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1 Grammars and Parsetrees

This manual describes a deterministic, recursive-descent, lexicon-based parser
(called “Lexiparse”).1 Lexiparse works on a grammar organized around lex-
emes, to which are attached syntactic and “semantic” processing instruc-
tions. Grammars also include specifications of how to construct lexemes
from streams of characters. The parser uses the lexical and syntactic spec-
ifications to turn strings into sequences of parsetrees. The “semantics” is
expressed using internalizers that then turn parse trees into whatever data
structures the syntactic structures are intended to correspond to.

The parser and lexer are built on an abstraction called the generator,
which represents a lazy list. At the highest level the parser can be thought
of as a generator of internalized objects from a stream of characters, which
is decomposed thus:

chars → LEXICAL
SCANNING → lexemes → SYNTACTIC

ANALYSIS → parsetrees → INTERNAL-
IZATION →internalized objects

1The basic design comes from a parser Vaughn Pratt showed me in 1976 or thereabouts
for an alternative Lisp syntax he called CGOL [Pra76].
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Each stage (in italics) is a stream that is transformed into a stream
whose elements are bigger chunks. Syntactic analysis is broken down into
three subphases: grouping, tidying, and checking, which will be described
below.

Parsetrees are the central organizing framework for many of Lexiparse’s
actions. A parsetree has an operator and a list of subtrees. For instance,
the expression a+b+c might get parsed into a tree with operator plus and
three subtrees, one for each operand. Associated with the operator are all
the actions for creating, checking, and transforming the parsetree.

A grammar is a system of lexical, syntactic, and internalization defini-
tions that specify how to build the parsetrees of a language and (optionally)
transform them into an internal representation. A grammar is defined start-
ing with the def-grammar macro, whose syntax is:

(def-grammar name

:sym-case [ :preserve | :up | :down]

:top-tokens top-token-spec

(:definitions !())

(:parent namep)

(:lex-parent namel)

(:syn-parent names)

(:int-parent namei)

(:replace ()))

The name becomes a global variable whose value is this grammar, and it
is also entered in a global table of grammar names. The :sym-case (de-
fault :preserve) determines whether characters are up-cased, down-cased,
or unchanged before any of the later processes see them. See section 2. The
:top-tokens argument specifies which lexical tokens are allowed to appear
as the top operator in parsetrees of the grammar; see section 3. The actual
syntactic, lexical, and internalizer definitions of the grammar can be given
as the :definitions argument of def-grammar, or can be specified separately
using the with-grammar macro (see page 5).

Grammars can be organized into inheritance structures, the definition of
which is the job of the keyword arguments :parent, :lex-parent, :syn-parent,
and :int-parent. See section 4.1. The keyword :replace is explained in sec-
tion 3.5.

As a running example I will use a simple grammar called “Hobbsgram.”
I have been collaborating with Jerry Hobbs and others on the development
of DAML-Time, an axiomatic temporal ontology [HFA+02]. I prefer to use
machine-readable axioms that can be directly imported into our inference
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systems. Jerry prefers an informal infix notation. So every time he would
send me something like this

(A x,y)[[p1(x) & p2(y)] --> [q1(x,y) & q2(y)]]

I would have to translate it by hand into this:

(forall (x y) (if (and (p1 x) (p2 y)) (and (q1 x y) (q2 y))))

so I my software could type-check it.
Eventually I got tired of this, and wrote a little grammar to do the

translation. The grammar took a couple of hours to write. (Some of it was
cribbed from other grammars I have written.) I’ve made a couple of changes
to the original for pedagogical purposes.

Lexiparse is intended for writing front ends for Lisp programs that pro-
cess alien syntaxes. If you don’t plan to write your main program in Lisp,
and especially if you don’t want to learn Lisp, it’s probably not for you. In
what follows I will assume some knowledge of Lisp, especially in the sections
on internalizers. I use various facilities from [McD03], the YTools package
of Lisp extensions.

This manual is written using a “literate programming” style. The gram-
mar is interleaved into the manual in such a way that it can be extracted
into a legal Lexiparse file. We start the file with the usual boilerplate:

<<Define File hobbsgram.lisp

;-*- Mode: Common-lisp; Package: ytools; Readtable: ytools; -*-
(in-package :lexiparse)

(depends-on %lexiparse/ parser)

<<Insert: sym-chars (p. 8)>>

(def-grammar hobbsgram
<<Insert: hobbs-top-tokens (p. 29)>>

<<Insert: hobbs-lexer (p. 5)>>

<<Insert: hobbs-syn (p. 13)>>

<<Insert: hobbs-internalizer (p. 32)>>

>>

For an explanation of the <<Define . . . <<Insert . . . >> >> notation, see
appendix A.

3



2 Preliminaries: Generators and Lexical Scanning

To use Lexiparse you don’t need to create generators, but it helps to know
how to use them. Their API is very simple. The generator represents a
“partially consumed” sequence of objects.2 The objects are “consumed” by
the program using the generator. Its state can be modeled as two lists,
prev and remaining. The second list, remaining, contains the objects to
be generated; prev represents the last object already generated. Moving
an object from prev to remaining or vice versa allows for “peeking” and
“unpeeking” on the sequence. Because prev has at most one element, one
can only “unpeek” by one step.

The operations on a generator are:

(generator-done g) True if g can generate no more elements, that is, if
g.remaining is empty.

(generator-advance g) Move one object from g.remaining to g.prev. Re-
turn that object. Generates an error if g.remaining is empty.

(generator-reverse g) Move one object from g.prev to g.remaining. Re-
turn that object. Generates an error if g.prev is empty.

(generator-peek g) Return the next object g.remaining without chang-
ing the state of g. If g.remaining is empty, returns nil.

The function (print-gen g) just prints every element generated by generator
g. This can be useful for debugging.

The first stage of Lexiparse, lexical scanning, is to transform a genera-
tor of characters into a generator of lexemes, the basic organizing units of
the grammar. Two standard character generators are (string-gen string)

and (file-gen filename), which create generators of all the characters in a
string or file.

Before anything else is done with these characters, their case is normal-
ized according to the :sym-case argument of the governing grammar. If
the argument is :preserve, the character is left alone. If it is :up or :down,
it is made upper-case or lower-case. In a case-sensitive Lisp, :preserve is
the obvious choice; in a grammar for a case-insensitive language, written in
an ANSI Lisp environment, it may be more natural to convert symbols to
upper-case for reasons explained in section 3.

Lexical analysis is defined in terms of lexical actions associated with each
character. In general a lexical action is a Lisp function of two arguments,

2The sequence might be infinite, but in the parsing application it never will be.
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the current character generator and the current grammar. The function
should advance the generator by one or more characters, and return a list
of zero or more lexemes. (It should return zero only when the character
generator is done.) Many standard lexical actions are predefined. In the
simplest case a character gives rise to a single lexeme. A lexeme is either
a token or a Lisp object, usally a symbol, string, or number. A token is
an abstract entity corresponding to a syntactic entity in the language. I
will typically give tokens names, such as left-paren or right-arrow, that
suggest their lexical representation. To distinguish tokens from symbols, I
will put angle brackets around them. So the character “(” is transformed
to the token <left-paren>, whose name is the symbol left-paren.

We now define the code segment hobbs-lexer that was inserted above,
although it too has holes to be filled in later.

<<Define hobbs-lexer

(with-grammar hobbsgram

(def-lexical #\( (token left-paren))
(def-lexical #\[ (token left-bracket))
<<Insert: other-easy-lexicals (p. 6)>>

<<Insert: dispatch (p. 7)>>

<<Insert: other-simple-dispatches (p. 7)>>

<<Insert: sym-def (p. 8)>>

<<Insert: num-def (p. 8)>>

)>>

The full form of def-lexical is

(def-lexical c e [:name N] [:grammar r])

c is a character set (see below). N is a name for the set (purely for deco-
rative purposes, but mandatory if the set has more than one element). r is
the grammar in which the lexical information is being registered. If omit-
ted, it defaults to the grammar specified by the enclosing with-grammar or
def-grammar call (see below).

That leaves e, which is an expression that evaluates to a Lisp function h
to handle characters as they occur in a generator g. When a character in the
set c is seen, h is called with two arguments: g and the current grammar,
and it is expected to return a list of lexemes. Such a procedure h is called
a lexical action. (The “current grammar” that is passed to the lexical-
action procedure isn’t necessarily the grammar in force when the action was
defined; see section 4.1).
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Obviously, given where (token left-paren) occurs, token takes one (un-
evaluated) symbol as argument and returns a procedure that returns a list
consisting of the token whose name is that symbol. In other words, asso-
ciating the action (token left-paren) with the character #\( means that
an occurrence of “(” in the character stream will produce an occurrence of
the token <left-paren> in the lexeme stream. (Tokens are printed in the
angle-bracket notation suggested by this example.)

We avoid specifying a :grammar argument to every use of def-lexical
using the macro (with-grammar g --definitions--), which makes g the de-
fault grammar in all the definitions, including def-syntactic and all the
other def- macros defined below. If you prefer, you can put some or all
of these definitions inside a :definitions argument of the (def-grammar g
...) that defines the grammar in the first place:

(def-grammar name

...
:definitions

((def-lexical ...)
...))

A long series of applications of def-lexicals defining single-character
tokens can be condensed using the macro (def-lexical-tokens l), where l
is a list of pairs (char-set tokname).

<<Define other-easy-lexicals

(def-lexical-tokens ((#\, comma)
(#\) right-paren)
(#\] right-bracket)
(#\{ left-brace)
(#\} right-brace)
(#\~ not)
(#\/ divide)
(#\+ plus)
(#\& and)))

>>

A char-set is in general a list of characters, but if it has only one element,
the parens around it can be suppressed. The same convention applies to
def-lexical and other constructs referring to sets of characters. (We will
further generalize the notion of char-set below.)

Many tokens correspond to sequences of characters. The lexical action
associated with the first character in the sequence must then be to look at
the next character(s) and decide how to proceed. We call this dispatching
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on the following characters. For instance, in the Hobbs grammar, there are
three symbols ‘-->’, ‘--’, and ‘-’, whose construction is governed by the
following:

<<Define dispatch
(def-lexical #\-

(dispatch
(#\-

(dispatch (#\> (token right-arrow))
(:else (token double-dash))))

(:else (token minus)))) >>

The dispatch action is of the form (dispatch ---clauses---), where
each clause is of the form

(char-set lexical-action)

or
(:else lexical-action)

As before, a char-set is a list of characters, or a single character and a lexical-
action is (an expression that evaluates to) a lexical action as defined above.
Obviously, one possible lexical action is a further series of dispatches.

Here are how some other multi-character tokens are produced:

<<Define other-simple-dispatches
(def-lexical #\= (dispatch

(#\< (token leq))
(:else (token equals))))

(def-lexical #\< (dispatch
(#\= (token leq))
(#\-

(dispatch
(#\- (dispatch (#\> (token double-arrow))

(:else (token left-arrow))))
(:else (token left-arrow))))

(:else (token less))))

(def-lexical #\> (dispatch
(#\= (token geq))
(:else (token greater)))) >>

Almost all languages have a notion of symbols and numbers. Lexiparse
provides some built-in facilities for defining these lexical classes. First, the
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character sets involved tend to be of the form “any letter” or “any lower-
case letter.” To designate these, we broaden our lists of characters to include
subgroups of the form

#\c1 - #\c2

Then symbols are defined thus:

<<Define sym-chars

(defvar hobbs-lexical-chars* ’(#\- #\_ #\! #\*))
>>

<<Define sym-def

(def-lexical (#\* #\_ #\a - #\z #\A - #\Z)
(lex-sym hobbs-lexical-chars*)

:name alphabetic)
>>

The lexical action (lex-sym E) gobbles up characters that are alphanu-
meric or in the set E until a character outside those groups is found, and
returns the result as either a symbol token, or the token corresponding to a
reserved word of the grammar (as specified by def-syntactic, described in
section 3). In the Hobbs language, asterisks do not refer to multiplication,
but are used as ordinary symbol constituents. This doesn’t prevent us from
using the one-character symbol “*” as a reserved word, but it does mean
that “a*b” will be interpreted as a single symbol; you would have to write “a
* b” to make the symbol “*” visible. (See the definition of “*” on page 15.)

The function lex-number is similar but simpler. The current version just
tries to read a sequence of decimal digits and periods as a Lisp number.

<<Define num-def

(def-lexical (#\0 - #\9) #’lex-number
:name numeric) >>

The procedures lex-positive-number and lex-negative-number can be
used following occurrences of “+” or “-”. One might write

(def-lexical #\+ (dispatch
((#\0 - #\9) #’lex-positive-number)
(:else (token plus))))
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However, the Hobbs language does not work this way, because signed num-
bers didn’t happpen to arise in the axioms.

To write your own lexical-analysis function, keep in mind that the first
argument is the character generator, with the triggering character still wait-
ing to be advanced over. The second argument is the current grammar,
which will often be ignored. The function must return a list consisting of
zero or more elements, each a token or terminal item (string, number, or
symbol).

The procedure (chars->lex r g) takes a character generator r and a
grammar g, and returns a generator of g lexemes.

3 Syntactic Analysis

The rest of the grammar is oriented around lexemes corresponding to tokens
and reserved words of the language. All syntactic and “semantic” operations
are associated with particular lexemes. The flavor of the resulting grammar
is much like a system of macros in Lisp. The precedences specify grouping
information, and once everything is grouped into a tree structure the re-
maining syntactic information is expressed in terms of transformations on
the tree nodes.

The tree structure is expressed using the Parsetree data type. A parse-
tree is a Lisp defstruct structure with three slots visible to application
programmers:

1. (Parsetree-operator pt): The operator, a token. The name “op-
erator” stems from the paradigmatic case where the tree denotes the
application of an operation such as “+” to the arguments denoted by
the subtrees. But it also connotes the activity of gathering the argu-
ments together during parsing.

2. (Parsetree-fixity pt): One of :infix, :prefix, or :suffix, de-
pending on what syntactic role the operator played in the creation of
this parsetree.

3. (Parsetree-subtrees pt): A list of constituents. Some are lexemes,
some are parsetrees.

For conciseness, I will express the “structure” of a parsetree using paren-
theses thus: (:∧+ operator --subtrees--), usually with the fixity omitted.
So a parsetree with operator plus and two subtrees, the second of which is a
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parsetree with operator times, might have the structure (:∧+ plus a (:∧+
times 3 x)). (The :∧+ symbol is mean to suggest a little tree structure.)

In most contexts the symbols [* ], [ *], and [ * ] may be used as syn-
onyms for :prefix, :suffix, and :infix, respectively. When a parsetree
is printed, or displayed using parsetree-show (appendix B), the variable
show-parsetree-fixity* controls whether the fixity is displayed; if it has
value true, one of these picturesque glyphs will be used instead of the cor-
responding keyword.

Parsetrees are produced using the syntactic properties of lexemes. A
lexeme is either a terminal or an operator. An operator is defined using
this macro:

(def-syntactic name [:lex [ nil | string]]

[:reserved b]

[:grammar grammar-name]

[:prefix prefix-info]

[:infix infix-info]

[:suffix suffix-info]

[:tidier tidier-spec]

[:checkers (checkers-spec∗)]
[:internalizer internalizer-spec])

The keyword arguments can occur in any order; each can appear at most
once. The :grammar argument is the grammar in which name is defined. It
is usually obviated by the use of with-grammar.

The :lex keyword specifies the string, if there is one, that produces this
token when processed by the lexical analyzer (section 2). This string is used
in printing the name of the token, but is not otherwise used by Lexiparse.3

A token prints as <name> if it has no :lex property, otherwise as <name

"lex ">. The :reserved keyword says whether the token is a reserved word
of the language. If b = false (the default), then the only way the token
can occur is via lexical analysis (or by being introduced during tidying;
see section 3.3). If b = true, then a symbol with the name token will be
treated as (and converted to) a syntactic token. In some cases there can
be a reserved word with name w and a lexical token with the same name.
In that case, because the syntactic action is associated with w, the two are
equivalent. (In the Hobbs grammar, one example is the use of “&” and “and”

3It might be a good idea to have the system check that the lexical definitions and :lex
declarations are consistent, but it’s not entirely clear what that would mean. So treat
:lex directions as comments, and remember to always keep your comments up to date!
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as ways to signify conjunction.)4 Any symbol is treated as a vanilla terminal
symbol unless it is declared to be a reserved word. Numbers and strings are
always terminal.

How tokens are printed is controlled by the global variables print-token-long*
and print-token-gram*. Normally a token is printed simply as its name be-
tween angle brackets, as in <and>. But if print-token-long* is true, then
single quotes are printed around the name of a reserved word, and the name
is followed by the :lex property if it not nil. So the token <and> would be
printed as <’and’ "&"> in “long mode.” If in addition print-token-gram* is
true, then the lexical information is followed by the name of the grammar
the token comes from, as in <’and’ "&" hobbsgram>.

Note that in ANSI Lisp, if the :sym-case value for the current grammar
is :preserve, then symbols extracted from a character stream will print
funny. The string “do while (x>0) ...” will become the lexeme stream
“|do| |while| LEFT-PAREN |x| GREATER 0 ....” If do is a reserved word, it
will have to be defined as (def-syntactic |do| ...). To avoid having to
write it that way, specify “:sym-case :up,” and the lexeme stream will be “DO
WHILE LEFT-PAREN X GREATER 0 ....” Now you can write (def-syntactic do

...), without the vertical bars.
The rest of section 3 of this manual is devoted to explaining the remaining

fields of def-syntactic. The next section explains :prefix, :infix, and
:suffix. Section 3.2 explains how bracketed expressions work. In section 3.3
I discuss the :tidier and, in section 3.4, the :checkers. Section 3.5 treats
the topic of “local grammars.” In section 4 we finally leave syntax and talk
about how parsetrees, having been built, tidied, and checked, get turned
into arbitrary internal data structures.

3.1 Grouping

A syntactic token can occur as a prefix, infix, or suffix operator, depending
on whether it precedes its arguments, occurs amidst its arguments, or follows
its arguments. The same token can be used as a prefix operator and as
an infix or suffix operator, but it can’t occur sometimes as an infix and
sometimes as a suffix.

Each kind of token requires somewhat different information, but the
4Because any symbol becomes a token when incorporated into a parsetree, the set of

tokens and the set of syntactic operators are coextensive. I will tend to use the word
“token” to refer to one of these objects when focusing on how it gets produced, and the
word “operator” when focusing on how it influences the parsing process and how it is
interpreted after a parsetree headed by it is built.
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concept of precedence is central to all. The idea is simple. Suppose the
following situation arises during syntactic analysis of a token string:

. . . x1 [op0] op1 x2 op2 . . .

where x1 and x2 are parsetrees or terminals, i.e., outputs from the parsing
that has been done so far. op1 is a prefix operator, if op0 is present, an infix
operator if it’s absent. op2 is an infix or suffix operator. The question is,
do we group expressions so that x2 gets incorporated into a parsetree with
operator op1 or do we group so that x2 gets incorporated into a parsetree
with operator op2? (In the case where op1 is infix, the choice boils down to
whether x2 is grouped with x1, or with some expression to the right of op2.)
The question is decided by consulting the precedences of the two operators,
which determine which direction x2 is pulled. If the right precedence of
op1 is greater than or equal to the left precedence of op2, then x2 is pulled
toward op1; otherwise, it’s pulled toward op2. Right precedence determines
how hard an operator pulls an operand to its right; left precedence, how
hard it pulls an operand to its left. Another way to picture it is to imagine
that precedences create “virtual parentheses.” If op1’s right precedence is
greater than or equal to op2’s left precedence, then it’s as if there are parens
around x1 and x2:

. . . (x1 [op0] op1 x2) op2 . . .

If op2’s left precedence is higher than op1’s right precedence, then there is
a “virtual left parenthesis” before x2:

. . . x1 [op0] op1 (x2 op2 . . .

whose mate will eventually be found to the right of op2 by repetition of the
same sort of calculation.

If op1 is a prefix operator, then the parser must do a very similar calcu-
lation, using left and right precedences exactly as before, the only difference
being that the left virtual parenthesis comes right before op1. Similarly, if
op2 is a suffix operator, the virtual right paren would come right after op2.

The first phase of syntactic analysis is called grouping because it uses
precedence, fixity, and “context” information to decide which operands go
with which operators.

Context information is specified in the definition of each lexeme. The
prefix-info clause for def-syntactic looks like this:

:prefix (:precedence prec

:context [numargs
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| (:open separator closer)]

[:local-grammar (<local-gram-spec>+)])

(The :precedence, :context, and :local-grammar information may appear
in any order. :local-grammar is discussed in section 3.5.)

The :context consists of either an integer ≥ 0 or the symbol :open

followed by two lexeme names (or lists of lexeme names). The first case is
for prefix operators that take a fixed number of arguments. (In this case one
can write :numargs instead of :context.) The second case is for an operator
that behaves like an open bracket (e.g., a left parenthesis). The lexeme
closer is the corresponding close bracket. If the closer is a list of lexemes,
then any of them is acceptable as the closing bracket. The lexeme separator
is the token one expects to see between the elements inside the brackets
(e.g., <comma> for <left-paren>). There must be at least one closer, but the
separator can be omitted completely by writing ’() or nil. I’ll explain how
brackets work in section 3.2.

First, here’s a list of the non-bracket prefix operators of the Hobbs gram-
mar:

<<Define hobbs-syn

(with-grammar hobbsgram

<<Insert: contiguity (p. 16)>>

<<Insert: hobbs-brackets (p. 19)>>

(def-syntactic A :reserved t :prefix (:precedence 5 :numargs 1)
:tidier quant-tidier)

(def-syntactic E :reserved t :prefix (:precedence 5 :numargs 1)
:tidier quant-tidier)

(def-syntactic E! :reserved t :prefix (:precedence 5 :numargs 1)
:tidier quant-tidier)

<<Insert: quant-tidier (p. 25)>>

<<Insert: quant-checker (p. 27)>>

<<Insert: infix-connectives (p. 15)>>

(def-syntactic not :reserved t :prefix (:precedence 19 :context 1))
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(def-syntactic plus :prefix (:precedence 29 :numargs 1)
<<Insert: infix-plus (p. 15)>>)

(def-syntactic minus :prefix (:precedence 29 :numargs 1)
<<Insert: infix-minus (p. 16)>>)

<<Insert: high-prec-ops (p. 15)>>

) >>

(The :tidier and checker for quantifiers will be explained in section 3.3.)

For infix tokens, the relevant def-syntactic clause is

:infix ([:left-precedence left-prec

:right-precedence right-prec

| :precedence prec]

:context [ :binary | :grouping

| (:open separator closer)

| :close]

[:local-grammar name ])

(As with prefix tokens, the precedence, :context, and :local-grammar in-
formation may appear in any order. See section 3.5 for information on
:local-grammar.)

If the keyword :binary is supplied, then the parsetree headed by this
token will have two subtrees, one for the left operand and one for the right.
If it is :grouping, then it behaves much the same, except that iterated
occurrences of the token will be collapsed into a single parsetree. The token
<plus> is a good example; the expression a+b+c will be parsed as a single
parsetree with three subtrees corresponding to a, b, and c.

If the :context spec is (:open separator closer), then the effect is the
same as for prefix operators, except that there is a left operand. A left
paren is a prefix operator in “(a+b)”, an infix operator in “f(a+b).” Further
discussion is deferred to section 3.2.

Instead of supplying separate left and right precedences, one can write
:precedence to declare them the same. Note that the precedence rules im-
ply that two consecutive occurrences of an operator whose left and right
precedences are equal will associate to the left.

<<Define left-paren-infix

:.(def-syntactic left-paren ... .:
:infix (:left-precedence 40
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:right-precedence 0
:context

(:open comma right-paren))>>

Most of the infix tokens in the Hobbs grammar are of type :grouping:

<<Define infix-connectives

<<Insert: right-arrow (p. 15)>>

(def-syntactic double-arrow :infix (:precedence 12 :context :grouping))

(def-syntactic v :reserved t :infix (:precedence 17 :context :grouping))

(def-syntactic or :reserved t :infix (:precedence 17 :context :grouping))

(def-syntactic and :reserved t :infix (:precedence 18 :context :grouping))

<<Insert: binary-ops (p. 15)>>>>

<<Define infix-plus

:infix (:precedence 29 :context :grouping)>>

<<Define high-prec-ops

(def-syntactic * :reserved true
:infix (:precedence 30 :context :grouping))

(def-syntactic divide :infix (:precedence 30 :context :grouping)) >>

(Note that, as explained in section 2, “*” is defined as a reserved word,
in contrast to, e.g., the token “<divide>,” which is generated by occurrences
of “/”.)

The non-grouping tokens are defined thus:

<<Define right-arrow

(def-syntactic right-arrow :infix (:right-precedence 13 :left-precedence 14
:context :binary)) >>

<<Define binary-ops

(def-syntactic greater :infix (:context :binary :precedence 20))

(def-syntactic less :infix (:context :binary :precedence 20))
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(def-syntactic geq :infix (:context :binary :precedence 20))

(def-syntactic leq :infix (:context :binary :precedence 20))

(def-syntactic equals :infix (:context :binary :precedence 20)) >>

<<Define infix-minus

:. (def-syntactic minus \ldots .:
:infix (:precedence 29 :context :binary) :.).: >>

Note that all of these associate to the left except right-arrow.
The only thing left to explain is the contiguity operator, the invisible

operator that separates the operands in expressions such as (f g a) in func-
tional programming languages. In such languages, contiguity means function
application, so (f g a) is what would be written (f(g)(a)) in a more tradi-
tional notation. This syntactic token is always denoted by the symbol “|”
(which must be written with a preceding backslash because Lexiparse uses
the usual Lisp read table when reading grammar definitions). If the token
is left undefined, then contiguous operands will cause a syntactic error. To
define it, simply write (def-syntactic \| ...). In what follows, the conti-
guity operator will be written <|>. (If a language has a token for the actual
character “|”, it should be named vertical-bar, or anything else but “|”.)

In the Hobbs grammar, both implicit contiguity and explicit commas are
used to separate operands, albeit in different contexts.

<<Define contiguity

(def-syntactic \| :infix (:precedence 5 :context :grouping))

(def-syntactic comma :infix (:precedence 6 :context :grouping))>>

In functional languages, contiguity has very high precedence, so that an
expression such as “f g a, h b” is parsed as a tuple of two elements, (f g

a) and (h b). In the Hobbs language, it has a very low precedence, so that
“f g a, h b” is parsed as four elements, f, g, (a,h), and b.

The use of an invisible operator may raise some qualms about how to
find the ends of operands. Suppose that operator <$> is a prefix operator
taking two arguments, in a grammar that defines a contiguity operator.
How do we parse “$ a b c”? One way to decide would be to examine the
precedences of <|> and <dollar>. However, Lexiparse implements a simpler
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principle; it never uses contiguity to extend a prefix operator’s argument
further to the right. So “$ a b c” would be parsed as (:∧+ $ [* ] a b),
with c left for some operator to the left to grab. (We can force it gobble
more, of course, by writing, e.g., $ a (b c).) This contrasts with the way
infix operators find their arguments. In “$ a + b c,” the grouping depends
on whether contiguity has higher left precedence than the right precedence
of <plus>. Furthermore, in this context there must be a contiguity operator
in the language, or an error will be signaled. Again, we can prevent the
parser from looking for the contiguity operator after b by using parentheses:
“$ (a+b) c”.

The remaining type of syntactic token is :suffix, whose def-syntactic

clause looks like this:

:suffix (:precedence prec

[ :context :close ])

The :context :close should be used for lexemes that play no role except
to close an open bracket. In some circumstances, Lexiparse can use this
information to detect a bracket mismatch. You still have to specify the
lexeme’s left precedence. A suffix operator that isn’t a closer requires no
:context declaration, because all it can be is a unary operator with one
argument, the operand to its left.

The only suffix operators in the Hobbs grammar are close brackets, which
will be presented in the next section.

3.2 Bracketed Expressions

An open bracket is an operator that expects two things to its right: its
“contents” followed by its “closer.” It’s important to realize that, except for
its precedence, the syntactic information associated with an open bracket
has no effect on how tokens are grouped, but only on what happens after
they are grouped. The grouping depends on precedences alone. When trying
to parse an expression beginning with an open bracket with right precedence
R, the corresponding closer must have a left precedence that is less or equal
to R. The left precedence of any operator before it reaches the close bracket
must be > R. If these constraints are obeyed, then when the parser has
gobbled up as much as possible to the right of the open, the closer is the next
lexeme to be dealt with. E.g., when parsing “( a * b + c )”, the attraction
of a by <*> must be more than its attraction by the left parenthesis, as must
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the attraction of the parsetree for a*b by <plus>. In other words, the left
precedence of any operator inside the brackets must be higher than the
“inner” precedences of the brackets (the right precedence of the open and
the left precedence of the close), except for “shielding” effects created by
bracketed subexpressions.

Given these constraints, the “inner” precedences of brackets should be
the lowest in the language, and their “outer” precedences among the highest.
Although precedences can be any number, it is natural to make them non-
negative integers, with the inner precedences of brackets set to 0, although
sometimes there are reasons to set some of them a bit higher. (I’ll discuss
plausible values for precedence in section 6.)

Both left and right brackets can be infix lexemes. A left bracket is infix if
a symbol (or some other expression) can occur to its left, as in rec.fcn(a,b).
It is rarer for a right bracket to be infix, but it is necessary for languages, such
as XML, with “fat parentheses.” In XML, the lexeme for “</,” left-slash,
closes an earlier occurrence of the lexeme for “<,” left-angle, but it also
has an argument to its right (a tag name).

The declared separator and closer tokens for an open bracket come into
play after the stuff inside has been parsed. Let <⊂> be the open bracket,
<⊃> be the close bracket (we’ll pretend only one is possible), and (∼) be the
stuff in between. There are several special situations, not mutually exclusive
or exhaustive, to consider:

1. <⊃> is an infix operator, not a simple suffix operator.

2. (∼) has one of the separator tokens as its operator.

3. There is nothing between <⊂> and <⊃>.

To explain how situation 1 is dealt with, we have to distinguish two stages
of bracket processing, pre-close and post-close, defined as the processing
before and after branching on the fixity of <⊃>.

Situation 3 is detected when the very next lexeme after <⊂> is <⊃>,
so that (∼) is empty. In this case, the result of the pre-close stage is the
parsetree (:∧+ ⊂ [* ]), which has no subtrees. If (∼) is nonempty, then
situation 2 may obtain. Don’t forget that (∼) is constructed from the lexeme
stream using precedence relations only. If its operator is the separator for
<⊂>, then (∼) is “flattened” before being incorporated into a parsetree. That
is, if (∼) has structure (:∧+ sep ---subs---), then it is replaced by the list
of subs, except that each element of subs is flattened as well.5 I’ll use the
symbol (∼∼) to refer to the pre-close result, a list of one or more subtrees.

5If there are multiple separators, flattening takes into account only the separator at the
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Once (∼∼) has been built, post-close processing depends on whether
<⊃> is a simple :close operator or an infix operator (situation 1). In the
former case, the closer is discarded, and the output for the entire expression
is (:∧+ ⊂ ∼∼). In situation 1, the parser does what it would do given any
operand (the pre-close output) followed by an infix operator. Because <⊃>

has left precedence ≤ the right precedence of <⊂>, the <⊃> will become the
operator for the final tree, whose structure will be

(:∧+ ⊃ [ *]

(:∧+ ⊂ [* ] ∼∼)

r)

where r is the right operand of <⊃>.
The Hobbs language has a comparatively simple bracketing system, al-

though some of the tokens involved can’t be described adequately until the
next section.

<<Define hobbs-brackets

(def-syntactic left-brace
:prefix (:precedence 0 :context (:open comma right-brace)))

(def-syntactic left-paren
:prefix (:precedence 0 :context (:open \| right-paren))
<<Insert: left-paren-infix (p. 14)>>

<<Insert: left-paren-tidier (p. 22)>>)

<<Insert: left-paren-checkers (p. 26)>>

<<Insert: left-bracket (p. 28)>>

(def-syntactic right-paren :suffix (:precedence 0 :context :close))

(def-syntactic right-brace :suffix (:precedence 0 :context :close))

(def-syntactic right-bracket :suffix (:precedence 0 :context :close))>>

3.3 Tidying

Precedences suffice for figuring out the boundaries between phrases. But for
most languages beyond simple arithmetic there is more to syntax than that.

top of the tree. If <left-paren> allows either <|> or <comma> as a separator (with <|>
having higher precedence), the characters “f a,b c)” are parsed as (:∧+ f a (:∧+ |
b c)), not (:∧+ f a b c).
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At the lowest level a language often has recursive expressions that require a
type checker to verify, although this kind of checking is beyond the scope of
the machinery to be described here.

At higher levels, one often finds idiosyncratic constructs which require
particular substructures, and which themselves resist being incorporated
into arbitrary larger expressions. If a language has a lexeme define for
defining procedures, it usually wants to be in contexts like this one

define name (--parameters--){--body--};
where the three subfields require particular fillers. The name must be a
symbol, and the parameters must satisfying the syntax for declaring vari-
ables. The body may, however, be drawn from a recursive grammar with few
constraints.

In a traditional phrase-structure grammar6 one expresses these regular-
ities by the use of rewrite rules such as

definition ::= define name ...

At the top of the rule chain is a rule program ::= ... such that every legal
program must be generable starting with this rule.

In Lexiparse, we do things “backwards.” We first set the precedences
of all lexemes to get the grouping right, then use matching rules to check
that the material incoporated into a parsetree makes sense, and to tidy it
up in ways that make life easier for later transformation steps. Finally, the
:top-tokens argument to def-grammar specifies the operator(s) that play the
role of program in my hypothetical phrase-structure grammar.

Before arriving at the top of the parsetree, Lexiparse transforms raw
subtrees using the “tidiers” defined by the grammar. For example, a function
application will initially get parsed as

(:∧+ <left-paren> [ * ] f a1 a2 ...an)

Whereas a list might be parsed as

(:∧+ <left-paren> [* ] a1 a2 ...an)

We would prefer to make the difference more visible by transforming the
first into a parsetree with operator <fun-app>.

This job is done by a procedure described by the :tidier field of def-syntactic.
The syntax of the :tidier argument (called a tidier-spec in section 3) is given
by

6such as the half-assed grammar I’m using to explain the syntax of Lexiparse definitions.
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:tidier

[fcn-name | lambda-form

| (...match-clause+...)

| fcn-form ]

where
lambda-form ::= [ (function ...) | (lambda ...) ]

and
match-clause ::= (:? match-pattern ...)

(See below)
and

fcn-form is a non-atomic form that must evaluate to a function or function name.

This procedure takes two arguments, a parsetree and a grammar, and
returns one of three possible values:

• an improved version of the parsetree with rough edges smoothed off;

• nil, meaning, Leave the parsetree as it was;

• or a list of defects, which get attached to the parsetree. (A single defect
is converted to a singleton list.) Defects will be explained below.

Tidiers are run bottom-up; parsetrees are tidied as soon as they are created.
This means that tidiers can assume that all the subtrees of a parsetree have
already been tidied.

Since many tidier functions rely heavily on pattern matching, I’ve intro-
duced the match-clause notation as a shorthand for such a function. The
shorthand depends on some notation from the YTools package, namely the
match-cond macro:

(match-cond datum

---clauses---)

The datum is evaluated, and then the clauses are handled the same as in
cond, except that any match clause, that is, one of the form

(:? pat

---body---)

is handled by matching the pattern pat against the datum. If the match
succeeds, the body is executed and its value returned, and no further clauses
are examined. (All the variables in the patterns of a match-cond are bound
with scope equal to the match-cond, and initialized to nil.)

If a tidier is a list containing one or more match clauses (...(:? p1

...) ...(:? pk ...) ...), then the function produced is
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(lambda (this-ptree this-grammar)

(match-cond this-ptree ...

. . .
(:? p1 ...)

. . .
(:? pk ...)

. . . ))

The function normally returns a parsetree that is the “tidied” version of
what it started with. The variable names this-ptree and this-grammar are
as written, and can be used inside a tidier to refer to the parsetree being
checked and the grammar being used to tidy it.7

In the case of the <left-paren> operator, we would write the rules thus:
<<Define left-paren-tidier

:.(def-syntactic left-paren \ldots .:
:tidier

((:? ?(:^+ left-paren :fixity :prefix ?@subs)
!~(:^+ group ,@subs))

(:? ?(:^+ left-paren :fixity :infix ?name ?sub1 ?@others)
!~(:^+ fun-app ,name ,sub1 ,@others))

(:else (defect "Function " name
" must have at least one argument")))>>

The rules check the fixity of this occurrence of <left-paren> to decide
whether it’s part of a function application or a group of expressions. Once
that’s decided, the operator is changed to either fun-app or group, making
the intended meaning more transparent to other transformations. The last
clause generates a defect in the case where a function application is of the
form f(). See below.

Most clauses in tidiers are of the form

(:? D C)

where D is a “deconstructor” pattern (containing question-marked match
variables), and C is a “reconstructor,” typically a generalization of back-
quote that builds new parsetrees using the values of the variables in D. (Let
me make clear that C can be an arbitrary Lisp form, and, of course, a tidier
need not consist of a set of match clauses in the first place.)

Deconstruction operates through pattern matching. A piece of a pattern
starting with a question mark plays an active role (other data are passive

7Which may not be the grammar where the tidier was defined; see sect. 3.5.

22



and must be equal to the datum being matched). ?v, where v is a name,
matches anything and sets v to the thing it matched. ?,v matches the
current value of v. Every list can have at most one segment variable being
matched against it, written ?@v. This expression matches any sequence of
elements (possibly of length 0), and sets v to it. Because only one segment
is possible at a given level, there is never any question about what sequence
to match. So the pattern (d (a b ?@xx c) ?,xx) matches (d (a b p q r c)

(p q r)) and sets xx to (p q r). You can use comma and atsign together,
with the obvious meaning. The constructs ? and ?@ match any element or
any segment without setting anything.

Question marks can be used to flag various special constructs, as ex-
plained in [McD03]. ?(:|| p1 ...pk [:& p0]) matches a datum if any of
the pi match. Each pi is tried in turn until one works. If the optional field
:& p0 is present, then p0 must match the datum as well. For instance, ?(:||
(a b) (p q r)) matches both (a b) and (p q r). (a ?@(:|| (a b) (p q r)

:& ?w)) matches any list that starts with a and continues with either (a

b) or (p q r). It binds w to the tail of the list. Similarly, ?(:& p1 ...pk)

matches only if all the pi match. A useful variant is ?(:+ p r1 ...rk) which
matches d if p matches it and the predicates ri are all true of d. Another is
?(:~ D), which matches if and only if D does not.

The code generated by the match macro does not backtrack to undo the
effects of partial matches. The match of ?(:|| (?x a) (?y b)) against (b

b) succeeds, and sets both x and y to b. An unset variable retains its initial
nil value.

You can use the Tinkertoy symbol “:∧+” to indicate parsetree structure.
The pattern ?(:∧+ ?op --subpats--) matches a parsetree if ?op matches
the name of its operator, and the subpats match the subtrees. One delves
into the subtree structures by simply using ?(:∧+ ...) on subpieces. Fixity
is normally ignored, but can be included by writing “:fixity p” anywhere
in the pattern. If p is a constant (i.e., one of :prefix, :suffix, or :infix),
then “:fixity p” can be abbreviated as p itself, or [* ], [ *], or [ * ].

On the construction side, we normally use an enhanced backquote to
build new parsetrees, in a way analogous to the way we used the match
syntax to dissect them. The expression !∼(...) is a generalization of the
usual backquote to allow us to build structure besides S-expressions. This
is where the magic glyph :∧+ comes in again. In any !∼ expression, a list
structure beginning (:∧+ ...) will be interpreted as an instruction to build
a parsetree, not a list structure. The first element will be the (name of the)
operator and the remaining ones the subtrees. Fixity defaults to :prefix,
but can be changed by writing, anywhere in the list, ...:fixity v ..., or
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just v, assuming v is a legal fixity designator (one of :prefix, :suffix,
:infix, [* ], [ *], or [ * ]).

Just as any occurrence of :∧+ inside a !∼ expression is interpreted as
a parsetree constructor, inside an expression of the form ?(:∧+...) an
occurrence of such a a subexpression is treated as a parsetree deconstructor,
that is, it is treated as though it also had a question mark in front of it.

Although a tidier is expected to return a reconstructed parsetree, it
may instead return a defect or list of defects. A defect is an object pro-
duced by a call to the macro defect. Its syntax is identical to the out

construct of YTools. (defect --aaa--) constructs a “defect” object whose
printed representation is (out --aaa-). For instance, (defect "Non-number:

" n), when n= five, is an object whose printed representation is #<Defect:

Non-number: five>. If a tidier returns any defects instead of a new parse-
tree, the old parsetree is labeled with those defects (which will be displayed
by parsetree-show) (appendix B).

One can specify a tidier as an argument to def-syntactic, as shown
above, or it can be done separately using the macro def-tidier:

(def-tidier tokname [:grammar gramname]

[ :tidier fcn-form

| fcn-name | lambda-form

| (...match-clause+...)

| (definer [:^] ---definition---) ])

where
definer is an operation such as defun for defining a function

(The other syntactic categories here are as in the definition of the :tidier

argument to def-syntactic.)
The syntax of def-tidier is close to that of the :tidier argument to

def-syntactic, with a couple of variations. One is that supplying a form that
evaluates to an arbitrary function must be done with an explicit :tidier ar-
gument. Other forms are interpreted as being of the form (definer :^...),
just as for the datafun macro of YTools. A function is defined whose name
is

k-tidier/g

where k is the tokname and g is the name of the grammar supplied either
by a :grammar argument to def-tidier or by an enclosing (with-grammar

gramname ...). This function then becomes the tidier for k in g.
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Finally, if all this syntactic sugar seems too cloying, the function (define-tidier

k f [:grammar g]) can be used to make function f the tidier associated with
the token of name k in grammar g, or the grammar declared by an enclosing
with-grammar.

After all this explanation, I can finally present the tidier for quantifiers,
a task postponed since section 3.2, page 19. The tidier just discards the
structure separating the quantifier from the variables it binds, and makes
the operator of any quantified expression be the new operator <quant>.

<<Define quant-tidier

(defun quant-tidier (ptree _)
(match-cond ptree
(:? ?(:^+ ?qtfier (:^+ comma ?@vars))

!~(:^+ quant ,qtfier ,@vars))
(:? ?(:^+ ?qtfier (:^+ group (:^+ comma ?@vars)))

!~(:^+ quant ,qtfier ,@vars))
(:? ?(:^+ ?qtfier ?v)

!~(:^+ quant ,qtfier ,v))
(:else (defect "Bogus quantifier structure")))) >>

(The underscore used as the second argument to quant-tidier indicates
that that argument is to be ignored.)

3.4 Checking

Once a complete, tidied parsetree has been produced by the parser, it must
be “checked.” The operator at each node of the tree is associated with a list
of checkers, each a procedure that returns a list of defects. Checking the tree
means, for every subtree, running the checkers associated with its operator,
and adding any defects produced to the defect list of the subtree. Checkers
are run bottom-up, but they don’t change the structure of the parsetree, so
the only consequence of this order is that a checker can see the defects on
the subtrees of the parsetree node it is checking.

A checker, is a procedure that takes the same two arguments as a tidier,
a parsetree and a grammar, and returns a list of defects, hopefully empty.
(As before, a single defect is converted to a list of defects.) One way to
declare checkers is by using the :checkers argument of def-syntactic.

The syntax of the :checkers argument to def-syntactic is a list of
checkers-specs, described thus:

:checkers

( [ check-clause | (:up level check-clause ∗) ]∗)
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check-clause ::= fcn-name | lambda-form

| fcn-form

| match-clause

The syntactic constructs invoked here are just as for the :tidier argument.
The :checkers argument represents a list of 〈l, c〉 pairs, where c is a

checker, and l is a level. Without the explicit :up, the level defaults to 0.
For now, I’ll focus on the level-0 case.

The checker c can be specified by name, by explicit lambda, or as a form
that evaluates to it; or, in many cases, by a match-cond clause. A list of
match-clauses (:? p e) is interpreted as a list of checkers, each of the form

(lambda (this-ptree this-grammar)

(match-cond this-ptree ...

(:? p e)

(t ’())))

As with tidiers, the variables this-ptree and this-grammar may be used by
the grammar writer to refer to the current parsetree and grammar.

However, a match-clause without the e part is interpreted as a pattern
that must match the parsetree. That is, (:? p) is interpreted as

(lambda (this-ptree this-grammar)

(match-cond this-ptree ...

(:? ?(?(:~ p) (defect "Not of form " p)))

t ’()))

Even though a list of checkers and a tidier can both be specified as a
list of match-clauses, the meanings are different. To minimize confusion, one
should put blank lines between checker clauses and omit them between tidier
clauses, thus emphasizing that the former are lists of checker specifications,
while the latter specifies a single tidier.

For example, the Hobbs grammar allows symbols as functions, but noth-
ing more complex. That is, any parenthesized expression that is tidied into
a fun-app must have a symbol as function. We don’t attach this checker
to <left-paren>, because the tidier for <left-paren> substituted the token
<fun-app>:

<<Define left-paren-checkers

(def-checkers fun-app
(:? ?(:^+ fun-app ?(:~ ?(:+ ?name is-Symbol)) ?@_)

(defect "Function call with illegal function " name))) >>
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The fact that the entire parsetree has been tidied before the checkers run
allows one to think about the final expected pattern of trees and subtrees,
and to neglect all the various intermediate forms that may have existed while
tidying was in progress.

Analogously to def-tidier, there is a def-checkers macro that enables
separate declaration of a token’s checkers:

(def-checkers [:grammar gramname]

[ check-clause | (:up level check-clause) ]∗)

Except for the optional :grammar argument, its syntax is exactly the same
as the :checkers argument to def-syntactic. There is also a function
(define-checkers k l [:grammar g]), which finds the token with name k
in the appropriate grammar (g or the grammar supplied by an enclosing
with-grammar), and makes l into its checkers list. l should, of course, be a
list of 〈level , checker〉 pairs.

No matter how the list of checkers is defined, it’s important to realize
that when a parsetree is to be checked, the parser runs, not just the checkers
associated with its token in the current grammar, but also those associated
with it in the grammar’s syn-parent, the syn-parent’s syn-parent, and so
forth. See section 4.1.

So far I have described only the behavior of level-0 checkers. A level-0
checker for token tok is applied to every parsetree whose operator is tok.
A level-1 checker is applied to every parsetree one of whose subtrees has
operator tok. I can’t think of any reason to use levels higher than 1, but in
general a level-i checker is applied to every parsetree that has a tok -headed
subitree. The defects produced are associated with the subitree.

Along with the tidier for quantified expressions, presented at the end of
section 3.3, we have a couple of checkers that make sure that the variables
being bound are legal and that the body is a single expression: Because the
tidier gave the operator <quant> to all quantified expressions, the checkers
must be associated with that lexeme:

<<Define quant-checker

(def-checkers quant
(:? ?(:^+ quant ?_ ?vars ?@_)

(cond ((atom vars)
(defect "Illegal bound variables in quantified expression "

vars))
((exists (v :in vars)

(not (is-Symbol v)))
(defect "Quantified expression has illegal (non-Symbol)"
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" variables: " vars))))

(:? ?(:^+ quant ?_ ?_ ?body ?junk-h ?@junk-t)
(defect "Quantified expression has too many expressions in"
" body: " ‘(,body ,junk-h ,@junk-t)))) >>

We can now specify the syntax of left-bracket in the Hobbs grammar,
which is similar to that of left-paren, except that brackets allow quantifiers
to their left.

<<Define left-bracket
(def-syntactic left-bracket

:prefix (:precedence 0 :context (:open nil right-bracket))
:infix (:left-precedence 40 :right-precedence 0

:context (:open nil right-bracket))
:tidier

((:? ?(:^+ left-bracket :fixity :prefix ?@subs)
!~(:^+ group ,@subs))

(:? ?(:^+ left-bracket :fixity :infix
?(:^+ group

?(:^+ ?(:& ?qtfier ?(:|| A E E!))
?vars))

?@body)
(match-cond vars

(:? ?(:^+ comma ?@vl)
!~(:^+ ,qtfier ,vl ,@body))

(:else !~(:^+ ,qtfier ,vars ,@body))))
(:else

(let ((d (defect "Ill-formed quantified expression "
:% " Quantifier: " qtfier " Vars: " vars
:% " Body: " body)))

(dbg-save this-ptree)
(breakpoint left-bracket-tidier

"Defect: " d
:% " for ptree " this-ptree)

d))))

(def-checkers quant
(:? ?(:^+ quant ?_ ?_ ?body ?junk-h ?@junk-t)

(defect "Quantified expression has too many expressions in"
" body: " ‘(,body ,junk-h ,@junk-t)))

(:? ?(:^+ quant ?_
?(:~ ?(:+ ?vars (\\ (vl) (<& is-Symbol vl))))
?_)
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(defect "Quantified expression has illegal variables: "
vars))) >>

(The notation \\ is short for lambda.)
As I said, tidying and checking proceed bottom-up, so that the last node

checked is the one at the very top of the parsetree. In addition to all the
other tests, it is checked against the :top-tokens argument of def-grammar,
which is of the form

:top-tokens

:all | (tok1 ...tokk)

| (:all-but tok1 ...tokk)

If the value is :all (the default), then any symbol can appear at the top of
the tree. If it is a list of token names, then only those symbols can appear.
If it is of the form (:all-but ...), then any symbol except the explicitly
enumerated ones can appear at the top of the tree.

For the Hobbs grammar, we require top-level expressions to be either
predications or quantified statements, by writing

<<Define hobbs-top-tokens

:.(def-grammar hobbsgram .:
:top-tokens (fun-app quant)) >>

But I’ve left out one tricky issue. Suppose an operator has a level-1
checker, and it appears at the top of the tree. Do we just ignore the level-1
(and level-2, etc.) checkers? No. If there is a level-i checker for a top-
level operator, then Lexiparse constructs a temporary, artificial “supertree”
above the actual top node. This supertree has one subtree (the actual top
node), and the operator <^>. Level-1 checkers for the actual top operator
are run on this tree. If there are checkers at higher levels, the process is
repeated for as many layers as are necessary.

Earlier I alluded to a hypothetical language in which all top-level ex-
pressions had to be of the form “define ....” We can make sure no other
expressions can appear there by setting the :top-tokens field of the gram-
mar to (define). But suppose we want to forbid define from appearing in
any other context. We can write the checker:

(def-checkers define
(:up 1 (:? ?(:~ (:^+ ^ ?@_))

(defect "Operator ’define’ appears"
" below top of tree"))))

29



You don’t have to define the token <^>, and in fact that would be a bad
idea.
Here are a few built-in utilities that are useful in writing checkers:

• (check-all v l g ---checkers---): For each element v in list l, run
all the checkers and return all the defects they produce. g is the
local grammar, often not important. For example, to verify that all
immediate subtrees of the current tree have an arithmetic operator,
you can write the checker:

(:? ?(:^+ ?op ?@subs)
(check-all sub subs this-grammar

(:? ?(:^+ ?(:|| + - * /) ?@_))))

• (occ-range trees min max pattern &key (lo-defect dlo ) (hi-defect

dhi )): Given a list of parsetrees trees, produce a defect if the subset
matching pattern is less than min or greater than max. To indicate
“no upper bound,” use :infty for max. The expression dlo will be
evaluated to yield the description of a defect in the case where the
size is below min; and similarly for dhi wrt max. The default values
for :lo-defect and :hi-defect are statements that the numbers of
elements matching the pattern are too high or too low.

• (check-ancestors ---checkers---) Run each checker on every ances-
tor of the current parsetree. Return all the defects they produce.

3.5 Local Grammars

Sometimes the syntax expected in one corner of a grammar is radically
different from the syntax expected elsewhere. For example, suppose we want
to parse a language in which variable declarations resemble this example:

(x, y - Integer name - String)

Clearly, minus has lower precedence than comma, so you get tree structures
such as

(:∧+ \| (:∧+ minus (:∧+ comma x y))

(:∧+ minus name))

But the arithmetic expression f(x-y, z) must parse as
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(:∧+ left-paren f (:∧+ comma (:∧+ minus x y)

name))

which would be tidied to

(:∧+ fun-app f (:∧+ minus x y)

name)

if comma is the “separator” for left-paren. (See section 3.1.) Clearly, in
arithmetic expressions minus has a higher precedence than comma.

The solution is to allow syntactic tokens to be associated with local
grammars that prescribe different rules from normal. Suppose that our
language allows variable declarations as the second argument to define, as
in

define foo (x,y - Integer s - String) . . .

and suppose that the grammar for variable declarations is named var-decls.
We can declare define thus:

(def-syntactic define :reserved t

:prefix (:numargs 3

:local-grammar ((2 var-decls))))

The :local-grammar argument for a prefix operator is a list of local-gram-
specs, each a pair (i g), where i is a legal argument position and g is a
grammar name. As usual, if there’s just one such spec, the outer layer of
parens can be omitted. If i = 1, you can just write g.

For an infix operator, the :local-grammar argument, if present, is just
the name of the grammar that should govern the syntax of the operator’s
second argument. (Lexiparse has an obvious left-to-right bias, and must
have already parsed the first argument before the operator is seen.)

A local grammar is usually a subgrammar of the current grammar, that
is, it inherits most of its definitions from the current grammar. The reason
for and consequences of this design pattern are described in section 4.1.

4 Internalization and Inheritance

Internalization is the process of converting a parsetree into an application-
dependent object. There is basically one way to do this, namely, to run a
recursive procedure on parsetrees. Such a procedure need not have anything
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to do with grammars as such. Just write it, using the API for the Parsetree

datatype described in section 3.
However, occasionally it makes sense to organize the internalization pro-

cess using grammars. The hierarchy of grammars is a way of keeping track
of different kinds of internalization associated with the same language. For
instance, one might write three XML grammars with increasing degrees of
validation:

1. The base grammar defines the syntax of XML without any internal-
ization. It checks that brackets match, but not much else.

2. The next highest level checks the structure against a DTD — in other
words, it implements a “validating” XML parser.

3. The next level converts XML to a data structure implementing the
Document Object Model [Con04].

I’ll explain how to do this below (sect. 4.1).
The internalizer-spec that is the value of the :internalizer argument to

def-syntactic is any form that evaluates to a function of two or more argu-
ments. If you call (internalize p g a1 ...ak), where p is a parsetree and g
is a grammar, the internalizer associated with the operator of p in g will run,
with the same arguments internalize was given. The function internalize

does not try to internalize the subtrees of p; for that to happen, the inter-
nalizer must call internalize recursively. In this sense, internalization is
“top-down.”

For the Hobbs grammar, the built-in internalizers convert parsetrees to
a Lisp-style notation, as used in Kif [GF94] and PDDL [McD98]. We start
with the infix operator “v”, used to indicate disjunction:

<<Define hobbs-internalizer
<<Insert: functional-term-def (p. 33)>>

(with-grammar hobbsgram

(def-internal v
:internalizer
(make-functional-term ’or))

<<Insert: many-other-functional-terms (p. 34)>>

<<Insert: hobbs-quantifiers (p. 34)>>

<<Insert: hobbs-parens (p. 35)>>

)>>
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Because internalizers are relatively independent of the rest of the gram-
mar, it often seems appropriate to use def-internal to define them instead
of using the :internal argument to def-syntactic. For both contexts,
the argument is just a term whose value is a function. In addition, the
def-internal macro has a couple of other options:

(def-internal tokname [:grammar gramname]

[ :internalizer fcn-form

| fcn-name | lambda-form

| (definer [:^] ---definition---) ])

where definer and the other syntactic variables are as for def-tidier and
def-checkers.

In the case of “v”, the :internalizer is a call to this function:

<<Define functional-term-def

;;;This function does the work for most of the internalizers.
;;; It just gloms the appropriate function onto the internalized args. --
(defun make-functional-term (fcn)

(\\ (pt g)
‘(,fcn ,@(mapcar (\\ (sub) (internalize sub g))

(Parsetree-subtrees pt))))) >>

(make-functional-term ’or) is an internalizer that tacks the symbol or
onto the front of the internalized subtrees of the parsetree it is internalizing.
So a parsetree with structure:

(:∧+ or (a (:∧+ and b c)))

will be converted to the list structure:

(or Ia I(:∧+ and b c))

where Ia and I(:∧+ and b c) are the internalizations of the two subtrees.
I’m sure I’m not giving away any surprise ending when I reveal that the
process eventually ends with the result

(or a (and b c))

As with tidiers and checkers, there is a straightforward function for defin-
ing internalizers:

(define-internalizer k f [:grammar g])

33



that associates f with the token named k as its internalizer. The optional
:grammar argument works just as for define-tidier and define-checkers.

In this simple system, the internalizer takes no other arguments except
the parsetree and the grammar. This internalizer does no error checking at
all. I’ll say more below about how it might have been made hairier, at least
with regard to checking for unbound variables.

Most of the other tokens in the grammar are variations on the same
theme, so much so that we can write a loop to define all their internalizers:

<<Define many-other-functional-terms

(repeat :for ((tok+fcn :in ’((and and) (not not) (greater >) (less <)
(geq >=) (leq =<) (equals =) (plus +)
(minus -) (times *) (divide /)
(right-arrow if) (double-arrow iff))))

(define-internalizer
(first tok+fcn)
(make-functional-term (second tok+fcn))))

>>

The quantifiers are equally repetitive:

<<Define hobbs-quantifiers

(repeat :for ((tok+quant :in ’((A forall) (E exists) (E! exists!))))
(define-internalizer

(first tok+quant)
(make-quant-internalizer (second tok+quant)))

:where
(:def make-quant-internalizer (q)

(\\ (pt gram)
‘(,q ,@(list-internalize (Parsetree-subtrees pt) gram)))))

>>

The convenience function (list-internalize l g) returns a list of the
internalized versions of the elements of l, all internalized with respect to the
grammar g. (Here I use the repeat construct from [McD03], a less cluttered
approach to iteration than the usual Lisp loop. The :where-:def clauses
allows you to bind functions whose scope is the loop body.)

For a more realistic application, one would want to make sure that all
variables that occur in a formula are bound by a quantifier. To do that,
one would add an extra argument to the internalizers, call it boundvars,
which, when processing expression E, would be a list of all the variables
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bound by quantifiers including E in their scope. Most internalizers would
just pass the boundvars down, but the quant internalizers would add to it,
and the internalizer for fun-app would check that any symbol occurring as
an argument was an element of boundvars.

The internalizers for the brackets should be easy to understand at this
point. Left braces denote sets; {x, y, z} → (set x y z). A left paren gets
handled differently depending on its fixity; by this point prefix parens have
been renamed group, and infix parens renamed fun-app.

<<Define hobbs-parens

(def-internalizer left-brace
:internalizer

(\\ (lbpt gram)
‘(set ,@(list-internalize (Parsetree-subtrees lbpt) gram))))

(def-internal group
(defun :^ (lppt g)

(let ((subs (Parsetree-subtrees lppt)))
(cond ((= (length subs) 1)

(internalize (first subs) g))
(t
(list-internalize subs g))))))

(def-internal fun-app
(defun :^ (lppt g)

(let ((pre (first (Parsetree-subtrees lppt)))
(args (list-internalize (rest (Parsetree-subtrees lppt)) g)))

(cond ((is-Parsetree pre)
(let ((q (internalize pre g)))

(match-cond q
(:? (?(:|| forall exists exists! :& ?quant) ?vars)

‘(,quant ,vars ,@args))
(t
‘(,q ,@args)))))

(t ‘(,pre ,@args))))))

(def-internal quant
(defun :^ (qpt _)

(match-cond qpt
(:? ?(:^+ quant ?qtfier ?vars ?body)

‘(,qtfier ,vars ,body))
(:else (signal-problem quant-internalizer

"Malformed quantified parsetree fell through cracks: "
qpt))))) >>

35



4.1 Inheritance

A grammar may inherit definitions from another grammar. In fact, you
can control the inheritance of lexical, syntactic, and internalizing definitions
from different parent grammars. In the def-grammar macro (section 1), there
are three keyword arguments :lex-parent, :syn-parent, and :int-parent,
each of which is a grammar name. (The :parent argument can be used to
avoid writing a parent-grammar name more than once.)

Tokens are defined by name. If a parent grammar has a token foo, and
the child grammar defines a token foo, their properties are merged when
possible. The merge rules are as follows:

• For internalizers: The child internalizer shadows an internalizer for
the same token in the parent, but within the child you can call

(call-parent-internalizer tok tree gram )

to let the shadowed internalizer run. It returns an internal data struc-
ture that can then be further elaborated by the child internalizer.
Above I mentioned that one could build XML parsers with varying
levels of validation. One way to do that would be to have the internal-
izers for the more stringent versions call the parent internalizers first,
then follow up with further validations.

• For fixity information, specified by :prefix, :infix, or :suffix fields:
if any of these is supplied for the token in the child grammar, then all
grouping information in the parent is shadowed. If this information is
missing in the child, then the inheritance pattern is more interesting.
In this case, the fixity information is inherited in its entirety. The
presence of a tidier in the child hides only the parent’s tidier; and
checkers specified for the child are merged with the checkers for the
parent. (See below)

• For lexical definitions: Any specification of the lexical properties of a
character in the child shadows whatever the parent has to say about
it.

Checkers inherited from a syntactic parent of grammar G run before the
checkers declared at G. However, since they all get run eventually, the only
visible effect of this ordering is the order in which defects are listed, if there
is more than one.
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5 Getting, Installing, and Running Lexiparse

The Lexiparse system can be downloaded from my website, at

http://www.cs.yale.edu/homes/dvm#software.

You must first download the YTools package and install it. Then download
the compressed tar file for Lexiparse. Uncompress and unpack the tar file
to a convenient directory.

As explained at http://www.cs.yale.edu/homes/dvm#ytsetup, YTools re-
quires that you bind two Lisp global variables, presumably in your Lisp
initialization file. One of them, ytools::ytload-directory*, is the name of
a directory containing the .lmd files that tell YTools how to install and load
a software package. Find the file lexiparse.lmd in the Lexiparse directory,
and move it to the ytload directory. Then execute (yt-install :lexiparse).
You will be asked a couple of questions about where to find the system and
where to put binary files, and that will be that.

On future occasions, all you need to do is start Lisp and execute (yt-load

:lexiparse).
Once you’ve installed the system, there are various ways to use it. Sup-

pose you’ve produced a grammar for a language. The grammar is an or-
dinary Lisp file, so you can compile and load it as you would any other
Lisp file. The (def-grammar N) macro (section 1) defines as N as a global
variable whose value is the grammar. It is also accessible as the value of
(grammar-with-name ’N).

Once the grammar is loaded, it can be used by the following entry points
to the parser:

(string-syn-gen string grammar) Given a string and a grammar, produce
a generator of the parsetrees for the well-formed expressions in the
string.

(file-syn-gen filename grammar) Like string-syn-gen, but it uses the con-
tents of the given file as the string to parse.

(parsetree-gen-show parsetree-generator) Generate the parsetrees gener-
ated by parsetree-generator, and return a list of them. As they are
produced, display them using parsetree-show (see appendix B).

(chargen-to-stream character-gen srm gram int :int-output-fcn iofcn )

takes a character generator character-gen , an output stream srm,
and a grammar gram, and writes to srm the entities parsed from
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character-gen. If the int argument is true, the entities are internalized
and the results are written to the stream. If the keyword argument
:int-output-fcn is supplied, it must be a function of two arguments
(the second a stream), that is used to write the objects produced by
the parsing process.

(file-translate in-file out-file gram int :int-output-fcn iofcn) reads
and parses the contents of file in-file, and sends the results to out-file.
All the other arguments are the same as those to chargen-to-stream.

(parse1 string grammar) Extract from string and return a parsetree headed
by one of the top-nodes of grammar. The parsetree need not cover the
entire string, just some prefix of it.

(string-parse-and-internalize string grammar) is like parse1, except that
it internalizes the resulting parsetree.

Besides the defects found by the tidiers and checkers in a grammar, the
parser itself will attach defects to parsetrees. For example,

(parsetree-show (parse1 "p(aaa + * bbb)" hobbsgram))

will print

<fun-app> [*_]
P
<plus> [_*_]

AAA
<*> [_*_]

nil
#<Defect Operator <*> not allowed as prefix>
BBB

If the global variable break-on-defect* is set to true, then the system
will enter the debugger whenever a defect is attached to a parsetree.

6 Suggestions for Using Lexiparse

A parser written using Lexiparse doesn’t look like the standard set of BNF-
style productions as would be supplied to Yacc or a similar system. You
need a little practice to learn how to read one. It helps if it was written in a
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clear way. Here are some hints on how to write readable grammars. First,
be sure you’re clear about how precedences work: The higher the precedence
of an operator, the lower down it will appear in a parsetree (if the tree is
drawn in the usual way, with the root at the top). Precedences are like the
binding strengths among elementary particles. Tight-binding quarks are at
the lowest level of an atom’s organization, the loosely bound electrons are at
the outermost level, and molecules are held together by even weaker forces.

In a traditional grammar, productions are usually written in a “top-
down” way, starting with S→ . . . and ending with variable→name.name or
the like. To achieve the same effect in a precedence-based grammar, you
put S in the :top-tokens list, then define it and other symbols with low
precedence first. In this manual, I’ve arranged the pieces of the grammar in
an abnormal order for expository purposes. It’s probably worth comparing
the complete grammar in its fully assembled order, which may be found at
http://www.cs.yale.edu/homes/dvm/papers/hobbsgram.lisp.

Precedences are only the beginning of writing a Lexiparse grammar.
Most of the action comes in the pattern checking and transformation done by
the tidiers, checkers, and internalizers. These procedures operate on syntax
trees using pattern matching, tree building, and occasional Lisp code. So
the grammar ends up “feeling like” a set of Lisp macros. (Or perhaps Dylan
is a nearer cousin [FEMW97].) The classic problem in macro writing is
how the macro extracts the items it operates on from the surrounding text.
Most solutions are quite stultifying.8 In Lisp and Scheme the extraction
is done using the ubiquitous parentheses, which spares the macro writer a
lot of work. In Dylan, a flexible pattern language is superimposed on the
underlying syntax; exactly how is not clear, but the idea is that if the pattern
matches a piece of code, that piece of code is treated as a constituent in the
parse tree. In any of these languages, the macro then rewrites the extracted
subtree into a (more nearly9) executable code tree. The transformations are
usually expressible as matching/rewrite rules, but, in Lisp at least, one has
access to the entire language if necessary.

Hence, in reading a Lexiparse grammar, if the grammar writer has taken
care to make explicit what context and pieces are legal for a tree headed
by a given token, one good way to develop an overall picture of what the
language looks like is to read the tidiers and checkers first, consulting the
precedences only to verify that the subtrees the tidiers and checkers expect

8The “preprocessor” in C-like languages is typical; it allows you to define only con-
structs that look like function calls, and it provides string substitution as the only opera-
tion you can perform on the arguments.

9The output subtree and its parts are themselves subject to further macro expansion.
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do indeed have operators with higher precedences than the current tree’s
operator.

In writing a Lexiparse grammar, one has a great deal of control over what
to put in tidiers, checkers, and internalizers. One can put everything in the
internalizer for a token, and generate Lisp errors in response to syntactic
anomalies. But for someone reading the grammar, it makes more sense to
put the same information into the checkers for the token. For one thing, each
nugget of information is clearly displayed. For another, the defects produced
by the checkers are attached to the parsetree being built in a perspicuous
way.

Another issue is what precedences to assign. Lexiparse doesn’t care,
so long as they’re (non-complex) numbers. But for clarity, here are some
guidelines:

1. Precedences should be integers, to take advantage of the natural scal-
ing effect imposed by the fact that integers can’t be indefinitely magni-
fied. The precedences 45 and 47 will be noted by someone reading the
grammar as being “close together” — if all precedences are integers.
But if the reader comes across a precedence of 46.3, all bets are off.

2. The natural lower bound on precedences is 0. As discussed above, this
is the recommended precedence for the interior of brackets.

3. The standard-arith grammar is included in the distribution of Lex-
iparse. It defines lexemes for all the standard arithmetic and logi-
cal operators, with their usual precedences. The lowest precedence
(except for the zeroes assigned to the interiors of parentheses) is the
100 assigned to <comma>. The highest, 200, is the left precedence of
<left-paren>. The precedences of all the operators are evenly arranged
between these two bounds, as shown in table 1.

You can declare your grammar to have standard-arith as a syn-parent.
There’s plenty of room to interleave your own operators between those pro-
vided by standard-arith. (You can also override the behavior of any op-
erator, as explained in section 4.1.) The 200 level is not a ceiling; if you
want x.y(a, b) to be parsed so that the left parenthesis “dominates” the
expression x.y, i.e., appears above it in the parsetree, then create a token
<dot> with lexical representation “.”, and assign it precedence 210.

Finally, be prepared to get creative in your attempt to capture a syntax
using precedence alone. Consider, for instance, the indispensable if-then-else
statement. If the else is to be optional, one might want the syntax of if or
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Token Character(s) Precedence
<comma> , 100
<or> 120
<and> 130
<not> 140

<greater> > 160
<less> < 160
<geq> >= 160
<leq> =< 160

<equals> = 160
<plus> + 180
<minus> - 180
<times> * 190
<divide> / 190

“Character” column is left blank if token is a reserved word.

Table 1: Precedences of the standard-arith grammar

then to check to see if it is there. Unfortunately, there is no way to do that
using Lexiparse. Instead, you must make else an infix operator, so that if

a then b else c gets parsed as

(:∧+ if a (:∧+ then (:∧+ else b c)))

This makes no semantic sense, of course, but the tidier for if can fix it all
up:

(def-tidier if

((:? ?(:∧+ if ?test ?(:∧+ then ?(:∧+ else ?iftrue ?iffalse)))

!∼(:∧+ if ,test ,iftrue ,iffalse))

(:? ?(:∧+ if ?test ?(:∧+ then ?iftrue))

!∼(:∧+ if ,test ,iftrue null))

(:else (defect "’if’ " test " not followed by ’then"))))

Future work: Currently Lexiparse doesn’t do a good job of keeping track of
the context of syntactic errors. Its error messages can’t tell the user which
line of the input the error occurred. That could be fixed fairly easily.

Currently infix operators are allowed to have either no arguments to
their right, or exactly one. The former class is just what I have been calling
“suffix” operators. In fact, there are really only two kinds of operator, those

41



that take no arguments to their left (prefix ops), and those that take one
(infix ops). So there is a hole in the formalism: the case where an infix
operator takes more than one argument to its right. This would be fairly
easy to fix if there is a need.

Any grammar that does internalization should have an optional “leaf
internalizer” that would be applied to the leaves of all parsetrees.

The number lexifier lex-number (sect. 2) doesn’t recognize “scientific”
notation such as 1.3E-9. This should be fixed.

Limitations: Not all languages can be represented using a Lexiparse gram-
mar, at least not in a legible way. It does best with languages whose major
constructs are identified by a prefixed reserved word, such as define. Its
left-right bias means that a language with suffix operators taking more than
one argument is hard to handle. An expression such as “x 5 + y *” in such
a language should be parsed as (:∧+ * (:∧+ + x 5) y). But Lexiparse will
be confused as soon as it sees x and 5 together. One would have to use the
contiguity operator to allow the suffix operators + and * to take exactly one
argument, and parse the expression as if it had the structure

= (:∧+ * (:∧+ \| (:∧+ + (:∧+ \| x 5))

y))

Perhaps there is a way to implement infix ops that take more than one
argument to their left. If so, then all operators would be characterized by
how many arguments, zero or more, that they expected on their left and on
their right.

Even more problematic are languages in which the precedence of opera-
tors can change at compile time, such as ML and Prolog. I can think of ways
of handling this issue, but they all involve breaking through the abstractions
provided by Lexiparse and performing unnatural acts on its internal organs.

Providing a Lexiparse grammar for the C family of languages (which in-
cludes C, C++, and Java) would be an interesting exercise, made challenging
by the absence of reserved words in crucial places, such as declarators.

I doubt that Perl can be parsed using a Lexiparse grammar, but that’s
just a corollary of the general theorem that Perl can’t be parsed using any
grammar.

A Literate Programming

Literate programming is a documentation technique invented by Knuth [Knu84]
in which the usual code-commenting conventions are turned inside out.
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Rather than presenting a program + comments, one presents an essay +
code. The essay appears in whatever expository order makes the most sense,
and pieces of the code are exhibited in the essay at the point where it makes
sense to discuss them. The entire program eventually appears, so that it
can be extracted by a piece of software called the tangler into a compilable
form.

A piece of code in the text is called a code segment. Inside a segment,
wherever you see

<<Insert: f>>

you are to realize that to complete the code requires finding the segment
with the name f and substituting it here. The segment may be defined
anywhere in this file, but will usually come later than the point where it is
inserted. The definition looks like this:

<<Define f

Text of segment >>

At the top level of the segment hierarchy are file segments, each of which
specifies the skeleton of the contents of a code file. These are defined by the
following notation, instead of the usual “Define”:

<<Define File filename

Text of segment >>

Don’t try too hard to reconstruct the entire grammar in your head by
following such links. The point of literate programming is to allow you
understand code segments in their “documentation context” instead of their
“formal context.” So try to understand what the segment means on its own
terms. Any segments it points to will be dealt with later. If you want to
see the output as a whole, look at the version output by the “tangler” that
puts the program back into the form the compiler likes. (For the Hobbs
grammar, this output is found in the file hobbsgram.lisp.)

Sometimes to make a segment intelligible we will duplicate a bit of its
context. Any pieces of a segment that are surrounded by the characters
“:.” on the left and “.:” on the right is to be interpreted as a “context
establisher” that isn’t “really there.” For instance, if you see at one point

(foobalicious :left-frobboz (frobbistication)

<<Insert right-foobal>>)
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Then we might define the segment right-foobal thus:

<<Define: right-foobal

:.(foobalicious :left-frobboz ....:

:right-frobboz (rephlogistion))>>

The actual segment is just the string “right-frobboz (rephlogistion)),”
but we repeat the outer layer of parens to remind ourselves what the string
is embedded in.

B Lisp Utilities for Use with Lexiparse

A Lexiparse grammar is essentially a set of Lisp data structures and pro-
grams. To some extent one can do business entirely in a Lisp subset dedi-
cated entirely to the parsing task. But inevitably one will find oneself having
to deal with bits of Lisp code here and there. At that point it would be help-
ful to know the built-in utilities for dealing with parsetrees and grammars.
Here’s a list, in no particular order:

• (string-gen S) is a generator of the characters in S.

• (file-gen pathname) is a generator of the characters in the file path-
name.

• (Parsetree-op-token T G) returns the token in grammar G corre-
sponding to the operator of parsetree T .

• (Parsetree-opname T) returns the name of the operator of T .

• (->token S g) returns the token in grammar g whose name is the
symbol S.

• (tokname t) is the name of the token t.

• (Parsetree-defects T) returns the defects checkers have found for T .

• (subtree-is-defective T) tests whether T or any of its descendents
has any defects. (It works for any parsetree, in spite of the word
“subtree” in its name.)

• (Parsetree-defective-subtrees T) returns the defective subtrees of
T , i.e., the subtrees that have defects or have descendents with defects.
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• (parsetree-show T &optional s d) displays parsetree T as a hierar-
chy, with subtrees indented and printed on successive rows beneath
their parent. s is the stream the output is directed to (default *standard-output*).
d is the maximum depth to display to.

• show-parsetree-fixity*: global Boolean variable; if set to false, the
fixity of a parsetree is not printed (even by parsetree-show).
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