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1 Introduction and Overview

OpT stands for Ontology with Polymorphic Types. It is an attempt to create a general-
purpose notation for creating ontologies, defined as formalized conceptual frameworks for
domains about which programs are to reason. Its syntax is based on PDDL (McDermott
1998), but it has a more elaborate type system, which allows users to make use of higher-
order constructs such as explicit A-expressions. OPT is intended to be (almost) upwardly
compatible with PDDL 2.1, the dialect used in the 2002 International Planning Competi-
tion. Some of the prose in this document is lifted is lifted straight from previous PDDL
documentation (which in turn may have been lifted from the UNPOP language manual).
Where Opr differs from PDDL 2.1, T will point out how it differs. Opt borrows much of its
notation for processes and durative actions from (Fox and Long 2001).

It’s my hope that PDDL will in fact evolve in the direction of OPT, but even if it doesn’t,
OpT will continue to include PDDL as a subset for obvious reasons. [[One difference between
lang and PDDL is that less of an effort has been made in the design of lang to separate
“advice” from “physics.” Then again, the effort was a bit ill defined even for PDDL.]]

In OPT, as in PDDL, a formalized ontology is called a domain. Domains can be related
by inheritance relations, so very general ontologies can be used over and over. Not all
domains involve the same level of expressivity. For example, some domains may be based on
the assumption that any variable-free atomic formula not known to be true may be assumed
to be false; this is called a “closed-world assumption.” In fact, this is the default in OpPT,
as in many Al applications, because closed worlds tend to be more tractable. However,
there are domains where such an assumption is inappropriate, in which case verifying that
a proposition is false requires a more substantial inference than failing to prove it true. To
control these differing kinds of domains, we borrow from the UCPOP language (Penberthy
and Weld 1992) the idea of requirements flags. Any domain that departs from the simplest
subset of OPT must declare the requirements that it is based on

(define (domain astronomy)
(:requirements :open-world) ...)

In this case we say that astronomy declares the requirement :open-world.
Here is an example domain, a simple version of an ontology for an agent on the World-
Wide Web:

(define (domain www-agents)
(:extends knowing regression-planning commerce)
(:requirements :existential-preconditions :conditional-effects)
(:types Message - Obj Message-id - String®)

(:type-fun (Key t) (Feature-type (keytype t)))



(:type-fun (Key-pair t) (Tup® (Key t) t))
(:functions (price-quote 7m - Money)
(query-in-stock ?7pid - Product-id)
(reply-in-stock ?b - Boolean)
- Message)
(:predicates (web-agent 7x - Agent)
(reply-pending a - Agent id - Message-id msg - Message)
(message-exchange 7interlocutor - Agent
?sent “received - Message
7eff - Prop)
(expected-reply a - Agent sent expect-back - Message))
(:facts
(freevars (7agt - Agent 7msg-id - Message-id
?sent 7reply - Message)
(<~ (and (web-agent 7agt)
(reply-pending 7agt ?msg-id ?sent)
(expected-reply 7agt 7sent 7reply))
(normal-value (receive 7agt ?msg-id)
?reply))))
(:action (send 7agt - Agent 7sent - Message)
- (7sid - Message-id)
:precondition (web-agent 7agt)
reffect (reply-pending 7agt ?sid 7sent))

(:action (receive 7agt - Agent 7sid - Message-id)
- (7received - Message)
:vars (7sent - Message 7eff - Prop)
:precondition (and (web-agent 7agt)
(reply-pending 7agt 7sid 7sent))
:effect (when (message-exchange 7agt 7sent 7received 7eff)
7eff)))

OPT can be used purely as an ontology mechanism. We are working on using it as an
internal notation for representation systems such as RDF (Lassila and Swick 1999; Hjelm
2001) and DAML (Patel-Schneider et al. 2002), for which it provides type checking and other
services. But the Lisp implementation of the OPT system, which is under construction, is
the basis for support of various inferential systems, including a Prolog-style theorem prover,
a planner (McDermott 2002), and a plan checker. The description of these systems and
their APIs is beyond the scope of this manual, but will appear in later documentation. A
formal semantics of OPT is in the works.

In OpT, all types are capitalized, a style popularized by Java, and tending to create
clarity in my opinion. In previous versions, PDDL has ignored case.! OPT tools that offer

T think this was a bad design decision, even though I am largely responsible for it. However, in the
future I would urge that this design decision be reversed, and that symbols which differ only in the case of
some of their constituent characters be treated as different.



a PDDL2.1-compatibility mode must also ignore it.

2 Technicalities

Those not interested in technicalities may skip this section on first reading. As the example
above shows:

1. The syntax of OPT is like Lisp’s.

2. Where types are declared, one does it by writing “ - type-expression” after the thing
being declared.

The details are fairly intricate and even interesting, but perhaps not right now.

One other point: The enriched type system of OPT makes it possible to define many
symbols simply by giving their types and a short definition, making it unnecessary to
incorporate every symbol in a syntactic equation, as is the style in the various PDDL
manuals. All symbols defined in this way are collected in section 13.3 in alphabetical order
for easy reference. Furthermore, from this point on, every occurrence of such a symbol is
flagged with a superscript . so you won’t be baffled about where it is defined. Remember
that upper-case symbols are types, and hence are documented in section 13.1; other symbols
are documented in section 13.3. Requirements flags, which begin with a colon (“:”), are
documented in section 13.2; because they are all built-in, their occurrences are not flagged.
The only built-in constants that are not flagged are those with short, nonalphabetic names,
such as +, =, <, and such, for which the annotation would be too distracting.

2.1 Syntactic Notation

Our notation is the Extended BNF (EBNF) of (McDermott 1998) with the following con-
ventions:

e Each rule is of the form <syntactic element> ::= erpansion.
e Angle brackets delimit names of syntactic elements.

e Alternative expansions are written in two ways: by supplying two or more rules with
the same left-hand side:

<term>
<term>

(<term> <term>*)
(is <type> <term>)

or, if the alternative expansions are short, by writing one rule with the alternative
expansions separated by “|”:

<term> ::= <constant> | <variable>



e Square brackets ([ and ]) surround optional material. When a square bracket has a
superscripted requirement flag, such as:

...[:expansion <action spec>]:action—expansions

it means that the material is includable only if the domain being defined has declared
a requirement for that flag.

e Similarly, the symbol ::= may be superscripted with a requirement flag, indicating
that the expansion is possible only if the domain has declared that flag.

<structure-def> ::=iaction—expansions ¢yathod-def>

e An asterisk (*) means “zero or more of”; a plus (+) means “one or more of.”

e Some syntactic elements are parameterized. E.g., <1ist (symbol)> might denote a
list of symbols, where there is an EBNF definition for <list x> and a definition for
<symbol>. The former might look like

<list (x)> ::= (x*)

so that a list of symbols is just (<symbol>x).

e Ordinary parenthesis are an essential part of the syntax we are defining; the only place
they have a meaning in the EBNF meta language is inside angle brackets, where they
wrap parameters as just explained.

@, ”

Comments in OPT begin with a semicolon (“;”) and end with the next newline. Any
such string behaves like a single space.

Variables in OPT are always bound by explicit quantifiers or other devices. There is
a tradition, in AI applications of logic, of flagging each occurrence of a variable somehow,
by a prefix character (?x or :y, perhaps), or by a case convention (so that x is a variable
and Xerxes is not, or vice versa). The original motivation for this convention was that
variables were never declared, just implicitly universally quantified with scope equal to the
largest formula they occurred in; so the occurrences had to be flagged. I find it odd that
in formalisms with explicit declarations people still like those little reminders, which they
cheerfully do without in programming languages and other contexts. In OPT, variables
may be prefixed with question marks, but the question marks are almost always optional.
The only exception is where the question mark is specifically for the purpose of avoiding an
explicit declaration, as in the case of implicit type variables, discussed in section 2.2

2.2 The Type System

The type system is ubiquitous in OPT. Intuitively, the type of an expression is a constraint
on all the values the expression may ever have. To make this definition precise, we have
to distinguish the type of an object from the type of an expression. An expression such
as (+ x 3) will denote the number thirty-six in situations x where x denotes the number



thirty-three. We write the names of the numbers out to emphasize that an object is drawn
from an abstract universe of some kind, whereas an expression is drawn from a universe of
lexical entities usually defined by recursive rules. The types of thirty-three and thirty-six
are examples of object types; it happens that they are of type integer. Ezpression type is
a useful concept only if it is used to reason about the types of the objects an expression
will denote, i.e., its values, before it actually denotes them. In languages like Lisp and Kif,
there is minimal use of expression type. Instead, every time the value of an expression
is available in a context where checking the appropriateness of that value is feasible, the
run-time system can and usually does do the check, raising a run-time exception if the
object fails the test. A classic example is evaluating (+ x 3) in an environment where the
value of x is a string such as "oops", and getting an error message such as “Non-numerical
argument "oops" to +.72

It is harder to come up with examples in a declarative language such as Kif, because
in the normal course of events expressions aren’t evaluated, but just used to infer further
expressions. The consequence of a type error is likely to be a silent failure to draw an
appropriate inference. OPT is also a declarative language. Long experience has taught us
that detecting type errors before they occur saves a lot of debugging, and that requires
figuring out the types of expressions, not objects.

We declare the types of symbols, when they are first bound, by writing

expression — type

where the expression contains (and usually just is) the symbol. For instance, in a universally
quantified statement we might say

(forall (x - Vehicle) (has-gas-tank x))

to indicate that x ranges over Vehicles in this context. We follow the Java/Haskell con-
vention of capitalizing the names of types. We do not follow the Java convention of us-
ingCapitalLetters to indicateWordBoundaries; hyphens are treated as ordinary alphabetic
characters, so we can write has-gas-tank instead of hasGasTank.

The expression may be more complex. For instance, one construct for declaring a
function looks, in part, like this example:

(gcd 1 j - Integer®) - Integer®

This declares the type of gcd, to wit, a function that takes two Integer arguments and
produces an Integer result. Here we introduce the following terminological convention: In
programming, if f is a function whose result type is y, we say f “returns” (an object of)
type y. In logic, functions don’t get called, so they don’t actually “return” from anywhere.

2There is a philosophical problem here about the sense in which a computer can ever have access to
the actual abstract universe of integers. The answer, of course, is that it can’t. It can, however, have
access to a canonical representation of an abstract domain, including computable manipulations of that
representation that provably correspond to or approximate actual mathematical functions on the abstract
domain. Evaluating an expression ¥ means finding the expression F¢ in the canonical representation that
denotes the same object E does. A run-time type error corresponds to the detection of an E whose E¢ is
not in the right subset of the canonical representation.



We will say instead that it produces type y. (Well, the truth is that for practical purposes
we depart from this purity in “evaluation contexts”; see section 3.)

Every expression must be typeable, meaning that it is possible to infer a consistent
assignment of types to all its subexpressions, including itself. OPT does most of these
inferences itself. It is often convenient to speak of “the type” of an expression, but this
phrase is technically often wrong. An expression may have more than one type; typeability
just means it is possible to find a consistent assignment of types of expressions.

In the example, if has-gas-tank is a predicate on Physical-objects, and every Vehicle
is a Physical-object, then the type of (has-gas-tank x) is Boolean®. As this example
shows, one type can be a subtype of another, as Vehicle is a subtype of Physical-object.
Any term with type Vehicle also has type Physical-object.

Types are not exactly sets; type theory is a competitor to set theory as a way of thinking
about logic. In set theory, one starts with very general axioms about any kind of collection,
and gradually infers theorems about various sorts of collection. In type theory, all the
symbols (and compound expressions) must be labeled (or labelable) with their types. The
labels must obey certain rules. For instance, if £ is labeled as a function from String®s to
Integer®s, then (f x) must be labeled Integer® and all occurrences of x must be labeled
String®. A formula that cannot be given a type is ill-formed. In a sense the type of an
expression identifies a set all its values fall in, but these sets are not first-class citizens in
the logic. We can’t quantify over types; we can’t take intersection of types; we can’t infer
that a type exists without knowing which type it is (i.e., knowing the standard name for
it).

In return for these constraints, it becomes easier to avoid paradoxes. The most famous
paradox of set theory is Russell’s Paradox. Starting from the plausible idea that for any
property there exists a set containing just the objects that satisfy that property, we quickly
get a contradiction. For if the plausible idea is true, then from the property = & x, we
can derive the term S = {z|x ¢ z}. But then S € S <= S ¢ S. Much ingenuity has
been used in making this paradox go away. In type theory, it never arises, because terms
x ¢ x and x € x are not typeable. The type of € is “predicate with two arguments, one an
Individual, the other a Set.” To oversimplify z can be of type Individual or Set, but
not both, so there is no way to infer a correct type for z € x.

We use a more Lisp-like notation. = € x would be written (elt x x). The type of
€, or elt, is (Fun Boolean <- (Individual Set)). (Fun range <- domain) is the type
of functions from the given domain to the given range. The notation (Individual Set)
is actually short for (Arg® _ - Individual _ - Set), which describes an argument tuple
with two anonymous elements (as indicated by the use of the name “_”). Argument tuples
are those evanescent entities that exist only when a function is called in Lisp. If you write
(+ x y 2), it is useful to analyze this as applying the function + to the argument tuple (x
y z), although this entity never exists as an actual data object (for instance, you can’t bind
a variable to it).

The basic rule for typing a function application is: If (a;...ax) is an argument tuple
with type A, and f has type (Fun r <- A), then (f a1 ... ag) has type r.

Function types are complicated by two phenomena: overloading and polymorphism.

3 Actually, it’s not really Boolean, as we will discuss shortly.



Qverloading is the use of the same function symbol for different functions. The standard
example is +, which can operate on Integer®s or Float®s. Fortunately, overloading is rare,
and doesn’t require a general-purpose, user-level notation. In fact, the arithmetic functions
are the only overloaded functions in OPT.

Polymorphism is the use of a function symbol to denote a family of functions param-
eterized by one or more type variables. A standard example is the reverse function. If [
is a list of objects, then (reverse [) is a list of the same elements, in the opposite order.
It doesn’t matter what the types of the elements are, and they don’t all have to be the
same type. One way to proceed is to declare reverse to be of type (Fun® (Lst® 0bj®)
<- (Lst® 0bj®)), where Obj® is a general type that includes all objects, and (Lst® y) is
the type of lists of objects of type y. (We use the term type function for an entity such
as Lst® that resembles a function syntactically, but produces a complex type from other
types.) The problem is that if x is known to be of type (Lst® Integer®), we should be
able to infer that (reverse x) is of the same type; but all we can infer is that (reverse
x) is a list of Obj°.

What we want to do is introduce a type variable u and give reverse the type (Fun®
(Lst® u) <- (Lst® w)). To avoid ambiguity about the scoping of u, we will actually
declare reverse thus:

reverse — (Fun® 1 (Fun® (Lst® u) <- (Lst® u))

<= (u - (TN

In other words, reverse is a function that takes u as an argument and produces a function
type (Fun (Lst® u) <- (Lst® uw)). The type of uis (T), meaning type. For example,
(reverse Integer®) is a function of type (Fun (Lst® Integer®) <- (Lst® Integer®)).
So one might expect to write ((reverse Integer®) x).

We can’t actually do things quite that way, for a variety of reasons, including the fact
that the first function application is obviously operating with “type-level” entities, while
the second is operating with “domain-level” entities. The “1” in the first Fun signals this.
Domain-level entities are at level 0, whereas type-level entities are at level 1. (The only
level-2 entity in sight is the type (T), which is what type theorists call a kind, meaning that
it is the type of a (level-1) type.) We indicate level-1 application with the symbol &, so
the proper way to write the example above is

(('& reverse Integer®) x)
But this is too clumsy for the average case. We normally want to write simply
(reverse x)

We arrange for that with the following convention: If a level-1 function f is used where
a level-0 function is expected, say in the term (f a; ...ag), the type system will try to
infer level-1 entities y; ...y, such that (('& f y1 ...yn) a1 ...ap) is typeable. If x is of
type (Lst® Integer®), then the type system infers that (reverse x) means ((!& reverse
Integer®) x), and is of type (Lst® Integer®).

In addition, it is distracting to have to mention function levels in the usual case. Hence
Opr allows some abbreviations. We can mush the two levels together



reverse - (Fun (Lst® u) <- ((Lst® u) !'& u - (T)))

The label !'& is used here to separate O-level variables from 1-level variables.
An alternative notation is to flag level-1 variables with question marks, as in

reverse - (Fun (Lst® 7u) <- (Lst® ?7u))

which is exactly equivalent to the original type declaration. This notation has the advantage
of conciseness. It has the disadvantage that the scope of the variable 7u is not always clear.
The rule is that the scope of a question-marked type variable is the outermost Fun such
that the variable occurs in the type of one of its parameters.

Using these notational devices, we can redo the Russell’s Paradox example in a more
elegant way. Declare elt as follows:

elt - (Fun Boolean <- (e - ?u s - (Set 7u)))

Here 7u is a level-1 variable, which can be any type. For any type t, there is a type of sets
of t’s, which we denote by (Set t). Now (elt x x) is not typeable because there is no
type u such that u = (Set w).

Polymorphism has not been necessary for traditional planning applications, because the
focus has been on manipulating simple objects. But for planning interactions with agents
on the world-wide web, most actions include creating, and extracting data from, data struc-
tures. Here polymorphism will be essential. However, it is hard to get interesting polymor-
phism without data structures such as (Lst® Integer®), and simple PDDL-style applica-
tions will not be able to handle them. Hence there is a requirement flag : data-structures
that must be declared by any domain that uses them.

In addition to Lst®, we have one other built-in complex type constructor: (Tup® —piece-
declarations—) is a tuple with the given elements. Example: (Tup® i j - Integer® s -
String®) is a tuple with three components, i, j, and s, of types Integer®, Integer®, and
String®.

Given a Tup® zx, you can refer to the field named s by writing (!_s x). If the fields
are anonymous (named _, in other words), you can refer to them positionally. The second
element of u, where u - (Tup® _ _ - Integer®) can be accessed by writing (!_<2> u).

New type functions may be defined in terms of existing ones. See section 4.

To refer to the object of a given type with given arguments, write (make type —arguments—
). For example, (make (Tup® i j - Integer®) 5 6) denotes a two-integer tuple x such
that (1_i ) is 5 and ('_j x) is 6. This notation is not very useful without the ability to
define named types, like this:

In domain definition:
(:type Int2 (Tup® i j - Integer®))
In some domain axiom:
(1ist (make Int2 5 6) (make Int2 50 60))

The functions (1ist® ay ...a,) and (tuple® a; ...a,) are a simpler way to make
lists and tuples. The OPT system will try to infer the most useful type it can (either a Lst®
or Tup® type) for an occurrence of one of these expressions.



If y1, ...y are types, then (A1t® y; ...y;) is the “union” of those types. An object is
of this type if and only if it is of type y; for some 7. For an expression to be of this type
is for each of its possible values to be of type y; for some i. (A synonymous expression is
(Either® i y1).)

We now describe the type-declaration notation using EBNF:

<typed list (x)> :

<typed row (z)>
<typed row (z)>
<type>

<type>
<type>

<type function>
<level>
<struct builder>

<arg spec>

<name arg spec>
<type arg spec>
<named params spec>
<param row>

<anon params spec>
<type row>

<rest-or-key param row>
<rest param row>

<rest param row>

<rest param row>

<key param row>
<keyparam>

<rest type row>
<rest type row>
<rest type row>
<keytype>

<dflt-param>

:= (<typed row (z)>)

<x>*
<z>T- <type> <typed row (z)>
<variable>

= (<type function> <type>+)

(Fun® [<level>]
<val spec> <- <arg spec>)
(<struct builder> <type row>)

(<struct builder> <param row>)

<name>

=0 |1

Tup

<name arg spec> | <type arg spec>

= <name> | ([Arg] <named params spec>)
= <type> | ([Arg] <anon params spec>)

<param row> [!& <typed row (name)>]
<typed row (name)>
[&optional <typed row (param)>]
[<rest-or-key param row>]
<type row> [!& <typed row (name)>]
<type>* [&optional <type>']
[<rest type row>]

<rest param row> | <key param row>

= &rest <variable> [- <type>]

= &rest <variable>

:- <type>

&rest (<variable>') <variable> - <type>
&key <typed row (keyparam)>
<dflt-param>

| ((<keyword> <variable>) <term>)

&rest <type>

&rest (= <type>)
&key (keytype)™
<keyword> <type>

<variable> | (<variable> <term>)

10



<val type spec> 1= <type>
([vall <type>*)
([Val] <typed list(name)>)

<keyword> ::= :<name>
<variable> ::= [?]<name>
<name> ::= <basicname>

An EBNF definition of <basicname> would be a bit clumsy; it’s easier just to say that a
name is a sequence of one or more alphanumeric characters starting with an alphabetic.
We count characters -, _, +, -, *, /, <, and > as letters. (Note that colon is not allowed in
a basic name. We will find a use for it in section 11.)

A typed list is used to declare the types of a list of entities; the types are preceded by
a hyphen (“-”), and every other element of the list is declared to be of the first type that
follows it; if there are no types that follow it, OPT is to infer the type. An example of a
<typed var list>is

x y - Integer® 71 - (Lst® Integer®)

As explained above, the question marks in front of variables are optional.

Fun® and Tup® are not quite type functions, because of their idiosyncratic syntax. The
argument position of a Fun® may be written (Arg® ...), or the Arg® may be implicit.
Similarly, the value position of a Fun® may be written with or without the explicit Val®.
The syntax of Arg® and Tup® are identical; Val is somewhat simpler. They are all based on
the syntax of Common Lisp (Graham 1996), which exploits fully parenthesized syntax to
allow for very flexible argument-passing conventions.

The easiest way to understand the Arg® syntax is to focus on the syntactic element
<named params spec>; <anon params spec> is essentially the named version with the
names removed. A <named params spec> specifies required arguments and optional ar-
guments (if any), followed by either a &rest argument or a list of &key arguments. Every
required argument is specified by a single named parameter. Optional arguments may
have default values if omitted, in which case the parameter is written (<name> <default
value>). (The syntactic element <term> will be explained in section 2.3.) If the default is
not specified, it is the standard “zero” value for the parameter’s type (e.g., 0 for Integer®,
""" for String®, and so forth).

The &rest parameter row consists of a name followed by an optional type declaration.
&rest m - Integer® indicates that the presence of zero or more Integer®s. In a Tup®, this
notation means that the m slot (accessed by !m) is of type (Lst® Integer®). A double
hyphen is a variant in which we give the type of the slot rather than the type of each element
of the slot. So we could write &rest m -- (Lst® Integer®) with the same meaning.

Instead of a &rest parameter, one can write &key followed by a keyword parameters. In
the simplest case parameters are declared as in this example:

ff - (Fun® String® <- (&key x y - Integer®))

after which we can use £f by writing, e.g., (ff :x 3 :y 4),or (ff :y 40 :x 30), or even
(ff :y 50). Keyword arguments may occur in any order, and some may be omitted. One
can add a default value by writing a <df1t-param> instead of a <variable>. One can make

11



the keyword differ from the slot name by writing ((<keyword> <variable>) <term>). If
we use these conventions to define £f, we might end up with:

ff - (Fun® String® <- (&key (x -3) ((:y-arg y) 0) - Integer®))

So that (£ff :y-arg 4) means the same as (ff :y 4 :x -3) in the previous version. If
we declare a tuple thus:

tl - (Tup® &key (x -3) ((:y-arg y) 0) - Integer®)

then if t1 is bound to the value of (tuple :y-arg 10), it will have two slots (!_x t1),
with value —3, and (!_y t1), with value 10.

There is one semantic difference between Tup® on the one hand, and Arg® and Val on
the other. The latter are “row types,” meaning that an Arg® or a Val with one element is
indistinguishable from that element, whereas a tuple or record with one element is not the
same as that element alone. A function whose range type is (Val n - Integer®) is the
same as one with range type Integer®, except that the former allows us to use the name n
to stand for the value in appropriate contexts.

Type rows are essentially the same as parameter rows, but with all the names taken out.
However, we have to have conventions for handling nameless &rest and &key arguments.
We interpret &rest t as &rest _ - ¢; to say &rest _ -- t in parameterless style, write
&rest (= t). For &key parameters, you simply write the keywords and their types. So the
type of the second version of our function £f might be written

(Fun® String® <- (&key (:x Integer®) (:y-arg Integer®)))

For a table of all the built-in types of OPT, see section 13.1.

2.3 The Logical Language

The basic syntax of the language is very simple. The primary syntactic element we define in
this section is <term>. Most terms are simple applications, of the form (f —args—). The
term grammar is very general, and can generate lots of bogus terms, such as (+ (\\ (x)
(1 x))). These terms are weeded out by the typeability requirement of section 2.2. As
new syntactic constructs are presented, I will sketch the typeability rules associated with
them.

Let me emphasize again that the language I am describing is a logical language, not
a programming language. To avoid misleading distractions I will eschew phrases like “the
value of this term is ...,” and instead say things like “the denotation of this term is ....
To repeat what I said above, nothing is “called,” and nothing “returns a value” in a logical
language.

)

<term> = <literal> | <name> | <variable>
<term> = (<term> <term>T)

<term> = (1& <term> <term>T)

<term> = (make <type> <term>™)

<term> = (! _<name> <term>)

<term> = (let-var <typed list (let-binding)>
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<term>
[ :where <typed row (let-binding)>)]

<term> ::= (\\ <function-def-innards>)

<term> 1:= (is <type> <term>)

<term> ::= (be <type> <term>)

<term> ::= (if <term> <term> <term>)

<term> 1:= (> <term> <term>)

<term> i:= (K- <term> <term>)

<term> ::= (when <term> <term>)

<term> ::= (and <term>*

<term> ::= (or <term>*)

<term> ::= (declare <typed list (variable)>
<term>)

<term> ::= (Kquantifier> (<typed row (variable)>

[<rest param row>])
<term>)

(<name> <term>)
[- <val type spec>] <name arg spec>

<let-binding>
<function-def-innards>

<term>
<literal> = <boolean> | <number> | <string> | ’<name>
<boolean> = true | false
<quantifier> = forall | exists | exists! | freevars

Let’s explain each line in turn. The first line is self-explanatory. Literals in OPT include
the usual Boolean®s, numbers (Integer® and Float®) and String®s, plus Symbol®s, which
are just quoted names. (That is, there is a literal format for every primitive type in the
hierarchy of section 3.)

The second line,

<term> = (<term> <term>1)

is for function applications. A function application (f —arg tuple-) has type R if f has type
(Fun® R <- A) and the arg tuple has type A. Note that the object in function position
can be any term, not just a name, so long as it obeys this type rule. For instance, if m is of

type
(Lst® (Fun® String® <- Integer®))
then ((car m) 3) has type Integer®.

<term> := (& <term> <term>T)

refers to level-1 function application. The first term must denote a level-1 function. The
arguments (if any) usually denote types, but other sorts of argument are allowed, provided
they are all defined when the type of the term is determined. The typing rule for level-1
function application is essentially the same as the rule for level-0 application.

<term> ::= (!_<name> <term>)
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is for “slot access.” For this to be typeable, <term> must be of a structured type (a Tup®)
with a field named <name>. The term (! _<name> <term>) then refers to the contents of
field <name>. The type of the term is then the type of that field. If the structured type has
anonymous fields, they can be referred to as if they were named <1>, <2>, etc.

<term> ::= (let-var (<typed list (let-binding)>)
<term>
[ :where (<typed list (let-binding)>]
<let-binding> (<name> <term>)

The denotation of (let-var (—war-bindings—) e) is the denotation of e in an environment
where each <name> is bound to the denotation of its corresponding <term>. If it’s clearer
to put bindings at the end of the expression, you may do so, if they’re prefixed by keyword
:where; the bindings at the front still have to be there, but can be (). Example:

(let-var ((s (set-of-all (\\ (x - Planet) (inhabited x)))))
(and (elt earth s) (elt mars s)))

The type rule for (let-var ((v; a1) ... (vg ag)) e) is that, if e has type ¢ in an
environment where each v; has type t;, where t; is the type of a;, then the entire let-
expression has type t.

<term>
<function-def-innards>

(\\ <function-def-innards>)

[- <val type spec>] <typed list(name)> <term>

The \\ is our substitute for A, which is not available on most keyboards.
(\\ [- <type spec>] <name arg spec> €)

denotes an anonymous function whose arguments are given by the <name arg spec>, and
whose value, e, is of type <type spec>. The value type is optional because OPT can usually
figure it out.

The typing rule for (\\ a e) is that if e has type ¢ in an environment where all the
variables of a have their declared types, then the \\ expression has type (Fun® ¢ <- a).

<term> ::= (is <type> <term>)
(is t e) istrueif and only if e is of the given type. This expression itself is of type Boolean.
<term> ::= (be <type> <term>)

is a declaration that the given <term> is of the given type. You can abbreviate (!_s (be t
e)) as (1 _(t s) e). Note that be is merely a hint to the reader or the type checker that
<term> has the given type; it doesn’t override anything, or give rise to a “run-time check,”
which is meaningless in a language with no run time.
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<term> ::= (if <term> <term> <term>)

has the usual meaning: (if v a b) has the same denotation as a if the denotation of v is
true, and the same denotation as b if the denotation of v is false®. (if v a b) has type
u if both a and b have type u. (if v a true) may be abbreviated (if v a). The variants
(=> v a) and (<- a v) are explained in section 8. The variant (when v e) is explained
in section 5.2.

Some terms used in the antecedent (v-part) of an if have type implications. For instance,
if we write

(if (null 1) 0 (- (car 1)))

in a context where 1 is declared to be of type (Lst® Number®), the fact that 1 is not empty,
as it is known to be in the false branch of the if, implies that 1 is of type (Tup® Number®
&rest Number®), and hence that (car 1) is of type Number®. Similarly, in the true branch,
1 is known to be of type (Tup®), the empty tuple. In general, we say that a term has type
implications if knowing its type tells us something about the types of the variables that
occur in it. (if w B; By) then really means

(if w
(declare It B_t)
(declare I_f B — f))

where I; are the type implications of knowing that w is of type (Con true®) and Iy are the
type implications of knowing that w is of type (Con false®). (See below for the explanation
of declare.) Our example then translates to

(if (aull 1)
(declare (1 - (Tup®))
0)
(declare (1 - (Tup® Number® &rest Number®))
(= (car 1))))

The connectives and and or are defined in terms of if in the usual way: (and) means
true; (and c¢; ...cp) means (if ¢; (and ...c;) false®). (or) means false®; (or ¢
...c) means (if ¢y true (or ...cg)). Because of these equivalences, and and or are
not commutative, due to the possible type implications of ¢; on later c;. For example,

(or (and (is Camel x) (two-hump x))
(and (is Rhino x) (one-horn x)))

where two-hump and one-horn apply only to Camels and Rhinos, respectively, would not
be typeable if the orders of the arguments to the ands were switched. The construct (is y
x) has the obvious type implication, namely, that x is of type y.

<term> ::= (declare <typed list (variable)>
<term>)
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means the same thing as <term>, except that hints are provided to the type checker that
the variables in <typed list (variable)> should be treated as though they were of the
declared types. Important: These hints cannot be used to change the types of the variables
arbitrarily. If the type checker cannot prove that the variables have the indicated type, it
should signal an error. [[Actually, it’s a bit more complicated than that. The type checker
is allowed to constrain type variables in the course of the “proof,” so it’s more a license to
discard some of the polymorphism. Example: if 1 is known to be of type “list of something,”
(declare (1 - (Lst® Eland)) ...) restricts it to be a list of Elands. ||

<term> ::= (<quantifier> (<typed row (variable)>
[<rest param row>])
<term>)

There are four quantifiers, forall, exists, exists!, and freevars. (forall v P[v]) is
true iff Pla] is true for all properly typed values of the variables in v. (exists v Plv]) is
true iff P[a] is true for some value of the variables v. exists! is similar, but is true iff
there is exactly one assignment to the variables v that makes P true. (freevars v P[v])
is a quantifier only “syntactically.” It just means, Let variables v be free in P[v], but it
provides a way of declaring them. In most cases, freevars is synonymous with forall, as
in Prolog.

Quantified expressions are of type Prop, for “proposition.” The difference between
a Prop and a Boolean is that the former can change value from situation to situation.
For instance, (location Titanic Southampton) is true in some situations, false, alas, in
others. A Situation® is a state of affairs, a specification of the truth values of all ground
atomic formulas. A Fluent® is a function from Situation®s to values; more precisely:

Fluent® = (Fun® u <- (Situation® '& u))

We can then define a Prop as a (Fluent® Boolean).

In most contexts, an object of type y is acceptable whenever an object of type (Fluent®
y) is required, and vice versa. Appropriate coercion rules are applied, as described in
section 3.

For future reference in this manual, we introduce various subcategories of term, usually
based on their types, but occasionally requiring other constraints. Here are some of those
subcategories:

e An <action term> is a term with type Action
e A <proposition> is a term with type Prop

e A <goal proposition> is a <proposition> used to specify preconditions of actions,
and other goals. See section 5.

e An <effect proposition>is a <proposition> used to specify effects of actions. See
section 5.2.
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Let us close this section with a further exhortation not to assume that the logic subset
of OPT is a programming language. When we write (if (> m n) m n), we do not mean,
“Test whether m is greater than n, and if so....” There may not be any method for testing
the inequality, and if there is the agent may not always know it. When we write

(exists (p - Planet)
(and (orbits p sun) (not (= p earth)) (inhabited p)))

we do not mean “Loop through the planets that orbit the sun.” Instead, the formula simply
denotes true in universes where there is an inhabited planet in the solar system besides
earth, and false® in all other universes. There may no easy way to tell which category our
universe falls in.

OPT does include an imperative sublanguage, which will be described in section 5.
However, its semantics are completely compatible with the semantics of the rest of the
language. That is, a term in the imperative sublanguage denotes something for an agent
to do, sometimes a complex structure of actions. Considered as a term, that’s all it does.
Of course, somewhere there has to be a plan executor that can take that term and perform
the actions it describes.

3 Built-in Types: Primitives, Fluents, Expressions

The primitive types, with subtype relationships shown, are as follows

0bj
Number
Integer
Float
Char
String
Symbol

(These are all built in, and all described in section 13.3.)

Arithmetic and comparison functions are defined on type Number®. However, the type-
inference system treats these functions as overloaded, so that, for instance, if x is of type
Float®, the expression (+ x 1) is treated as meaning (+ x 1.0), and as being of type
Float®. That is, an arithmetic expression is of type Integer® only if all its arguments are;
if it has any argument of type Float®, it is of type Float®; otherwise, it is of type Number®.

To make this work, OPT is provided with a modest coercion system that fixes type errors
silently when it can using various ad-hoc rules. One of them is that if an Integer® is found
where a Float® is wanted, the Integer® is treated as the Float® with the “same” value (in
an inevitably implementation-defined sense).

In addition, in domains declaring the :data-structures requirement, we have the type
Sexp®, or “S-expression,” defined as

(Alt® Symbol® String® Char® Number® (Lst® Sexp®)))
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The type constructor (Fluent® y) is built in to OpPT, and defined as (Fun® y <-
Situation®), that is, a quantity of type y whose value changes from situation to situa-
tion. The type Prop®, for “proposition,” is the type produced by all predicates, and is
defined as (Fluent® Boolean®).

If a domain declares requirements :fluents, then there are many more possible things
one can do with fluents, which will be described in the appropriate sections below.

Arithmetic and comparison functions may, through the magic of coercion, be applied to
fluents. Actually, the rule is more general. In any context where an expression of type y is
wanted, if an expression e of type (Fluent® y) is found, it is treated as (f1-v°® e), which
means “the value of e in the current situation.” Similarly, if e is of type y, and (Fluent®
y), is required, e is treated as (f1-"** ¢), which means “the fluent that has value e in all
situations.”

If a domain declares requirement :expression-evaluation, then it supports computa-
tional equality substitution, in which an expression such as (+ ?x 5) is replaced by 12 when
7x has value 7. The built-in predicate eval® provides the canonical context for this kind of
substitution: (eval® E V) is true if the computational value of expression F is V. F is
an expression using the functions +, -, *, /, min®, max®, and £1-v®. The first argument to
e®val is said to be an evaluation context. If E contains any unbound variables, then it has
no computational value, and no conclusion can be drawn regarding the truth or falsity of
(eval® E V).

There are several other evaluation contexts in OPT, including both argument positions
to the inequalities >, =<, etc. The proposition (bounded-int® I L H) is true if [ is an
integer in the interval [L, H]. L and H are evaluation contexts, as is [ if it has no variables.

Note that eval® is a special case of equality, with a nudge to the deductive system that
its first argument should be evaluated. Another version of equality is (equation® L R),
for which the “nudge” is as follows: If there is a single unbound deductive variable ?v with
one or more occurrences in L and R, then for every value of x of that variable that makes the
values of L and R the same, the conclude (= {v = z}(L) {v = z}(R)), where {v = z}(e)
means e with all occurrences of ?v replaced with . E.g., if ?y has been bound to 6, and 7x
is unbound, then (equation (+ ?x 2) (- 7y 3)) is true, provided ?x = 1. Exactly what
equations are solvable is implementation-dependent, but every implementation should at
least handle the case where there is a single occurrence of an unbound variable, buried at
most inside an expression of the form (+/- ...).

If the OPT syntax checker (which is beyond the scope of this manual) cannot figure out
a valid type for an expression, it will issue an error message. Its complaints are usually
correct, but sometimes it has overlooked something. If you need to give it a hint about the
type of an expression e, the usual way is to declare some of the variables occurring in e; an
alternative is to replace e with (be y e) to declare that e should have type y. Then instead
of trying to infer a type for e, it can work on the easier task of verifying the declared type.

4 Domains

An Opt file consists of a series of domain definitions, addendum definitions, and problem
definitions, defined here, in section 9, and section 10.
The EBNF for defining a domain structure is:
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<domain-def> ::= (define (domain <name>)
[<extension-def>]
[<export-def>]
[<require-def>]
[<types-def>]
<complex-type-def>*
<type-function-def>*
[<objects-def>]
[<parameters-def>]
[<predicates-def>]
[<functions-def>]
[<facts-def>]
<structure-def>*)

(:extends <parent>™)

<name>

See section 11.

See Section 11.

(:requirements <requirement>")

See Section 13.2

(:types <typed list(name)>)

<extension-def>
<parent>

<parent>
<export-def>
<require-def>
<requirement>
<types-def>
<complex-type-def>
::== (:type <name> <type-defn>)

<type-function-def>
::== (:type-fun <name> <typed list(name)>
<type-defn>)
<objects-def> ::= (:objects <object declarations>)
(:parameters
<typed list(parameter-declaration)>)
(:predicates <atomic formula skeleton>™)
(:functions
<typed list (function skeleton)>)

<parameters-def> ::

<predicates-def> ::
<functions-def>

<atomic formula skeleton>
::= (<name> <named params spec>)
<function skeleton>
::= (<name> [- <type>] <named params spec>)
(:facts <proposition>™)
(:axioms <proposition>™)
<action-def>

<facts-def>
<facts-def>
<structure-def>

<structure-def> ::='domain—axioms <ayjom-def>
<structure-def> ::=iaction—expansions ¢pothod-def>
<structure-def> ::=ProceSSeS <process-def>
<structure-def> ::='durative—actions <qyrative-def>

Although we have indicated the arguments in a particular order, they may come in any
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order, except for the (domain ...) itself.

If the :extends argument is present, then this domain inherits requirements, types,
objects, facts, axioms, and actions from the named domains, which are called the ancestors
of this domain. Inheritance is transitive.

The :requirements field is intended to formalize the fact that not all systems can
handle all domains statable in the OPT notation. The listed requirements indicate the
range of constructs that will be used in the domain being described. If a construct is used
that requires a feature that the domain didn’t declare, an OPT processor should complain.
In general, a domain is taken to declare every requirement that any ancestor declares. A
description of all built-in requirements is found in Section 13.2.

The <types-def> defines simple named types. It uses a <typed list (name)>, but
with a different interpretation than normal.

(:types Elephant Ant - Animal Positive-integer - Integer®)

declares three new types, Elephant, Ant, and Positive-integer, and declares them to be
subtypes of Animal, Animal, and Integer®, respectively. (It does not declare any object to
be any of those types.)

A :type clause allows us to name an arbitrary type. Example:

(:type Message (Lst® (Tup® String® String®)))

This definition declares Message to be synonymous with (Lst® (Tup® String® String®)).
By contrast, a :types clause declares a type to be an anonymous subtype of a given type.
A :type-fun clause defines a type function. Example:

(:type-fun (Mess a)
(Lst® (Tup® a a)))

The :parameters declaration is described in Section 3.

The :objects field has the same syntax as the :types field, but the semantics is dif-
ferent. Now the names are taken as new constants in this domain, whose types are given
as described above. E.g., the declaration

(:objects sahara - Theater
divisionl division2 - Division)

indicates that in this domain there are three distinguished constants, sahara denoting a
Theater and two symbols denoting Divisions.

The :parameters field defines parameters that vary from domain to domain. [[These
were originally called :domain-variables, but I believe “parameter” is a better term.]|
The syntax is

<parameters-def> ::= (:parameters
<typed list(parameter-declaration)>)
<parameter-declaration>
::= <name> | (<name> <constant>)

Each such parameter is treated as its value in evaluation contexts.
E.g.:
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(define (domain cat-in-the-hat)
(:types Thing - Integer)
(:parameters (numthings 2) - Integer®)

(:axiom
:vars (71 - Integer®)
:context (bounded-int® ?i 1 numthings)
:implies (is Thing ?7i)))

The axiom (see section 8) states that “a Thing is an Integer between 1 and the value of
numthings (in this domain, 2).”

The :predicates field consists of a list of declarations of predicates, once again using
the typed-list syntax to declare the arguments of each one. Example:

(:predicates (loves ?x 7y - Person)
(gender-of x - Person g - Gender))

The question marks before variables are optional in this context.

The :functions field is a list of declarations of functions. A function f is a constructor
of terms, (f --args--). It is not a function in the sense used in functional programming.
To describe a function, we have to describe the types of its arguments, but also the type it
produces. There are two places to put the type. One is after the function symbol, as in:

(:functions (list-sum - Integer® (1 - (Lst® Integer®)))
(main-element - 7u (1 - (Lst® ?7u))))

indicating that 1ist-sum produces type Integer®, and that main-element produces type
7u when given a list of objects of type 7u. The last question mark is significant; as explained
in section 2.2, its presence declares main-element to be a level-1 function whose argument
is a type u, and that produces a level-0 function that produces type u. Normally you may
forget the details, unless your ontology fails to type-check.

If several of the functions in the list produce the same type, we can move the type up
a layer of parens:

(:functions (plus &rest 1 - Number®)
(times &rest 1 - Number®)
- Number®
(book-title b - Book)
(book-author b - Book)
- String®)

indicating that plus and times produce Number®, and book-title and book-author pro-
duce String®.*

A predicate is just the special case of a function that produces type Prop. There is no
difference between the :predicates declaration above and

4In PDDL2.1, functions all produce the type (Fluent Number). This design decision will surely be
overturned as PDDL evolves, but implementations with a “PDDL2.1 compatibility mode” should provide
(Fluent Number) as a default return type.
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(:functions (loves 7x 7y - Person)
(gender-of x - Person g - Gender)
- Prop)

The : facts field consists of a list of propositions that are taken to be true in this domain.
(:axioms is treated as a synonym for :facts.) It goes without saying that the symbols
used in the facts must be declared either here or in an ancestor domain. (Built-in predicates
such as “=” behave as if they were inherited from an ancestor domain, although whether
they actually are implemented this way depends on the implementation.) See section 8.

A variable like this is scoped over the entire domain, and is inherited by domains that
extend this one. If the variable is redeclared in an extending theory, it shadows the original
binding.

The remaining fields define actions and rules in the domain, and will be described in
their own sections.

5 Actions

5.1 Syntax of Actions
The EBNF for an action definition is:

<action-def> ::= (:action (<name> <name arg spec>)
[ - <val type spec>]
<action-def body>)
<action-def body>

:existential-preconditions
[<vars—spec>] :conditional-effects

[:precondition <goal proposition>]

[:effect <effect proposition>]

[:expansion <action spec>]:action—expansions
[:only-in-expansions <boolean>]:action—expansions

<vars-spec> ::= :vars <typed list (variable)>
<expansion spec> ::= :expansion <action spec>
<expansion spec> ::= :methods

The preferred form for declaring the arguments and values of actions in OPT is to use
parentheses and hyphens in the same way that other functions are declared. However, it is
also permissible to use the old-fashioned PDDL-style notation:

<action-def> ::= (:action <action function>
:parameters <name arg spec>
[:value <action value spec>]
<action-def body>)

22



The :vars list are locally bound variables whose semantics are explained below.

The :precondition is an optional goal proposition that must be satisfied for the action
to be feasible. If no preconditions are specified, then the action is always feasible. The
:effect field lists the changes which the action imposes on the current state of the world.

A <goal proposition> is a <proposition> in which certain constructs are prohibited
unless the domain declares certain requirements:

Construct Requirement

or, not, imply | :disjunctive-preconditions
exists* :existential-preconditions
forall* :universal-preconditions

The asterisks next to exists and forall are to remind us that an exists in a negative
context should be treated as a forall, and vice versa. The polarity, positive or negative, of
an occurrence of a subexpression is defined thus: Moving from the subexpression occurrence
outward, count the number of nots encountered, plus the number of ifs that the occurrence
occurs in the antecedent of. If the number is even, the subexpression is in a positive context;
if odd, it’s in a negative context. So, if a domain declares :disjunctive-preconditions
but not :universal-preconditions, then (not (exists (u v) ...)) is forbidden as a
goal.

If the domain declares requirement :action-expansions, then it is legitimate to include
an :expansion field for an action, which specifies all the ways the action may be carried
out in terms of (presumably simpler) actions. See Section 7.

Free variables are not allowed. All variables in an action definition (i.e.,, in its precon-
dition, expansion, or effects) must be included in the :parameters, :vars, or :value list,
or explicitly introduced with a quantifier.

Variables appearing in the :vars field behave as if bound existentially in preconditions
and universally in effects, except that it is an error if more than one instance satisfies the
existential precondition. So, for example, in the following definition

(:action spray-paint
:parameters (7c - color)
:vars (?x - location)
:precondition (at robot 7x)
reffect (forall (7y - physob)
(when (at 7y 7x)
(color ?y ?7¢))))

the robot must be in at most one place to avoid an error.
The optional argument :only-in-expansions is described in Section 7.
5.2 Effects and Values of Actions

The effect of an action is the way the world changes as a result of executing the action.
An effect is captured in OPT using an <effect proposition>, which has the syntax of
an ordinary proposition, but, in addition to allowing various special constructs, is subtly
different in meaning even in the parts that don’t look special. To avoid confusion, we can’t
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talk about the “truth value” of an effect proposition; it does not “become true,” but is
imposed.

Even a simple atomic formula is imposed in the sense that it is added to the post-action
situation model. The negation of an atomic formula, (not p), when it occurs in an effect
proposition, is imposed by deleting p from the post-action situation model.?

Another pseudo-connective allowed in this context (and not elsewhere) is (when® p
e), which means “If p was true in the pre-action model (i.e., just before the action was
executed), then e (another effect proposition) is imposed as a result of its being executed.”
In section 13.3, these pseudo-connectives, called effect predicates, are specially flagged. For
the exact semantics of when® and its relatives, see section 6.

In addition to an effect, the action may have a value, which reflects information acquired
or created as a result of carrying out the action. Now, this idea of acquiring information is
antithetical to classical planning, which might lead you to ask what the point of returning a
value is. The answer begins by admitting that yes, we are going beyond a classical context.
To start with, action values are primarily useful when actions appear in plans, and can
produce values that are transmitted to later steps.

For example, turning on a light in a dark room changes the average illumination level;
it also tells you if there’s a hippopotamus in the room, which we can model by supposing
the action returns an Integer® value:

(:action (turn-on-light rm - Room)
- (h - Integer®)
:effect (and (bright rm)
(not (dark rm))
(know-val-is (number-of-hippos rm)

h)))

The effect of (turn-on-light ) is that (bright r) becomes true and (dark r) becomes
false. These effects then persist until the next action. The predicate (know-val-is t
¢), is supposed to be true if the agent knows that the value of term ¢ is ¢, where c is a
“computational” object (in this case, an Integer®).

The :value field of an action specifies the type of the value returned when the action
is performed. The value can be used as an input to a subsequent action by using a link,
described in section 7. Even if it is not transmitted to another step, it can be referred to
in the :effect field by declaring its fields and using them as if they were variables. In the
example, h means “the !_h field of the value of this execution of (turn-on-light r).”

Here’s another example (using the PDDL syntax):

(:action take-lunar-measurement

5Tt is surprisingly tricky to say what “deleting,” or even “adding,” is, but for domains not declaring the
:open-world requirement, the idea is that every situation has a finite description as a list of atomic formulas;
cf. section 10. The situation is obtained by assigning value true to formulas on the list, value false to all
other atomic formulas, and then taking the deductive closure under all the axioms of the domain. Adding
and deleting atomic formulas should be considered an operation on the finite description of the current
situation; the resulting situation is then obtained by repeating the deductive-closure operation on the new
finite description. For domains that do declare the :open-world requirement, the semantics of effects are
murky and implementation-dependent.
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:parameters ()

:precondition (...)

:value (?az 7elv - Float®)

:effect (and (know-val (azimuth moon) 7az)
(know-val (elevation moon) 7elv)))

As usual, the question marks are optional.

An action definition defines a function; it takes arguments as specified in the <val type
spec>, and produces an Action®. Actually, we can be more specific than that. If an action
definition specifies no :expansion, then the action defined has type (Fun (Skip® 7) <-
a), where a and r are the argument type and result type specified in the definition. An
object of type (Skip® 7) is an action that takes one “instant” of time (in a sense explained
in section 6) and returns a value of type r. I will call these skips. If an action definition
does specify an :expansion, then its name is declared to be of type (Fun (Hop® r) <- a),
as explained in more detail in sections 6.2 and 7. The type Skip-action® is defined to be
(Skip® (Val® &rest 0bj®)), that is, a skip that returns zero or more values.

5.3 Effects Involving Fluents

If a domain declares requirement :fluents, then it supports some special predicates, par-
ticularly some new effect predicates.

The effect predicate (assign F' F) indicates that the value of fluent F' changesto E. F
is an evaluation context, and its value is computed with respect to the situation obtaining
before the action (cf. when). The effect predicates (increase F' E) and (decrease F
E) are synonymous with (assign F' (+ F' F)) and (assign F' (- F E)), respectively.
Here is an example of how they are used:

(taction (pour 7source 7dest - container)

:vars (7sfl 7dfl - (fluent number) ?dcap - number)
:precondition (and (contents ?source ?sfl)

(contents 7dest 7dfl)

(capacity ?7dest ?7dcap)

(fluent-test (=< (+ 7sfl ?7dfl) 7?dcap)))
:effect (and (assign 7sfl 0)

(increase 7dfl ?7sfl)))

6 Time and Processes

6.1 Process Syntax and Semantics

If a domain declares requirement :processes, then it can have process definitions:

<process-def> ::= (:process(<name> <name arg spec>)
[- <val type spec>]
<process-def body>)
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<process-def body>
:existential-preconditions
o= [<vars—spec>] :conditional-effects

[:condition <goal proposition>]
[:start-effect <effect proposition>]
[:effect <effect proposition>]
[:stop-effect <effect proposition>]

A process is like an action, except that it becomes active whenever its :condition is
true, and remains active only for the time intervals over which the condition is true. The
process is denoted by a constant term (name —args—), as described in its definition. The
term names a unique process; there cannot be two distinct processes active at the same
time named by the same term.

Processes have three effects. To explain them, I have to explain, informally, a bit of the
formal semantics of OPT.

A situation is a snapshot of the state of the universe, i.e., a complete specification of
the truth values of all logical formulas (which I will call “propositions” for brevity). The
logical language of OPT is tenseless, so there are no formulas referring to the future or the
past — and none referring to what time it is, although by using processes one can create
clocks and hence get a time reading if you want.%

This semantic notion is distinct from the syntactic construct of section 10, although
obviously the latter is meant to describe one of the former.”

In classical planning, situations occur in discrete chains, with instantaneous changes of
the truth values of some propositions from one to the next. What happens in between is
undefined, because there is no “in between.” Processes, however, can describe continuous
changes. For instance, we might describe the process of water leaking from a can thus:

(:process (leaking c - Can h - Hole)
(:vars r - Float®)
(:condition (and (hole-in h c)
(>= (level c) (height h))
(= (rate-constant c) r)))
(:effect (deriv-comp® (level c)
(x r (- (level c) (height h))))))

In English: “If there is a hole h in can c, then so long as the water level stays above the
height of h, the derivative of the level will have as one component an amount proportional
to the difference between the water level and h’s height.” We use deriv-comp® here instead
of derivative® because there may be other holes, plus other flows into the can, and it’s

6 Although my semantic ideas borrow heavily from (Reiter 2001), this concept of situation is different
from Reiter’s. He defines a situation in terms of the actions required to reach it. This is natural in some
contexts, but in cases where a situation is not reachable by an agent’s action, or where we don’t care, and
may not know, how a situation might have been reached, the analysis gets a bit strained.

"And, as a previous footnote discusses, the semantics of not in action effects depends on the idea that
every situation that occurs as the result of a chain of actions have a finite description using this syntax.
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the job of the inference system, using a closed-world assumption, to infer what the net
derivative is.

Obviously, the semantics of the 1eaking process can’t be described using discrete strings
of situations. Instead we introduce the notion of a continuum of situations, in which an
infinite number of situations can occur over a finite time period, during which quantities of
type Float® can change continuously.

Continuous and discrete changes have to be able to coexist. For instance, if there is
an action puncture that makes holes in cans, a planner may introduce occurrences of
it in order to speed up the emptying of a can. The most natural approach is to make
puncture be a garden-variety, instantaneous, classical action. To allow for this, we use
an idea from nonstandard analysis (Robinson 1979), permitting there to be an indefinite
number of successors to a situation within an “infinitesimal” period of time. Formally, we
model a situation continuum as a mapping from [0,00) x N to situations. The domain of
this mapping is the set of ordered pairs (r,i), where r is a real number > 0 and i is an
integer in the range [0,n,]. The idea is that r is the date of the situation (measured in
seconds from the initial situation), and 7 is the number of instantaneous planner actions
that have occurred since r. The number n, is a function of the continuum, and is the
number of instantaneous actions that actually occur at r in this continuum. If the planning
agent does nothing, then n, = 0 for all r. At the points where it takes action, n, is the
number of actions it takes (in sequence) at r.

Following (Fox and Long 2001), we adopt the following constraint on action effects: In
a given situation continuum, if an effect is imposed at point (r,n,), then its changes must
remain in place over an open interval in the continuum starting at r, that is, over an interval
(r,7’), where r < r'.

We can then use the following semantic idea for when® and related constructs: (when®
p e) is triggered at (r,i) if i = 0 and p is true over some open interval ending at r, or i > 0
and p is true at (r,i —1). If the when® is triggered, and i = n, then e is imposed over some
open interval (closed on the left) starting at r; if ¢ < n,, then e is imposed at (r,i + 1).

Real-world implementations of OPT can’t calculate the exact times when processes be-
come active or inactive. They must find some close approximation instead. The domain
parameter temporal-grain-size® provides a hint as to what “close” means. The value
of this parameter, (G, is a number representing a time interval such that any change in
continuous quantities over an interval shorter than G is to be treated as negligible. Time
is represented in seconds, so the default value, 0.01, of temporal-grain-size® means that
changes over an interval less than ﬁ second are negligible.

The parameter temporal-scope® is a time interval such that any event that far in the
future is irrelevant. The default value is 10'° seconds, or about 3171 years.

For every process P, there is a fluent (elapsed® P) that is the time (in seconds) that P
has been active. In situations where P is not active, (f1-v® (elapsed® P))= —1. These
fluents are updated automatically, and should not be altered by a user’s process or action
definitions.

Just as a skip-action name is of type (Fun (Skip® r) <- a) for some @ and r, a process
name is of type (Fun (Slide® r) <- a). The type Process® is defined to be (Slide®
(Val® &rest 0bj®)).
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It may seem odd to have processes “return” values, but there are cases, such as the
autonomous action of an agent seeking information, where a return value makes sense.
Such a value may be referred to in the :stop-effect field of a process definition just as
an ordinary action’s value may be referred to in its :effect field. In addition, there is
an action (wait-while® p) that waits for process p to end, then returns the same value p
does.

6.2 Durative Actions

Using the process formalism, it is possible to create models described by complex differential
equations, which are beyond the powers of almost all existing planning algorithms. In
setting up the AIPS 2002 Planning Competition, it was desirable to find ways to constrain
the formalism to make for solvable problems. A good way might have been to require
all derivatives to be piecewise constant. Unfortunately, the way that was chosen was the
somewhat odd notion of a “durative action,” an action that takes a certain amount of time.
This idea may seem straightforward, when one thinks of examples like taking a plane from
New York to Chicago, but even the straightforward examples start to break down if there
is the slightest possibility that something might interfere with the action. In fact, in the
cases where durative actions work, simple process models also work, so the advantages are
not obvious.
Nonetheless, as a public service, OPT includes durative actions. Here is the grammar:

(:durative-action
(<name> <name arg spec>)
[ - <val type spec>]
<durative-def body>)
:duration <duration constraint>
:condition <durative goal>
:effect <durative effect>

<durative-def>

<durative-def body> ::

<duration constraint>

.. —:duration—inequalities

(and <simple duration constraint>™")
<duration constraint>

::= <simple duration constraint>
<simple duration constraint>

::= (<d-op> 7duration <numerical expression>)
<simple duration constraint>

::= (at <time-specifier>

<simple duration constraint>)

<d-op> ==
<d—0p> ::=:duration—inequalities =< I >=

<time specifier> at start | at end | over all

The syntactic categories <durative goal> and <durative effect> are the same as
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<goal proposition> and <effect proposition>, except that the following special con-
struct may occur within them:

(<time specifier> p),
where p itself contains no time specifiers.

The intended meaning is that p be true either at the beginning or end of the durative action,
or that it be true throughout its execution.®

In addition, in the :effect field of a durative action, the symbol #t means “elapsed
time so far.” So an effect like (decrease (fuel-level 7p) (* #t (consumption-rate
7p))) means that the fuel level of ?p decreases continuously as a linear function of time
(assuming that (consumption-rate ?p) is not itself changing).

We can explain how durative actions work by viewing them as “macros” that expand
into an underlying process-based representation. (Cf. (Fox and Long 2001).) Suppose we
have a durative definition

(:durative-action a - v
:duration d
:condition c
:effect e)

First, introduce some new functions:

(dur-happening® a): The process corresponding to durative action a.

(dur-start® a): The action of starting the durative process.

(dur-stop® a): The action of stopping the durative process.

(dur-in-progress® p d— d> d<): True if

1. durative process p has started and not yet stopped;
2. its duration is constrained to be = to d_;

3. its duration is constrained to be > d>;
4

. and its duration is constrained to be < d<.

(dur-trace® [initial|throughout] p ¢): True if ¢ was true when p started, and,
in the throughout case, has been true ever since.

Second, classify the pieces of d, ¢, and e thus:

e legs(d): The formula (eval® (min® [ ... l;) 7Dle) constructed by extracting I;
from each expression (=< ?duration [;) in d. (?Dle is a special logical variable that
is assumed not to occur anywhere else.)

8The symbols at and over are not exactly reserved words of OPT. Users may use them as predicates if
they wish, provided there is no possibility of taking an occurrence of one of them as the beginning of a time
specifier.
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e geqs(d): The formula (eval® (max® g; ... gx) 7Dge) constructed by extracting g;
from each expression (=< ?duration g;) in d. (?Dge is a special logical variable that
is assumed not to occur anywhere else.)

e cqgs(d): The conjunction of (eval® e 7Deq) for each expression (= ?duration e) in
d; if there are no such expressions, then egs(d) is (= ?Deq ?Dle). (7Deq is a special
logical variable that is assumed not to occur anywhere else.)

e stc(c): The conjunction of all primitive subformulas p of ¢ (see below) that either
occur with an explicit (at start p), or do not occur inside an at or over.

e enc(c): The conjunction of all primitive subformulas p of ¢ that occur inside an explicit
(at end p).

e oac(c): The conjunction of all primitive subformulas p of ¢ that occur inside an explicit
(over all p).

e ste(e): The conjunction of all primitive subformulas p of e that occur inside an explicit
(at start p).

e dte(e): The conjunction of primitive formulas p’ obtained from all primitive subfor-
mula p of e of the form ([increase | decrease]l f (x #t d)), by replacing the
(increase ...) or (decrease ...) with (derivative f d) or (derivative f
(= d)) respectively.

e cne(e): The conjunction of all primitive subformulas p of e that contain no occurrence
of #t, and either occur with an explicit (at end p), or do not occur inside an at or
over.

The phrase “primitive subformula” used repeatedly in these definitions is defined as
follows: Quantifiers and whens may occur in conditions and effects, in various combinations.
A primitive subformula is an atomic formula or its negation, with the quantifiers and whens
above it intact (after nots have been moved in as far as possible). For example, suppose
the following occurs in an effect E:

(forall (u)
(and (when (at start (P x y w))
(at start (F x uw)))
(when (over all (Q y uw))
(not (G x w))))

Here x and y are action parameters, while u is a locally quantified variable. Then ste(E)
will include this conjunct:

(forall (u)
(when (at start (P x y u))
(F x w))

and ene(E) will include this one:
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(forall (u)
(when (over all (Q y uw))
(not (G x uw))))

We require one further transformation on these subformulas, which is to eliminate all oc-
currences of “at start” and “over all” from the whens. We do this with the dur-trace®
predicate introduced above. All occurrences of (at start ¢) are replaced by (dur-trace®
initial p ¢), and all occurrences of (over all ¢) arereplaced by (dur-trace® throughout
p q), yielding the following as the final versions of the fragment of £ we started with:

ase(E):
(forall (u)
(when (dur-trace® initial (dur-happening® D) (P x y u))
(F x w))

ene(E):
(forall (u)
(when (dur-trace® throughout (dur-happening® D) (Q y u))
(not (G x u))))

where D is the term denoting the durative action.

Finally, we have to set up new effects to maintain the dur-trace®s. Define +asene(e)
as a conjunction containing, for each (at start ¢) found, a conjunct of the form (when ¢
(dur-trace® initial (dur-happening® D) ¢)). Define +oaene(e) in an analogous way
for all the (over all ¢)’s, substituting throughout for initial. Finally, define -oaene(e)
as a conjunction containing, for each (over all ¢) found, a conjunct of the form (when
(not ¢q) (not (dur-trace® throughout (dur-happening® D) ¢))).

In our example, +asene(E) would contain

(when (P x y uw) (dur-trace® (dur-happening® D) initial (P x y u)))

+oaene(E) would contain

(when (Q y u) (dur-trace ® (dur-happening® D) initial (Q y w)))

and -oaene(F) would contain

(when (not (Q y w))
(not (dur-trace® (dur-happening® D) throughout (Q y u))))

Now we can expand the given durative definition into two or three definitions, depending
on whether egs(d) is empty or not. If it’s empty, then there is no set duration for the action,
and the action ends only when explicitly stopped. The planner can decide to stop the action
after any time interval that satisfies the given inequalities gegs(d) and legs(d). But if egs(d)
is nonempty, then the duration is completely constrained by those equalities. Stopping
would be redundant or contradictory, and so we do not define dur-stop at all.
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Fortunately, the process of starting a durative action is the same in either case:

(raction (dur-start® a)
:vars (Deq Dle Dge - Float®)
:precondition (and stc(c) oac(c) egs(d) legs(d) gegs(d)
(=< Dge Dle) (=< Deq Dle))
reffect (and (dur-in-progress® a Deq Dge Dle)
ste(e) +asene(e) +oaene(e)))

If egs(d) is nonempty, then there is no definition for dur-stop, and the definition of

dur-happening is as follows:

(:process (dur-happening® a)
:vars (Deq Dle Dge - Float®)
:condition (and (dur-in-progress® a Deq Dge Dle)
(< (elapsed® (dur-happening a))°®
Deq))
:effect (and dte(d) -oaene(d))
:stop-effect (and (when enc(c)
ene(e))
(not (dur-in-progress® a Deq Dge Dle))))

If egs(d) is empty, then the process definition is as follows:

(:process (dur-happening® a)
:vars (Deq Dle Dge - Float®)
:condition (and (dur-in-progress® a Deq Dge Dle)
(< (elapsed® (dur-happening® a))
Dle))
ceffect (and dte(d) -oaene(d))
:stop-effect (and (when (and enc(c)
(dur-in-progress® a Deq Dge Dle))
ene(e))
(not (dur-in-progress® a Deq Dge Dle))))

and dur-stop® is defined thus:

(:action (dur-stop® a) - v
:vars (Deq Dle Dge - Float®)
:precondition (and (dur-in-progress® a Deq Dge Dle)
(>= (elapsed® (dur-happening® a))
Dge)
(=< (elapsed® (dur-happening® a))
Dle))

;effect (and ene(e)
(not (dur-in-progress® a Deq Dge Dle))))

32



Note that when egs(d) is empty, there are two ways for the durative action to end. Either
the time limit D1e can be reached, or the planner can execute the action (dur-stop® a).
The first case is handled by the dur-happening® definition, the second by the dur-stop®
definition. Both definitions must be ready to impose the effect ene(e), but at most one will
be applicable for any given process instance.

Although this translation process sounds complex, most of its subtleties are never exer-
cised, so in almost all cases the result is pretty simple. For instance, here is a durative-action
definition from the 2002 AIPS competition:

(:durative-action fly
:parameters (7a - Aircraft ?cl 7c2 - City)
:duration (= 7duration (/ (distance 7cl 7c2) (slow-speed 7a)))
:condition (and (at start (at 7a 7cl))
(at start (>= (fuel 7a)
(* (distance 7cl 7c2) (slow-burn 7a)))))
:effect (and (at start (not (at ?7a ?cl)))
(at end (at 7a 7c2))
(at end (increase total-fuel-used
(* (distance 7cl 7c2) (slow-burn 7a))))
(at end (decrease (fuel 7a)
(* (distance 7cl 7c2) (slow-burn 7a))))))

Here is the translation:

(:process (dur-happening® (fly 7a - Aircraft 7cl ?c2 - City))
:vars (Deq Dle Dge - Float®)
:condition (and (dur-in-progress® (fly 7a 7cl 7c2) Deq Dge Dle)
(< (elapsed® (dur-happening® (fly 7a 7cl 7c2)))
Deq))
:stop-effect (and (at 7a 7c2)
(increase® total-fuel-used
(* (distance 7cl ?c2) (slow-burn 7a)))
(decrease® (fuel 7a)
(* (distance 7cl ?c2) (slow-burn 7a)))
(not (dur-in-progress® (fly 7a 7cl ?7c2) Deq Dge Dle))))

(raction (dur-start® (fly 7a - Aircraft 7cl 7c2 - City))
:vars (Deq - Float®)
:precondition (and (at 7a 7cl)
(>= (fuel 7a)
(* (distance ?cl ?c2) (slow-burn 7a)))
(eval (/ (distance 7cl 7c2) (slow-speed 7a))
Deq))
reffect (and (dur-in-progress (fly 7a 7cl 7c2) Deq —oo 00)
(not (at 7a ?7c1))))
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I should point out that these “virtual” process and action definitions are not syntactically
valid OPT, because of the presence of the non-variable term a (e.g., (fly 7a ?7cl 7c2) ) as
an argument. You could make them legal by introducing functions such as dur-start-£fly,
dur-happening-fly, and so forth, and discarding the “extra level of parentheses.”

The type of a symbol defined using :durative-action with value r and arguments a
is (Fun (Hop 7) <- a), the same as an action with expansions; see next section.

7 Action Expansions

An expansion of an action A is a structure of actions E such that successfully executing F
is a way of executing A. For instance, to get a Windows machine to become healthy when it
is sick, it suffices to reboot. To reboot, you must click the “Shut down” entry on the Start
menu, then select “Restart,” then wait until the computer is back to its normal operating
state. These three actions are an expansion of the action “Reboot.”

It is sometimes possible to avoid the use of expansions by introducing artificial propo-
sitions. For instance, one could say:

e To make a Windows machine m healthy, do the primitive action?, “Wait until normal
desktop appears,” with precondition (P2 m).

e To achieve condition (P2 m), select “Restart” from the active menu, with precondi-
tion (P1 m).

e To achieve condition (P1 m), click the “Shut down” entry on the Start menu.

Here (P1 m) means, in essence, “Shut down has been clicked and Restart has not been
selected”; and (P2 m) means, “Restart has been selected, but the normal dektop has not
appeared yet.” Putting things this way doesn’t seem to provide much enlightenment. There
are really only one or two ways to reboot a Windows machine, and concealing them beneath
a pile of artificial preconditions seems pointless (except, of course, that many planners think
only in terms of causes and effects, not expansions, so for them this tactic is a necessity).
Furthermore, the causal explanation the P1-P2 story provides for why clicking Shutdown
and selecting Restart actually do what they’re supposed to is obviously bogus. There is a
correct causal story, but most of us don’t know much about it. About all we know is: Click
Shutdown, select Restart, wait.
The Windows-reboot expansion can be formalized thus:

(seq® (click shut-down) (select restart) (wait desktop-normal))

where (seq® ai ...a,) means, intuitively, “Do a1, then as,...” and so forth.

If we augment seq® with parallel®, we can build large structures of actions. But the
actions will have no relations with each other besides the basic sequencing mechanism. To
go further, we need another building block, the action link, a sort of communication channel

9Waiting is not really a plausible primitive; it should really be modeled using autonomous processes; see
section 6.
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between steps.!? A link gets a value when one action in an expansion sets it. The value is
read by later actions.

For example, a plan to ask someone for a credit-card number and then send it to an
authorization center might be written

(with-links (cclnk - (ccnum - String®))
(seq® (link (ask-credit-card cust101) :output cclnk)
(1ink :input cclnk
(send (!_ccnum cclnk) auth-center))))

where (ask-credit-card) is defined as

(raction (ask-credit-card x - Customer)
:value (Val® cc - String®)
reffect (know-val-is (ccnum x) cc))
(although of course the real version of this action would have its own expansion)

The 1ink specs explain how the values are transmitted: :output means that the link gets
set, :input means that it gets read, by this action.

In other cases, links are used to express step-ordering relationships that go beyond what
seq® and parallel® can express. See below.

OpT allows plans like these in the :expansion fields of action definitions, provided
the domain declares requirement :action-expansions. Actions defined using :expansion
fields are said to be hops; the others are skips. A skip occurs “instantaneously” (in that
no other events occur between when it begins and when it ends). A hop is defined by an
expansion, and occurs whenever a complex of subactions described by the expansion occurs.
Two such actions A1 and Ay may well occur over overlapping subintervals, so that primitive
actions that are part of Ay occur during the interval spanned by the execution of Aj.

The presence or absence of the :expansion field in an action definition is an unam-
biguous indicator of whether it is primitive or composite. As we will discuss in section 9,
an action may have extra expansions, called methods, defined after the action is. If all
the expansions of the action are defined this way, then the :expansion field must still be
present, but with the placeholder :methods instead of an action spec. (Even though the
description of methods is postponed to section 9, a method may be defined in the same
domain definition in which its action is defined.)

The :expansion field in an action definition has the syntax described below.

<action-term>
(with-links (<typed row (name)>)
<action spec>
<action constraint>*)
(1ink <1link rel>*
<action term>

<action spec>
<action spec>

<action spec>

0This idea is the joint work of Mark Burstein and me. In some ways it is very similar to the idea of a
rendezvous in the the Ada programming language (Johnston 1997), but not quite identical.
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<link rel>*)
<action spec> ::= (forsome <typed list(variable)>
[<goal proposition>]
<action spec>)
<action spec> . . =:foreach—expansions
(foreach <typed list(variable)>
<goal proposition>
<action spec>)

<link rel> ::== <link mode> <name>
<link mode> ::== :output | :then | :begin-then
| :input | :wait | :wait-end | :span

<action constraint>

(:postcondition <link name> <proposition>)
<action constraint>

(:maintain <link name> <proposition>)

If there is a choice of expansions, it is indicated using choice®. (choice® A; ... A) is
executed whenever any of the A; is executed. (forsome v Plv] A[v]) is executed by execut-
ing any instance of A[v] such that v satisfies P[v] when execution begins. (foreach v P|v]
Av]) is executed by executing all instances of A[v] such that v satisfies P[v] when execution
begins. (The domain must declare requirement :foreach-expansions for a :foreach to
be legal.)

A link declared as in this example

(with-links (11 - (u v - Integer®))
...body . .))

is treated, in body, as an object of type (Lnk® u v - Integer®) that is, a Lnk® that is to
contain a value of type (Val® u v - Integer®). A link is either set or unset. It can be set
at most once. A link L is set when an action of the form (link A :output L) is finished
executing, in which case L is set to the value of A (as defined in A’s definition) when A is
finished. The two keywords :then and :begin-then are similar to :output, except that
they set L to (values), i.e., to an empty row of values (of type (Val®)). :begin-then
differs from the other two in that it sets L when A begins; if A is composite, then its
beginning and its end can be different.

Once it is set, the link L has a value accessible as (1v L). However, this value is a
“row,” not an object, so the only way to use it is to access one of its fields. In the example
above, the Integer® u stored in link 11 can be obtained as (! u (1v 11)).

If a 1ink action specifies an :input L or :wait L field, then the action must not begin
execution until the link L is set. When the action begins execution, L is said to be read.'!
The difference between :wait and :input is that in (order A :input L), all references
to L in A are automatically coerced to (1v L). Extending the previous example,

(with-links (11 - (u v - Integer®)

1)\ ore than one step may access a link; it is read on the first access.
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mm - ())
(parallel

(1ink (proceed 3)
:wait 11)
(1ink (transmit (!_u 11) (!_v 11))
:input 11)
:wait mm)
(link (deltrans (!'_w nn) (!'_v (1v 11))
11 rr)
:wait 11
:input nn
routput rr)))

The proceed step just uses the link as a synchronization device; it does not execute until
some previous step sets 11. The transmit step also waits, for mm and 11 to be set, then
uses the ! u and ! v slots of (1v 11). Note that mm has no useful value, so its only purpose
is to coordinate plan steps.

The deltrans step shows how these devices can be mixed and matched. It refers to
three different links, 11, nn, and rr; the bindings of the last two are not shown. It waits
for 11 and nn to be set, then takes four values as arguments. The first two are the ! _w slot
of (1v nn) and the !_v slot of (1v 11); the next two are the links 11 and rr themselves.
Presumably deltrans is defined by an expansion that uses the value of 11 and sets the
value of rr. The definition of deltrans might start like this:

(:action deltrans
:parameters (z - Float® i - Integer®
in - (Lnk® u v - Integer®)
out - (Lnk® x - Float®))
D)

A link may also be used to define contextual conditions on plans, by using action con-
straints in a with-link action spec. The constraint (:postcondition L P) means that
the first time L is read, P must be true. (:maintain L P) means that from the time L
is set to the time it is first read, P must be true. If the link is set but never read, then P
must be true until the entire with-1link action is finished. The time from when a link is
set to the time it is read or its defining with-1links finishes is called its wait interval.

OPT also supplies (1ink A :wait-end L), which reads L when A finishes. If L has
not been set at that point, then the 1ink action suspends until it is set, then reads it and
finishes. As we will see below, it is often useful to have a link be set when an action begins,
and read when it ends:

(link A :begin-then L :wait-end L)

This pattern can be abbreviated (link A :span L).
One can abbreviate the common pattern
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(seq®...

(1ink ay ...:output L ...)
(link a2 ...:input L ...)
.
as
(seq®...

ay

:link L

az
.

so that our plan for seeking and sending a credit-card number could have been written thus:

(with-links (cclnk - (ccnum - String®))
(seq® (ask-credit-card cust101)
:1link cclnk
(send (!_ccnum cclnk) auth-center)))

The “extra” conditions declared using :postcondition and :maintain must not be
conditions on the feasibility of the actions reading the links in question, unless the actions
are defined using the flag :only-in-expansions. An action defined this way has no inde-
pendent life, but serves as a convenient organizational linchpin for hierarchical plans. In
this case every expansion containing an instance of the action must specify its preconditions
as :postconditions on links it reads.

An ordinary action appearing in an expansion may also have a postcondition declared
on a link it reads, but in this case it must be for a secondary precondition, i.e., a condition
that is not required for the action to be feasible, but may be required for it to have one
effect rather than another.

We illustrate :wait-end and :maintain with the definition of a plan to remove all
children and pets from a lawn, then put pesticide on it:

(with-links (protecl19) ;; the default type of a link is (Lnk®)
(seq (link (foreach (x - Animal)
(and (in x 7area) (or (human-child x) (pet x)))
(remove x ?area))
:then protec19)
(1ink (apply-pesticide 7area)
:wait-end protecl9))
(:maintain protecl9
(not (exists (x - Animal)
(and (in x 7area)
(or (human-child x) (pet x)))))))

The parallel construct imposes no constraints on the execution order of its con-
stituents. It begins when the first of them begins, and ends when the last of them ends. So,
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to indicate that a condition be true from the end of actl until a set of actions performed
in parallel with actl are finished, write

(with-links (protec39)
(link (parallel (link actl :then protec39)
(act2)
(act))
:span protec39)

(:maintain protec39
(condition)))

If an action with expansions is declared to return a value of type R, then there must be
a mechanism that allows the expansion to construct and return such a value. One part of
the mechanism is a built-in link result® defined implicitly in every expansion, such that
:outputting V' to result® causes the expanded action to return value V. The other is
a built-in action (collect-value® —args—) that does nothing but return a row of the
—args— (which may be arbitrary expressions).

Here is an example of how these devices might work:

(:action (signal-attack-route enemy)
- (1 - Integer®)
:expansion
(seq® (climb-tower)
(test® (see-direction enemy land-route)
(1ink (collect-value® 1)
:output result®)
(1ink (collect-value® 2)
:output result®))))

This action returns 1 if the enemy is coming by land, 2 if by sea, as is traditional.

If a has expansions, then (seq® a b) means to do all of the actions of a before doing b.
If you want finer control, so that after all the “substantive” steps of a b may proceed while
some “cleanup” steps of a are done, write

(with-links (control)
(parallel® (f, ...control)
(1ink :input control

b))

where a = (f, ...). That is, add an argument to f, for the control link, so that some
step of a can set control and allow b to proceed.

An action name defined with :expansions is of type (Fun® (Hop® r) <- a), where r
is the result type and a is the argument type. The name “hop” seems to imply that hops
always take longer than skips, but that’s not quite right. A skip always takes exactly one
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infinitesimal time unit. In the notation of section 6.1, it lasts from (r,4) to (r,i +1). A
hop can take place over any interval at all, from one with zero duration, to one that takes
several infinitesimal steps, to one that lasts over a measurable time period.

An Action® is either a Skip-action® or a Hop-action®. The type (Step® ) is (ALt®
(8kip® r) (Hop® r)).

Processes can be part of action expansions just by including actions to start and, if
necessary, stop them. We must also provide actions to wait for them to complete. The hop
action (wait-while® p) waits for p to complete. If p is of type (Slide r), and returns
value v (of type r), then (wait-while® p) returns v as well. If p is not active, but has
already finished, then (wait-while® p) takes zero time and returns p’s value. If p has
never been active, (wait-while® p) waits for it to become active, then finish.

If an action has multiple alternative expansions, they can either be combined into one
big expansion using choice®, or they can be described as separate named methods; see
Section 9.

8 Facts and Axioms

The :facts field of a domain contains a list of propositions. These propositions are true
in all situations in the domain, without exception.'?> We refer to these as domain facts. In
section 10, we will allow propositions to be associated with defined situations, in the :init
field. These we will call situation facts.

There are two variants of if that play a crucial role in facts:

(-> a ¢)
(- ¢ a)

Each of these means the same as (if a c¢), but the former is used for forward chaining,
the latter for backward chaining. Forward chaining operates as follows: the first time a
and (-> a c¢) are simultaneusly asserted, ¢ will be concluded and asserted as well. The
statement that p is asserted means that p is “explicitly present,” i.e., stated as a domain
fact or situation fact, introduced as the effect of an action, or deduced by forward chaining.'?
Of course, it is not really necessary that a = b for a and (-> b ¢) to interact via forward
chaining, only that a and b have a unifying substitution €, in which case 6(c) will be asserted.

Backward chaining through (<- ¢ a) should occur when some program engages in prov-
ing g, and ¢ that unifies with ¢ yielding substitution #. In that case the fact licenses the
attempt to prove 0(a); for every successful instance ¢(6(a)), the program may conclude
6(0(9)).

In addition to these applications, some planners may use (if p ¢) or its variants to
reduce goals. That is, if a planner is trying to make ¢ true, it may try to accomplish that
by making p true. There are many other complex issues surrounding the interaction of facts
and action definitions, but OPT is based on the assumption that all effects of an action are
explicitly stated in its definition. For example, if a domain contains the facts

12They may be overridden in subdomains; see section 10.
13Hopefully the sly mutual recursion in these two definitions will go unnoticed.
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(forall (x - Physob rl r2 - Room)
(if (and (in x r1) (in x r2)) (not (= rl r2))))
(forall (x - Physob p - Person r - Room)
(if (and (holding p x) (in p 1))
(in x 1))

then if person Fred is holding object ob23, and is in living-room52, and the action
(goto-room Fred kitchenl102) occurs, the facts can remain true only if either (holding
Fred ob23) or (in ob23 living-room52) becomes false. The definition of goto-room
must state which it is. (It might say, “Forall objects the person is holding, if they are
portable then they change room, otherwise they cease to be held.”)

For historical reasons, and for compatibility with PDDL, OpPT allows a domain to declare
axioms using:

<axiom-def> ::= (:axiom
:vars (<typed list (variable)>)
:context <goal proposition>
:implies <literal(term)>)

The domain declaration

(:axiom
:vars v
:context a
:implies ¢)

is exactly synonymous with putting (forall v (<- ¢ a)) in the :facts field of the domain
definition.

For example, we might define the classical blocks-world predicates above and clear as
follows:

(:axiom
:vars (?x 7y - physob)
:context (on 7x 7y)
:implies (above ?x 7y))

(:axiom
:vars (?x 7y - physob)
:context (exists (7z - physob)
(and (on ?x ?7z) (above 7z 7y)))
:implies (above ?x 7y))

(:axiom
:vars (?x - physob)
:context (or (= 7x Table)
(not (exists (7b - block)
(on ?b ?x))))
:implies (clear 7x))
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Unless a domain declares requirement :true-negation, not is treated using the tech-
nique of “negation as failure” (Clark 1978). That means it makes no sense to conclude a
negated formula; they should occur only as deductive goals, when (not ¢) succeeds if and
only if g fails. (If g contains variables, the results are undefined.) Hence axioms are treated
directionally, always used to conclude the :implies field, and never to conclude a formula
from the :context field.

9 Adding Facts and Action Expansions Modularly

Although OpT allows a domain to be defined as one gigantic define, it is often more
convenient to break the definition into pieces. The following notation allows adding axioms
and action expansions to an existing domain:

<addendum-def> ::

(define (addendum <name>)
(:domain <name>)
<extra-def>*)

<facts-def>

<extra-def>

<extra-def> ; s =idomain—axioms <o om-def>
<extra-def> : ; =‘action—expansions ¢mathod-def>
<extra-def> ; p=isafety—constraints (gafety-def>

<method-def> (:method <action function>
[:name <name> ]

<action-def body>)

Inside a (define (addendum ...) ...) expression, :actions and :axioms behave as
though they had been included in the original (define (domain ...) ...) expression
for the domain. :method declarations specify further choice points for the expansion of an
already-declared action, almost as though the given <action-def body> included inside a
choice® in the original expansion of the action. (It doesn’t work quite that neatly because
the parameters may have new names, and because an <action-def body> is not exactly
what’s expected in a choice®.)

In a method definition, the <action-def body> may not have an :effect field or an
:only-in-expansions field.

Method names are an aid in describing problem solutions as structures of instantiated
action schemas. Each action has its own space of method names; there is no need to make
them unique over a domain. If an action has a method supplied in its original definition,
the name of that method is the same as the name of the action itself.

Example (from an old version of the UM-Translog domain):

(define (addendum carry-methods)
:domain translog

(:method carry-via-hub
:name usual
:parameters (7p - package 7tcl 7tc2 - tcenter)
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:expansion (forsome (7hub - hub)
(exists (7cityl 7city2 - city
?regl 7reg2 - region)
(and (in-city 7tcl 7cityl)
(in-city 7tc2 ?7city2)
(in-region 7cityl ?7regl)
(in-region 7city2 ?7reg2)
(serves 7hub ?regl)
(serves 7hub 7reg2)
(available ?7hub)))
(seq (carry-direct 7p 7tcl 7hub)
(carry-direct ?p 7hub ?7tc2)))
:precondition (not (hazardous 7p)))

)

The reason to give addenda names is so the system will know when an addendum is
being redefined instead of being added for the first time. When a (define (addendum N)
...) expression is evaluated, all the material previously associated with N is erased before
the definitions are added. The name of an addendum is local to its domain, so different
domains can have addenda with the same name.

10 Situations and Problems

As discussed in section 1, a situation is a particular set of propositions that may all hold
at some time (or many times) in a particular domain. For instance, in a domain with
just one predicate, (Light-on), and just one action, (toggle-light), there are two situa-
tions, {(1ight-on)} and {(not (light-on))}.!* The time of a situation is not part of its
description, so that literally the same situation can recur more than once.

A planner may produce descriptions of several different situations in the course of its
search for a plan. What OPT supplies is a way of declaring initial situations, which provide
the starting points for stating plan problems:

<situation-def> ::= (define (situation <initsit name>)
(:domain <name>)
[<objects def>]
[<facts def>]
[<init spec>]
[(:init <proposition>*)])
<init spec>

The :objects and :facts fields are just like the corresponding fields of a domain defini-
tion. The facts newly declared must be true in every situation reachable from this one. A

Technicality: When I describe a situation by giving a finite list of propositions, I mean the deductive
closure of that list.

43



proposition in the :init field of a situation is true in this situation, and persists until some
action or event makes it false.

A problem is what a planner tries to solve. It is defined with respect to a domain. A
problem specifies two things: an initial situation, and a goal to be achieved. The situation
can be defined as a list of assertions or as a named initial situations.

<problem-def> ::= (define (problem <name>)
(:domain <name>)
[<require-def>]
[<situation>]
[<objects def>]
[<facts def>]
[<init spec>]
<goal>"
[<metric spec>]
[<length-spec> 1)

<situation> = (:situation <name>)
<goal> = (:goal <goal proposition>)
<goa1> —:action—expansions

(:expansion <action spec(action-term)>)
(:metric <min-or-max> <metric term>)
minimize | maximize

<metric spec>

<min-or-max>

A problenm definition must specify some combination of an initial situation (by name),
a list of facts, and/or a list of initial true literals. The situation <name> must be a name
defined by either a prior situation definition or a prior problem definition. If a <problem
def> specifies an initial situation, then the facts and inits, if any, are treated as effects (adds
and deletes) to the named situation. The :objects field, if present, describes objects that
exist in this problem or initial situation but are not declared in the :constants field of its
domain or any superdomain. Objects do not need to be declared if they occur in the :init
list in a way that makes their type unambiguous.

All atomic formulas which are not explicitly said to be true in the initial conditions are
assumed by OPT to be false, unless the domain declares requirement :open-world.

The <metric term> appearing in a :metric field is a term of type Number® that may
(but need not) contain subterms (total-time®) and (total-steps®). The values of these
terms are the total time (in seconds) elapsed from the initial situation to the goal situation,
and the total number of steps taken, respectively. [[Why they are parenthesized is not clear
to me; I'm just following PDDL2.1 here.]]

For example,

(define (situation briefcase-init)
(:domain briefcase-world)
(:objects P D)
(:init (place home) (place office)))
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(define (problem get-paid)
(:domain briefcase-world)
(:situation briefcase-init)
(:init (at B home) (at P home) (at D home) (in P))
(:goal (and (at B office) (at D office) (at P home)))
(:metric minimize (+ (* 3 (total-time)) total-steps)))

The :goal of a problem definition may include a goal description or (if the domain has
declared the requirement :action-expansions) an expansion, or both. A solution to a
problem is a series of actions such that (a) the action sequence is feasible starting in the
given inital situation situation; (b) the :goal, if any, is true in the situation resulting from
executing the action sequence; (c) the : expansion, if any, is satisfied by the series of actions
([lin a sense that I haven’t made clear yet]]).

For instance, in the transportation domain, one might have the problem

(define (problem transport-beans)
(:domain transport)
:situation standard-network)
:objects beans27 - Beans)
:init (at beans27 chicago))
:expansion (with-links (got-to-end)
(link (carry-in-train beans27 chicago newyork)
:span got-to-end)
(:postcondition got-to-end
(not (spoiled beans27))))))

N AN AN

The :requirements field of a problem definition is for the rare case in which the goal
or initial conditions specified in a problem require some kind of expressiveness that is not
found in the problem’s domain.

Unlike addendum names (see Section 9), problem names are global. Exactly how they
are passed to a planner is implementation-dependent.

11 Web Mode and Namespaces

One important application of Opt is to planning and reasoning on the “Semantic Web,”
the envisioned future world-wide network of agents and information sources that have more
explicit propositional content than WWW pages have today (Berners-Lee et al. 2001). Opt
fits into this vision by being a representation for ontologies and datasets. But there are a
couple of other dimensions to address. A key design decision for RDF, the standard repre-
sentation system for the Semantic Web(Hjelm 2001), is that all names are URIs, Uniform
Resource Identifiers. The rationale is that URIs are a familiar notation for web denizens,
with enough degrees of freedom to ensure that the same name is unlikely to be used by two
different people for different purposes.

There are several drawbacks. URIs are long and complicated, and don’t look like names,
especially for things like predicates. The standard notation for RDF is based on XML, and
you can’t put a URI just anywhere in XML. The measures taken to get around XML’s
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limitations lead to a notation whose conventions are awkward, inconsistent, and hard to
remember.

When Opt is used in “web mode,” it adopts the same requirement that all names are
URISs, but fits it into the notational base in a cleaner way. First, domains fetched from the
web have URIs as names, instead of symbols. If a document has URL'® http://hostname.com/p,
and that document consists of a definition of domain d, then the URI http://hostname.com/p?notation=opt&onto
is the “web name” of that domain. If the last component of p is d.e, then the query ontol=d
can be dropped; if the extension e is opt, then the query notation=opt can be dropped.
These conventions allow a document to contain more than one domain definition, while
giving the principal domain a concise URL. I write “http://,” but the same idea works
for other schemes, such as “ftp://.” However, for scheme “file://,” that is, for a local
ontology, the name is assumed to be unambiguous.

Second, every domain implicitly defines a namespace, so that identifiers from different
domains don’t get confused. This namespace can be used in the traditional XML way.
Here’s an example of XML markup

<?xml version=’1.0’ encoding=’IS0-8859-1’7>

<!DOCTYPE uridef [
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
<!ENTITY zoo "http://cadmium.yale.edu/ontology/zoology.opt">
1>
<rdf :RDF xmlns:zoo="&zoo;#">
<rdf:description rdf:ID="Katie">
<zoo:location rdf:resource="&zoo;#kangaroo-pen"/>
</rdf:description>
</rdf :RDF>

However, the XML namespace mechanism, whatever its virtues in general, has short-
comings as a device for name management among different ontologies. It allows at most
one ontology to be the default namespace, so that if ontology A extends ontology B, and if
the default namespace inside A is A itself, then every reference to a name from B must be
preceded by a prefix. What we’d like to be able to do is import all the names from B, and,
as long as there is no possibility of ambiguity, pretend that they live in A’s namespace.

If there is such a possibility, we can introduce a prefix for the B symbols, as in this
example:

(define (domain automobiles)
(:extends (:domain
"http://cadmium.yale.edu/ontology/zoology.opt"
:prefix "zoo"))

D)
where, for concreteness, we’ve let
A = http://host-A/automobiles.opt
and B = http://cadmium.yale.edu/ontology/zoology.opt".

15A URL is a URI from which an actual document can be retrieved.
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Now the symbol kangaroo in B can be referred to as @zoo:kangaroo.'%

It looks like we’ve essentially duplicated the XML namespace machinery, but the details
work out to be quite different. Suppose that jaguar is the only symbol declared in A that
clashes with a symbol in B. Then we can write

(define (domain automobiles)
(:extends (:domain
"http://cadmium.yale.edu/ontology/zoology.opt"
:prefix ("zoo" jaguar) :prefix ("" :remainder)))

)

Now an occurrence of ©zoo:jaguar in A means the B symbol jaguar, and an unprefixed
jaguar means the A version. All other B symbols can be referred to with no prefix.

This is as good a place as any to put the definition of the syntactic extensions promised
in section 4:

<parent> = (:domain <domain-ref>
[:prefix <prefspec>]™*)
<domain-ref> ::= <name> | <url>
<url> ::= String conforming to RFC [<>])
<prefspec> ::= <string> | (<string> <import syms>)
<import syms> ::= <name>*| :all | :all-but <name>"| :remainder
<export-def> ::= (:exports <export syms>)
<export syms> ::= <name>"| :all | :all-but <name>*
<name> : 1= @<basicname><more prefix>":<basicname>
<more prefix> ::= :<basicname>

A <name> is prefized if it contains one or more prefixes. In that case, its root name is the
name given by the characters after the last colon; if it has no prefixes, the root name is the
name itself.

If a domain has no :exports declaration, then all of its symbols are (potentially) im-
ported into any domain that :extends it. I say “potentially” because, as suggested above,
the :prefix clauses of an :extends clause can be used to block some of the importations
that would otherwise occur.

In a :prefix clause, an empty <import syms> is synonymous with :remainder, which
means “all symbols not mentioned to the left.” The flags :all and :all-but refer to all
symbols, or all but a finite list. A string s by itself is synoymous with s :remainder. So the
:extends spec above could have been written

(define (domain automobiles)
(:extends (:domain
"http://cadmium.yale.edu/ontology/zoology.opt"

8The atsign is required because Opt is Lisp-based, and the colon character has a built-in significance to
the Lisp reader, so that letting zoo :kangaroo be our notation without some major headaches is impossible.
Using “@” in this way would be equivalent to the notation “!space: sym” of (Lassila 2001); the use of atsign
follows (Dou et al. 2003).
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:prefix ("" :all-but jaguar)
:prefix ("zoo" jaguar)))

or as

(define (domain automobiles)
(:extends (:domain "http://cadmium.yale.edu/ontology/zoology.opt"
:prefix ("zoo" jaguar) :prefix ""))

)

If it’s necessary to restrict the symbols exported from a domain, an explicit :exports
clause can be used, in the obvious way. (:exports :all) is equivalent to no :exports declara-
tion. (:exports syms) gives an explicit list of symbols to be exported. (:exports :all-but
syms) causes all but the given symbols to be exported from the domain’s namespace.

A key feature of this mechanism!” is that once a prefix has guided Opt to a domain,
the rest of the symbol designator can be any legal symbol specification, including one with
colons in it. So if it happens that B imported the symbol foo from another ontology C with
prefix "wow", one can refer to it in A as @wow:foo. If we had linked A and B by writing

(define (domain automobiles)
(:extends (:domain "http://cadmium.yale.edu/ontology/zoology.opt"
:prefix "zoo"))

)

then this symbol would be referred to as @zoo:wow:foo. Of course, it is usually a better idea
for A to inherit the domain where foo is declared directly. The point is that A has access
to all the symbols exported by B, no matter where they originated. Such symbols, even if
not referred to in the definition of A, may still pop up during runs of applications involving
A. If so, the iterated-colon notation provides a way to refer to them.

The basic idea behind all this machinery is that it is possible, and desirable, to hide the
URI machinery backing symbols. A <name> in Opt refers to the URI you get by following
its prefixes back to a domain, which I'll call its root namespace, then pairing the domain’s
namespace with the root name as a fragment.'® That is, if the prefixes take you back to root
namespace http://h/p, and the root name is s, then the URI it designates is http://h/p#s.

There is no requirement flag for web mode, because the distinction between “local
mode” and web mode is too fundamental. Explaining this point requires talking about
implementation details that are beyond the scope of this manual; the bottom line is that
“local Opt” and “web Opt” can be considered to be different systems. The former is
suitable for applications in which a small number of domains are loaded in, a computation
is performed, and the program quits. The paradigmatic example is using Opt as the basis for
a planning system competing in a competition: you load a domain (which might extend one
or two others), load a problem definition, run the planner, type out performance statistics,

1"Which owes more to programming-language technology (Hudak 2000) than to Web tradition.

18The algorithm to find the root namespace is nonobvious, because any colon in a prefixed name can stand
for zero or more empty prefixes. The namespace system guarantees that if a path gets to two namespaces,
each with a declaration of the same root name, an error will be signaled when the second path is created.
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and quit. “Web Opt” is for applications in which domains are found incrementally by
various web-oriented agents. Name clashes are entirely possible, and are controlled using
namespaces. The emphasis is less on raw performance than on the ability to find and exploit
resources dynamically.™

12 Scope of Names

Here is a table showing the different kinds of names and over what scope they are bound

Name type Scope

Reserved word OPT language
Domain name Global

Type Domain, inherited
Type-function Domain, inherited
Type constructors | Domain, inherited
Constant Domain, inherited
Parameter Domain, inherited
Function Domain, inherited
Predicate Domain, inherited
Action function Domain, inherited
Process function Domain, inherited
Addendum Domain, local
Situation name Domain, inherited
Problem name Global

Method Per action function

Global names (for domains and problems) are accessible “everywhere.” For domain
names, “everywhere” might be the entire World-Wide Web (or Semantic Web); see sec-
tion 11. It is less obvious what it means for problem names to be global, because they
can’t be referred to from within Opt. In practice, referring to problems by their names lies
outside Opt entirely, and is managed by the planning system that is given a problem to
solve.

Names with scope “domain, inherited” are visible in a domain and all its descendants.
Names with scope “domain, local” are visible within a domain but are not visible in descen-
dant domains. Method names are a documentation convenience, and need have no scope
except that of the function of which they are methods.

There is limited possibility of overloading names in OPT. The same name may be used
for a global-scope entity (e.g., a problem) and a domain-scope entity (e.g., a predicate).

19Some implementation details for hackers: Opt is implemented in Lisp. In local mode, everything that
looks like a Lisp symbol is implemented as a Lisp symbol, a standard tactic that is one of the reasons Lisp
is such a terrific programming language. In web mode, we introduce a data type canonized symbol, to which
most user-defined names resolve. (Built-in symbols continue to resolve to Lisp symbols.) Dealing with such
symbols complicates the programmer’s life, because the smooth interface between code and data structure
that the Lisp quote mechanism provides is gone. One is reduced to transforming quoted structures into
internal data structures in the awkward and painful way that Java and C programmers must live with. This
distinction is so fundamental that one has to recompile the entire Opt system in namespace mode; it can’t
be switched at run time.
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But the same domain-scoped name cannot be used for two different kinds of entity. For
instance, the same name cannot be used for a type and an action.

The rules for method names are looser, because they are not true names. The only
restriction is that two distinct methods for the same action may not have the same name.

13 Built-in Symbols

13.1 Types

Table 1 gives the built-in types of OPT. If the middle column is not blank, it specifies a
requirement that must be declared for the type to be available.

13.2 Requirement Flags

Table 2 is a table of all requirements in OPT. Some requirements imply others; some are
abbreviations for common sets of requirements.

13.3 Built-in Constants

This section contains an alphabetical list of built-in constants of OPT. For each we give the
type, plus the context in which the symbol may be used. This is usually a requirement flag,
but may include other notes. The annotation Effects means that the symbol may be used
only in an effect (section 5.2). If the context is “—,” then the symbol may be used anywhere
the type rules allow. If an argument position is an evaluation context (see section 3), it is
flagged with a *.

Type: Context:
= | (Fun Boolean requality
<-(xy-u

& u - (T)))

(= z y) if and only if x and y are the same object; the expression is well formed only if
and y are of the same type. Note that if fi and fy are fluents, (= f1 f2) tests whether they
are the same fluent, not whether they have the same value. To test for that, write either (=
(f1-v f1) (£1-v f2)) or, for Floats, (=~ f; f2), which OPT coerces to (=~ (f1-v fi)
(f1-v f9))

Type: Context:
, >, =<, <=, >=| (Fun Boolean :numbers
<- (x* y* - Number))

The usual inequalities. Although (=< x y) is the preferred way to express x < y, you
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Type
Action

(A1t Y1 ---yk)

(Arg ...)

Boolean

(Con ¢ ...cp)

(Either
Float
(Fluent %)
(Fun r <- a)
(Hop 1)

Hop-action
Integer
(Lnk ...)
(Lst y)
Number

0Obj

Process
Prop
(Skip 1)

Skip-action
Situation
(Slide r)

(Step 1)
String
Symbol
(T

(Tup ...)
(Val ...)

Void

Requires

:action-expansions

:action-expansions

:action-expansions

:data-structures
:numbers

.processes

.processes

:data-structures

o1

Meaning

A Skip-action or a Hop-action
The type of an object that has
type y1, type y2, ..., or type
yr. (Alt) is a synonym for

Void.
An “argument tuple,” often

implicit in the argument po-
sition of Fun types.

true or false

The type consisting of just the
constants (literals) ¢; to cg.
The symbolic constants must
be quoted, except for false
and true. So (Con true
>false) is the (somewhat
contrived) type that consists
of true and the symbol false
and no other objects.
Synonymous with (A1t y1 ...yr).
Floating-point number

(Fun y <- Situation)
Function from type a to type r
The type of an action that
might take anywhere from
zero time to a long time inter-
val, producing a value of type

Kn action of type (Hop r) for some r.
Integer (any number of digits)

See section 7

A list of elements of type .

A Float or Rational

The universal type; every ob-

ject is of this type.
An entity of type (Slide ) for some r.

(Fluent Boolean)

The type of an action that
takes exactly one infinitesi-
mally long time interval and

returns a value of type r.
An action of type (Skip r) for some 7.

A world state
The type of a process that re-

turns a value of type r.
An action with value of type r

String of characters
A Lisp-style symbol
A type

See section 2.2

A “value tuple;”
tion 2.2; these usually occur
implicitly in Fun types.

The empty type

see sec-

Table 1: Built-in types



Requirement Description

:strips Basic STRIPS-style adds and deletes
:disjunctive-preconditions Allow or in goal descriptions
tequality Support = as built-in predicate
:existential-preconditions Allow exists in goal descriptions
:expression-evaluation Allow predicates some of whose arguments are evaluation contexts
:numbers Allow numerical predicates and functions

(Implies :expression-evaluation)
:universal-preconditions Allow forall in goal descriptions
:quantified-preconditions = :existential-preconditions

+ :universal-preconditions
:conditional-effects Allow when in action effects
raction-expansions Allow actions to have :expansions
:foreach-expansions Allow actions expansions to use foreach

(implies :action-expansions)
:domain-axioms Allow domains to have :axioms
:safety-constraints Allow :safety conditions for a domain
:fluents Support type (fluent t). Implies :numbers
:open-world Don’t make the “closed-world assumption” for all

predicates — i.e., if an atomic formula is not

known to be true, it is not necessarily assumed false
:true-negation Don’t handle not using negation as failure,

but treat it as in first-order logic

(implies :open-world)

radl = :strips + :typing

+ :disjunctive-preconditions

+ :equality

+ :quantified-preconditions

+ :conditional-effects
:ucpop = :adl + :domain-axioms

+ :safety-constraints
:data-structures Expect lists, tuples, etc.
:processes Allow process definitions. Implies :fluents
:durative-actions Allow durative-action definitions

Table 2: Requirement flags
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can also use <=, in spite of the fact that it looks more like a left-pointing arrow than an
inequality.

Type: Context:
=", /= (Fun Boolean :numbers
<- (x* y* - Float))

(=~ x y) is true if x and y are approximately equal. The definition of “approximately
equal” is implementation-dependent, but at least must satisfy the following: if a situation
is arrived just after (wait-for (=~ q; ¢2) p), then in that situation g; and g» must be
approximately equal. (/=" x y) is an abbreviation of (not (=~ z ¥)).

Type: Context:
+, -, *, min, max | (Fun Number :numbers
<- (&rest 1 - Number))

Arithmetic functions that take an indefinite number of arguments. Each of these functions
is overloaded, so it produces type Number only if at least one argument is of type Number;
otherwise, it produces Float if at least one argument is of type Float; otherwise, it produces
type Integer.

Type: Context:
/ | (Fun Number :numbers

<- (x y - Number))

iq &
(/ x 1) is z
Type: Context:
assign | (Fun Prop :fluents, Effects

<- ((Fluent Number) Number))

(assign q v) is the effect imposed by setting fluent ¢ to value v.

Type: Context:
bounded-int | (Fun Prop :numbers
<= (i* j* k* - Integer))
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(bounded-int ¢ j k) is true if 7 lies in the interval [j, k]. In addition, if (bounded-int ?v
j k) occurs as a deductive goal, it succeeds in k — j + 1 ways, in the mth of which ?v is

bound j +m — 1.

Type:

Context:

choice | (Fun (Step Void)
<- (&rest (Step Void)))

:action-expansions

(choice ay ...ap) is the action executed by executing one of the the a;.

Type:

Context:

collect-value | (Fun

(Step ay ...ayn) raction-expansions

<- (Arg a1 ...apn))

(collect-value —args—) is the action executed by constructing and returning a row of

the given arguments.

Type:

Context:

current-value | (Fun

Prop
<- (f - (Fluent 7u) v - 7u))

:fluents

(current-value f v) is true in a situation if the value of f in that situation is v.

Type:

Context:

decrease | (Fun Prop

<- ((Fluent Number)
Number™))

:fluents, Effects

(decrease v q) is the effect imposed by decreasing fluent v by amount gq.

Type:

Context:

derivative | (Fun Prop
<- (f df - (Fluent Float)))

:processes, Fffects

(derivative f df), allowed only in the :effect fields of process definitions, is imposed
by causing fluent f to vary at the rate df.
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Type: Context:
deriv-comp | (Fun Prop :processes, Fffects
<- (f df

- (Fluent Float)))

deriv-comp differs from derivative in that it specifies a component of the derivative; the
actual derivative is the sum of all known components.

Type: Context:
dur-happening | (Fun Process :durative-actions
<- (Hop ?r))

(dur-happening a) is the process that exists when durative action a is being executed

Type: Context:
dur-in-progress | (Fun Prop :durative-actions

<- (Step 7?r))

(dur-in-progress a) is true when durative action a has begun and not yet ended.

Type: Context:
dur-start | (Fun (Step Void) :durative—-actions
<- (Step ?r))

(dur-start a) is the skip action that consists of starting the durative action a.

Type: Context:
:durative—-actions,

when  ?duration is
not constrained by
equalities.

dur-stop | (Fun (Step Void)
<- (Step 7r))

(dur-stop a) is the skip action that consists of stopping the durative action a, when the
ability to stop is under the planner’s control.

Type: Context:
elapsed | (Fun (Fluent Float) :processes
<- (Fun Process

<- Situation))
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(elapsed p) is the time that the current instance process p has been active; if there is no
current active instance of p, then (elapsed p) is undefined.

Type: Context:
equation | (Fun Boolean :numbers

<- (x y - Number))

(equation x y) is true if x = y, but it has the further pragmatic meaning that if there is
a single unbound logic variable in a goal of this form, a planner should try to find a value
for that variable that makes the equality true.

Type: Context:
eval | (Fun Boolean :expression-evaluation

<- (x* y - 0bj))

(eval e v) is true if e evaluates to v, using £1-v and standard arithmetic functions (e.g.,

+).

Type: Context:
eval-test | (Fun Boolean :expression-evaluation

<= (x9)

(eval-test e) is satisfied if e evaluates to true, using £1-v and standard arithmetic func-
tions (e.g., +).

Type: Context:
false | Boolean —

A constant with value false.

Type: Context:
fl+, f1-, flx, f1/ | (Fun (Fluent Number) :fluents
<- (x y - (Fluent Number)))

Each of these functions produces a fluent whose value in any situation is the sum, difference,
product, or quotient of the values of the two argument fluents.
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Type: Context:
f1-" :fluents

(Fun (Fluent 7u)
<- 7u)

(f1-" x) is the fluent that has value x in every situation. In practice, the * symbol is the
carat character, typed “shift-6” on most American keyboards.

Type: Context:
f1-v | (Fun 7u :fluents

<- (Fluent ?7u))

(f1-v f) is the value of fluent f in the current situation.

Type: Context:

increase | (Fun Prop :fluents, Effects

<- ((Fluent Number)
Number*))

(increase v q) is the effect imposed by increasing fluent v by amount q.

Type: Context:
list | (Fun (Lst 7u) :data-structures
<- (&rest 1 - 7u))

(1ist x1 ...xp) is the list consisting of x1 to z, in that order. If each x; has type y, then
the 1list expression has type (Lst y)

Type: Context:
parallel | (Fun (Step Void) :action-expansions

<- (&rest (Step Void)))

(parallel a; as ...ax) is the action executed by executing all of aq, ..., ag, in no par-
ticular order. It starts when the first of the a; starts, and finishes when the last of the a;
finishes.
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Type:

Context:
result | Context-dependent

:action-expansions

In an action expansion, a link of type r, where r is the type returned by the action being
expanded. Setting this link to value V' causes the expanded action to return V.

Type:

Context:
seq

(Fun (Step Void) :action-expansions

<- (&rest (Step Void)))

(seq a1 ag ...ap) is the action executed by executing ay, ao, ..., ai in that order.

Type:

Conteuxt:
temporal-grain-size | Number

.processes

A time interval small enough that nothing important happens over any stretch of time

shorter than this. This is a domain parameter, whose default value is 0.01, which may be
overridden in subdomains.

Type:

Context:
temporal-scope | Number

:processes

A time interval large enough that nothing relevant happens further in the future than this.

This is a domain parameter, whose default value is 10.0e10, which may be overridden in
subdomains.

Type:
(Fun (Hop Void)
<- (s - Boolean

iftrue iffalse - Action))

Context:
test

:action-expansions

(test s at af) is equivalent to at if the value of expression s is true®, and to af if its
value is false®.

Type: Context:

The :metric field of a
<_
(Fun Integer 0O) problem definition

total-steps

The number of steps (skips and hops) in the action sequence from the initial situation to a
candidate goal situation.
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Type: Context:
The :metric field of a
problem definition

total-time | (Fun Float <- ())

The total time elapsed from the initial situation to a candidate goal situation.

Type: Context:
true | Boolean —

A constant with value true.

Type: Context:
tuple | (Fun (Tup ?up ...7u,) :data-structures

<- (?uy ...7u,))

(tuple z1 ...xz,) is a tuple of type (Tup y1 -...yn), where y; is the type of z;. If you
think this type specification is illegal, you're right; it takes us beyond the type language we
described in this paper.

Type: Context:
wait-for | (Fun Hop-action :processes
<- (Prop Process))

(wait-for g p), where ¢ is an inequality involving a quantity affected by process p, is the
action of waiting until ¢ becomes true.

Type: Context:
wait-while | (Fun (Hop ?r) :processes
<- (Slide 7?r))

(wait-while p) is the action of waiting for process p to finish. If p finishes, returning a
value of type r, then (wait-while p) finishes and returns the same value.
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Change history:
V. 16.25 2006-02-12 Clarify order of arguments to 1ink
V. 16 2006-01-01 Naming scheme takes a step back!
V. 1.7 2004-07-19 Document web mode and namespace mode
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