs,
especially those of Type B, which do not contain explicit formal systems
at all. The contemporaneous “physical-system hypothesis” of Newell and
Simon (1976) is even less coherent or plausible.

The influence of Haugeland’s analysis and that of Newell and Simon has
been great, measured in citations, but no one really knows what they are
citing. They all describe it in quite different terms. It would be simplistic to
blame all confusion about AI methodology on one or two papers or people.
But the papers I’ve talked about seem to be the nucleus of the literature that
is referred to whenever someone summarizes (early) AI research. It is not
hard to see why AIVI would play such a central role. It is so well written, and
so lucid in places, that at first glance it seems to put a particular subculture
or phase of artificial intelligence under a microscope. But when you try to
make sense of the resulting image, there are sharp fractures visible in the
lenses.

I’ve coined the word symbolicism for the (alleged) theory described by
Haugeland, and Newell and Simon. Inevitably, there is little agreement
about what symbolicism comes to. It’s mainly useful for setting up AI
as a target. If someone thinks human thought is basically X, and that
symbolicism isn’t X, then AI, at least the symbolicist sort, has no place in an
enlightened cognitive science. X is typically “general-purpose,” “insightful,”
“creative,” “adaptable,” “inconsistency-tolerant,” “learning-based,” “fast,”
“massively parallel,” “opaque,” or “transparent.”

The collaboration between AI and cognitive psychology has diminished
sharply over the last few decades. As each field sought to make use of
more complex models, they found it harder to communicate. Psychologists
can’t run experiments if they have to build working computational models
along the way, because building such models takes too long. Even apparent
counterexamples such as ACT-R (Anderson et al., 2004) depend on simu-
lated vision modules for crucial pieces of information from the environment.
Meanwhile, many of the ideas making their way into AI seemed to have little

44Russell and Norvig (2010, pp.16–28) give a concise and useful history of AI.
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to do with psychology. When the Watson program won a simplified version
of Jeopardy in 2011, it relied on searching a large database of stored text
articles, then using Bayesian methods to reject most of the possible matches.
It would be surprising if good human jeopardy players’ brains worked this
way.

One reason psychologists have given up on detailed computational mod-
els is that AI has been slow to deliver them. ACT-R models depend on sim-
ulated vision for an excellent reason: there is no general-purpose computer-
vision module to be had that performs anywhere near as well as the human
visual system. The situation with respect to language is just as bad. Al-
though speech-recognition systems are approaching human performance (Saon
and Chien, 2012), linguists seem to be getting further and further from con-
sensus on the grammar of even a single human language. Nor has computa-
tional linguistics, at the interface beween AI and linguistics, delivered tidy
solutions that psychologists can use.

Philosophers have too often played Iago in the story of divorce between
AI and psychology. Haugeland’s story and the rise of connectionism provided
a theory of history that replaces the need to follow the actual history of AI.
Philosophers read and dissected the early AI papers, but how many have
tried to read papers on “deep learning” (Hinton, 2007), one of the current
trends in neural-net theory?

I can only conjecture that the lack of interest is partly because the math
has gotten tougher in the last 50 years, and partly because philosophers don’t
want the brain to be analyzable, once materialism and perhaps functionalism
have been genuflected to. I apologize for this ad hominem argument; I raise
it only to point out that philosophers’ fears, if they are prone to them,
are perfectly understandable. Nobody wants to be analyzable, including
me. But there’s no reason to worry that scientific explanations of brains
will explain us as individuals. Suppose there is eventually a computational
explanation of, say, love. It would suggest why different people have different
“types” they are likely to fall for, the sorts of “learning” that causes people
to change their attitudes toward lovers over time, and so forth. If you are
willing to submit to analysis of your brain, predictions can be made of how
and why you fall in love, and possibly stay in love, with whom you do. Well,
what difference would this make to you? The way you think about love may
be inaccurate, but simply knowing this fact would not be enough to change
the way you navigate through your love life (McDermott, 2013). If we use
the phrase “theory of love” for the way you think about love (by analogy
with “theory of mind”), just knowing how your brain controls your love life
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wouldn’t allow you to “escape” the theory (or make you want to escape).45

Nonetheless, philosophers skeptical about the prospects for a compu-
tational theory of the brain and mind can point to the failure to achieve
a blitzkrieg victory over the problem as justifying rejection of the whole
cognitive-scientific enterprise. Exhibit A: Colin McGinn (2013, online) —

Even in sober neuroscience textbooks we are routinely told
that bits of the brain “process information,” “send signals,” and
“receive messages”—as if this were as uncontroversial as electri-
cal and chemical processes occurring in the brain. We need to
scrutinize such talk with care. Why exactly is it thought that the
brain can be described in these ways? It is a collection of biolog-
ical cells like any bodily organ, much like the liver or the heart,
which are not apt to be described in informational terms. It can
hardly be claimed that we have observed information transmis-
sion in the brain, as we have observed certain chemicals; this is
a purely theoretical description of what is going on. . . .

. . . Why do we say that telephone lines convey informa-
tion? Not because they are intrinsically informational, but be-
cause conscious subjects are at either end of them, exchanging
information in the ordinary sense. Without the conscious sub-
jects and their informational states, wires and neurons would not
warrant being described in informational terms.

. . . It is simply false to say that one neuron literally “sends
a signal” to another; what it does is engage in certain chemical
and electrical activities that are causally connected to genuine
informational activities [occurring in the mind].

This breathtaking repudiation of the metaphors underlying communica-
tion theory, when they are applied to biological systems, leaves little hope for
the rest of cognitive science. Granted, McGinn and his fellow “reactionar-
ies,” such as John Searle (1992), represent an extreme within philosophy of
mind. But the high regard in which they are held has encouraged a retreat
from computational theorizing about the mind, often all the way back to
some form of dualism.46

45Sellars made a distinction between the “scientific” and “manifest” images of reality,
and of human doings in particular in (Sellars, 1962). In those terms, few people succeed
for a large fraction of their time in behaving as though the scientific image were the reality.
See also McDermott (2013).

46I should note that both McGinn and Searle claim to be materialists, but neither
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The collaboration between AI and other branches of cognitive science has
never been extinguished completely, of course. Bright spots include the con-
ference and journal Biologically Inspired Cognitive Architectures (BICA),
the International Conference on Cognitive Modeling (ICCM), and of course
the journal Cognitive Science, which was present at the creation. Perhaps
they will provide the seeds of a renaissance.

I apologize if my remarks on alternatives to Haugeland’s ideas are simul-
taneously too brief to be intelligible, and too numerous to skim quickly. I
hope to amplify them in future publications, especially in the area of “ro-
bosemantics.”
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