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Abstract

We present a mechanism for partially aborting transactions

through the use of data structure checkpoints and control-

flow continuations. In particular, we show that boosted trans-

actions [9] already have built-in restoration points and af-

ford a simple, efficient implementation. Our mechanism is

far simpler than previous work, which relied on complex

nesting schemes to establish checkpoints. We quantify the

overhead of checkpoints and explore several examples, il-

lustrating the utility of partially aborting transactions.

As part of our evaluation, we implemented abstract locks

as a novel, queue-based spin-lock which allows threads to

timeout and differ in priority. Unlike the known lock due to

Craig [3], this new lock is more efficient for priority schemes

of few levels.

1. Introduction

Software Transactional Memory (STM) has emerged as an

alternative to traditional mutual exclusion primitives such as

monitors and locks, which scale poorly and do not compose

cleanly. In an STM system, programmers organize activities

as transactions, which are executed atomically: steps of two

different transactions do not appear to be interleaved. A

transaction may commit, making its effects appear to take

place atomically, or it may abort, making its effects appear

not to have taken place at all.

Being able to partially abort a transaction is useful for

both performance and semantic reasons. Aborts are neces-

sary to resolve conflicts, but often the conflict can be re-

solved by only rolling back some of a transaction’s oper-

ations. Thus, partial aborts may yield higher performance

since non-conflicting operations need not be reverted. Par-

tial roll-back can also support semantic constructs such as

conditional and or-else synchronization, where a transaction

decides to roll back part of a computation to pursue another

path.

A partial abort requires the notion of a checkpoint: a pro-

gram location within a transaction to which control may

jump during a partial abort. For example, after a transaction

removes an element from list A, it may set a checkpoint be-

fore trying to insert the element into list B. Thus, if there is

a conflict adding to B the transaction can partially abort and

try to insert the element again into list B or, alternatively,

try to insert the element into list C. To accommodate partial

aborts, each checkpoint must save and restore its continua-

tion: the control state of the program location including the

program counter, stack variables, and any allocated heap ob-

jects. One candidate checkpoint is the program location prior

to each write operation. In practice this is too fine grained:

the cost of storing a continuation per write operation is high,

and most saved continuations would never be used.

In the literature thus far, checkpoints have been emu-

lated as nested transactions [12, 13, 7]. The beginning of

a nested transaction is a user-defined checkpoint. Further,

each checkpoint already has a continuation available: the

continuation which is captured as part of the transactional

infrastructure. Nested transactions additionally solve a sec-

ondmodularity issue: during a transaction, a subroutine may

be invoked which itself initiates a transaction. Modularity is

essential, but not tied to “Nested Transactions” (though the

name may lead one to believe otherwise); modularity can be

solved syntactically, as we will later discuss.

Existing nesting approaches are based on transactional

memory systems which use read/write sets. They therefore

involve infrastructure to separately maintain levels of read-

/write sets so that recovery can occur on multiple nesting

levels, a complexity which we argue is unnecessary.

In this paper, we show that transactions can be partially

aborted without using nested transactions. We use the far

simpler approach of data structure checkpoints and control-

flow continuations to be able to revert transactions to in-

termediate program locations. For efficiency reasons check-

points must be used sparingly and are best suited to opera-

tionally meaningful program locations rather than after each

write operation; in much the same way, initiating a nested

transaction after each write operation is not advisable.

In recent work, we have proposed Transactional Boost-

ing [9] which solves synchronization and recovery through

data structure semantics rather than read/write sets. In this

paper, we additionally show that boosted transactions al-

ready establish operationally meaningful program locations

that are well-suited checkpoints. Each logical operation

can be a checkpoint. For example, the logical operation of

“adding a node to a list” may involve several write oper-
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ations, but only the first operation is a natural restoration

point. Boosting a transaction both removes the burden on

the user to chose checkpoints, and also facilitates an effi-

cient runtime storage of checkpoints.

Specifically, we make the following contributions:

• We show that nesting is unneeded to partially abort a

transaction. Instead, transactions can be reverted to pre-

vious control-flow locations by checkpointing data struc-

tures and capturing continuations. This is discussed in

Section 3.
• In Section 3.1, we show that a boosted transaction has

natural pre-defined checkpoints: each logical operation.

This both eliminates the burden of choosing checkpoints

and also leads to an efficient implementation, with a spar-

ing use of checkpoints. We further show that Transac-

tional Boosting allows us to record checkpoints opera-

tionally rather than treating data structure manipulations

as flat memory access. Consequently, the cost of storing

checkpoints is reduced.
• We explore the utility of checkpoints through a number

of examples of boosted transactions in Section 4, and

discuss our evaluation in Section 5.
• Finally, we discuss our spin-lock for abstract locking in

Section 5.3. Ours is a novel priority-based queue spin-

lock with timeouts, and we contrast it to the lock due to

Craig [3]. Our lock has theoretically higher performance

for binary priority schemes.

We emphasize that the utility of checkpoints and contin-

uations is not limited to transactional boosting. For exam-

ple LogTM [12] could introduce a new keyword, and allow

users to manually denote semantically meaningful control

locations whose continuation could be captured during ex-

ecution. Then, rather than using nested transactions, partial

aborts can be realized by revertingwrite operations to restore

the heap and then invoking stored continuations.

2. Background

2.1 Transactional Boosting

Most transactional memory approaches rely on a log of

memory access to determine synchronization and recovery.

As a transaction executes, each read and write operation

is stored in a log along with the corresponding memory

location. Two transactions conflict when they concurrently

access the same memory location and at least one operation

is a write. In the event of a conflict, one transaction must

be aborted: all write operations must be reverted. The log

is again used to either restore old values or discard commit-

time effects.

In recent work [9] we introduced Transactional Boost-

ing, which yields significant performance gains by shedding

memory access logs and relying on data structure semantics

to determine synchronization and recovery. A more through

discussion can be found in [9], but for completeness we sum-

marize transactional boosting here.

Transactional Boosting is built upon linearizable base

objects, which have an abstract state and a corresponding

concrete implementation. The semantics of object methods

are known, and often specified in terms of pre- and post-

conditions describing the state of the object before and after

the method invocation. Two method invocations are said to

commute if applying them in either order causes the object to

transition to the same state and respond with the same return

values. Additionally, an inverse of a method is a second

method which returns the object to the previous state.

Transactional Boosting relies on commutativity to define

and detect conflicts. Users define abstract locks associated

with invocations of methods on the boosted object. These

locks conflict whenever a pair of methods do not commute.

Before invoking a method, transactions must acquire all ab-

stract locks associated with the invocation. In this manner,

non-commutative operations never occur concurrently since

one of the two operations will be delayed.

Inverses allow recovery to be performed at the granularity

of method calls. While a transaction is executing, a log of

operations is maintained. If the transaction aborts, this log is

played in reverse order before abstract locks are released; a

committed transaction can simply discard the log.

Here is an example. A Set may have methods add(x),
remove(y), and contains(z) with the usual semantics. Pairs
of method calls such as add(x) and add(y) commute for
x 6= y. Indeed, any pair of methods with distinct arguments

commute. Moreover, inverse options are well defined: the

inverse of add(x) is simply remove(x).

2.2 Nested Transactions

Several nesting approaches have been proposed [12, 13, 7]

for software transactional memory. The purpose of nested

transactions1 is twofold:
Checkpoints. A nested transaction establishes a new pro-

gram location where control may be returned in the event of
an abort. Specifically, the beginning of each nested transac-
tion is a checkpoint. Consider the following example:

global int list [10];
atomic {

int x = list [0];
atomic {

list [2] = x + 1;
}

}

If access to list[2] causes a conflict, the inner transaction

may be aborted rather than the entire outer transaction. Thus,

each nested atomic statement demarcates a checkpoint.

Modularity. Often code that transactionally mutates data

structures may be encapsulated in libraries. Nested trans-

actions enables the sound interaction between transactional

user code and invocations of transactional library methods.

1By “nested transactions” we mean closed nested transactions that only

commit if the top-level parent commits.
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For example, before a transaction removes an element from

a queue, it may use a library method to check that the queue

is nonempty:

global Queue sharedQueue;

bool EmptyQueue(Queue q) {
atomic { ... }

}

atomic {
if (EmptyQueue(sharedQueue))

throw EmptyQueueException;
return Dequeue(sharedQueue);

}

In the next section we describe how partial aborts can be

realized through first-class checkpoints and continuations.

We will then revisit nested transactions, comparing the two

approaches.

3. Checkpoints and Continuations

The key idea of this paper is that partial aborts can be re-

alized without using nested transactions. In this section, we

define partial aborts, in Section 4 we explore some applica-

tions of partial aborts, and in Section 4.1 we quantify the

efficacy of partial aborts for one particularly useful applica-

tion.

As a running example, consider a pool of threads trans-

actionally accessing shared hash tables. One thread’s access

pattern might be as follows:

global HashTable ht1, ht2;

atomic {
Object oldVal = HashTable Remove(ht1,7);
Object newVal = foo(oldVal);
HashTable Insert (ht2 ,7, newVal);

}

In this example, the thread removes an element from the first

hash table, performs some computation on oldVal in foo(),
and then inserts newVal into a second hash table.
Now, consider what would happen if contention at the

second hash table triggered an abort of this thread. In the

simplest case, transactional implementations would undo all

of the thread’s effects, returning the element to the first hash

table.

Yet there may not be a conflict at ht1, so it is unfortunate

that the transaction must be aborted entirely. A more satis-

fying solution would be to partially abort the transaction.

If control is returned to the point before the insertion, then

more progress is preserved. This is of course a trivial exam-

ple with a low penalty for aborting entirely, but it is easy to

imagine cases where the penalty is more severe.

The core challenge involved in partially aborting a trans-

action is to be able to soundly return to an earlier program

location. In programming language theory, this facility is

known as a continuation [14, 1]. There are two correctness

criteria involved in implementing a continuation:

1. Stack Restoration: All stack variables in scope must

be restored to their values at the time when control first

passed through the program location. Formally, the con-

tinuation captures the environment of the program loca-

tion.

2. Heap Restoration: All heap data structures scope must

be restored to their state at the time when control first

passed through the program location. Formally, the con-

tinuation captures the store of the program location.

Purely functional languages are heap-less and so imple-

mentations must only be concerned with restoring the stack.

Imperative languages add the complication of restoring the

heap. Finally, concurrent shared-memory imperative pro-

grams must be able to restore the heap in such a way that

consistency is maintained with respect to other concurrently

executing threads. Nested transactions accomplish this final

issue with added complexity, whereas addressing the issue

directly is the novelty of our work.

In the remainder of this paper, we focus on checkpoints

and continuations as they apply to boosted transactions. As

mentioned in Section 1, the principles we discuss are not

limited to the realm of transactional boosting. Nonetheless,

a boosted transaction has convenient properties (discussed

below) which we exploit to gain an efficient implementation.

3.1 Boosted Checkpoints

Transactions manipulate a boosted object by executing a

series of operations, each causing the object to transition

from one abstract state to another. Continuing with the hash

table example, one such operation is “inserting a key/value

pair.” Although the single invocation may result in many

read and write operations, it implements a well-defined

abstract state transition.

We define a boosted checkpoint at the program location

that precedes each operation on a boosted object. In the hash

table example, explicit check points are defined before the

removal and insertion and implicitly at the beginning of the

transaction:

atomic { // CP0
Object oldVal = CHKPT(HashTable Remove(ht1,7)); // CP1
Object newVal = foo(oldVal);
CHKPT(HashTable Insert(ht2,7,newVal)); // CP2

}

Boosted checkpoints are not snapshots of the object, but

rather semantically rich locations in the program’s control-

flow graph. Between each subsequent checkpoint, there is

a well-defined transition, which is given by the seman-

tics of the interleaved operation. For example, the tran-

sition between the checkpoints denoted CP1 and CP2 is

HashTable Remove(ht1,7), in other words: the removal

of the value at key 7 from hash table ht1. The transition

from checkpoint CP2 and the end of the transaction is simi-

larly defined.
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Since boosted object state transitions are well-defined be-

tween checkpoints, heap recovery can be realized at any

checkpoint without maintaining shadow copies. If, for exam-

ple, this transaction is aborted after completing the insertion

into ht2, it can be partially aborted to CP2 rather than to the

beginning of the transaction, by simply executing the inverse

of HashTable Insert(ht2,7,newVal). As discussed in

Section 2.1, all boosted objects have known inverse opera-

tions.

Boosted checkpoints are fundamentally different from

nested transactions. Most nested implementations maintain

extra copies of objects. In this sense, they are agnostic of

data structure semantics and treat memory as a flat array of

locations and values. However, as we demonstrated in [9],

this is often expensive.

3.2 Boosted Continuations

We now turn to the issue of returning the program control

to an earlier checkpoint. In the above hash table transac-

tion, we may for example want to return control to the CP1

checkpoint if an abort occurs before the end of the transac-

tion. Such jumps in control are a special case of the general

concept of non-local control flow, which is accomplished

by continuations from programming language theory. In-

formally, continuations represent the current values of stack

variables in scope (the environment) and the program loca-

tion (a point on the control-flow graph). Our non-local con-

trol flow is accomplished with two steps.

1. Continuation storage. Each time program control reaches

a checkpoint, the current continuation is captured. In-

deed, the checkpoint itself is augmented with the storage

of the corresponding captured continuation.

2. Continuation invocation. When a transaction is aborted,

inverses are played backwards until the desired check-

point is reached, discarding saved continuations along

the way. Upon reaching the desired checkpoint, the cor-

responding continuation is invoked.

Nested Transactions rely on implicit continuations to re-

turn to the beginning of an inner transaction. Transactions

by definition already have a built-in notion of returning con-

trol, so the nesting approach introduces new transactions at

each program location. We suggest that conventional closed

nested transaction schemes and data structures can be dis-

carded in favor of this simple continuation scheme.

3.3 Implementation Notes

We discuss implementation details thoroughly in Section 5.1,

but continuations deserve special treatment here. Unfortu-

nately, availability of continuations differs from one lan-

guage to the next. High-level languages such as Scheme and

StandardML of New Jersey support first class continuations,

while most imperative languages offer dynamic variants of

goto such as setjmp/longjmp.

global bucket t data [1000];

atomic {
key list [] = decide();
for ( int key :: key list []) {

CHECKPOINT();
if (QLOCK(key) == TIMEOUT)

ABORT();
Manipulate(data,key);
LOG INVERSE(ManipulateInverse,data,key);

}
}

Figure 1. A transaction accessing a shared array.

Our prototype implementation is built on Transactional

Locking 2 (TL2) [5] which is written in C. As such, the

checkpoint continuations were captured with getcontext

and invoked with setcontext. These standard C library

functions allow us to capture the continuation of multiple

checkpoints, whereas setjmp/longjmp capture only a sin-

gle point in the control flow.

Unfortunately, these library functions to not capture the

entire program environment. To compensate, our prototype

allocates additional storage for stack variable values along-

side the captured context. When control passes through a

checkpoint, the macro SAVE ENV(var) adds the current

value of var to a data structure, which is later restored via

RESTORE ENV(var) when control returns to the context af-

ter a partial abort. Ideally, of course, this work could be done

by a compiler.

4. Applications and Examples

In this section we explore some examples that illustrate the

utility of partial aborts in Transactional Boosting.

4.1 Priority

In a priority scheme, it is desirable for high priority threads

to have greater throughput than low priority threads. In the

context of transactional memory, high- priority threads can

force low priority threads to abort. Unfortunately, aborting

a low priority thread drastically harms low priority through-

put. Checkpoints and continuations allow us to partially

abort low priority threads, rolling them back just far enough

to allow high priority threads to commit.

Consider threads accessing a boosted shared array, as

shown in Figure 1. For the moment, assume QLOCK is a
table from keys to simple spin locks. If a lock is acquired

then it is added to the transaction’s log to be released when

the transaction commits or aborts. Let us also assume that

Manipulate(data,key) is some method which modifies the
specified index and that ManipulateInverse(data,key) is the
method which performs the corresponding inverse operation

(onemight increment and the other decrement, for example).

A correct semantics for this array states that two invoca-

tions commute if they access distinct indices. If threads ac-
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cess multiple indices, then they will acquire an abstract lock

for each before committing. For example, the key list for
two threads might include the following array indices:

Thread A: 28, 56, 41, 10
Thread B: 21, 19, 41, 67, 95

If threadA acquires the abstract lock for 41 first, then thread
B will be delayed until A commits.

Now let’s add priority to the scenario: perhaps B has

higher priority than A. We would therefore like to allow B

to proceed and commit at the cost of A’s throughput. Indeed

this is possible without checkpoints: we can simply abort A.

However, we then lose the progress thatA has already made.

There is no need for A to undo the work which required

the acquisition of locks 28 and 56 since B will never try to

acquire either lock.

The main idea of this paper addresses this issue. If we

capture the continuation at each checkpoint, then we can

semantically undo the changes to the data structure made by

A to the point before 41 was acquired by executing inverse
operations.

4.1.1 CLH Queue Lock with Priority

Realizing partial aborts in the context of priority requires

that our spin lock support both priority and timeouts. The

queue-based spinlock due to Craig, Landin and Hager-

sten [4, 11] (CLH Lock) already supports timeouts, so we

build on the CLH Lock and present a novel spin lock which

accommodates thread priority in a distinctly different way

than the priority queue lock due to Craig [3]. We qualita-

tively describe our lock here and a full design discussion is

given in Section 5.3.

Threads trying to acquire a queue-based spin lock en-

queue themselves into a list of acquirers. The front-most

thread has acquired the lock and executes its critical section.

When the lock is released, the front-most thread passes the

lock to the next thread in line, and removes itself from the

queue. In this way, cache coherency issues are minimized

because threads spin on distinct memory locations.

We augment the spin lock by defining two queues: a

queue of low priority threads and another of high priority

threads. When a low priority thread releases the lock it

passes availability either to the high priority queue (if any

high priority threads exist) or to the next low priority thread.

Analogously, a high priority thread either releases it to the

next high priority thread or turns the lock over to the low

priority queue.

4.1.2 Aborting Low Priority Threads

When a high priority thread needs to acquire a lock which

is currently held by a low priority thread, we must abort the

low priority thread. Our transactional model has no notion of

preemption, but we can signal low priority threads to abort

themselves. When a high priority thread tries to acquire a

Figure 2. Throughput of high, low, and priority-free threads

when they are partially aborted (to the left) or completely

aborted (to the right).

lock held by a low priority thread, it can send a brief mes-

sage (by writing to thread-local storage) to the low priority

thread indicating which key it wishes to acquire. Low pri-

ority threads listen for messages while they are spinning on

other locks.

When a low priority thread receives a message from a

high priority thread, it initiates its own partial abort. The

message contains the key desired by the high priority thread.

The low priority thread can therefore partially abort itself

to the checkpoint which immediately precedes the contested

lock. When the lock is released the high priority thread,

having earlier enqueued itself, immediately obtains it and

continues with its transaction.

4.1.3 Performance

We extended our implementation of transactional boost-

ing [9] (which is based on TL2) with the CLH-style queue

lock discussed above. The benchmarks were run on a mul-

tiprocessor with four 2.0 GHz Xeon processors, each one

two-way hyperthreaded for a total of eight threads.

We evaluated our priority example by confirming that

high priority threads have higher throughput than (a) lower-

priority threads and (b) the throughput they would have

had in the absence of priority schemes. Figure 2 shows the

throughput of high and low priority threads, compared with

threads in a priority-free scheme. To the left, low priority

threads are partially aborted, whereas they are completely

aborted on the right. The two graphs illustrate that low, high,

and priority-free threads have greater throughput when they

are partially aborted rather than completely aborted. Perfor-

mance is improved even though realizing partial aborts in-

volves the overhead of capturing and storing continuations.

4.2 Conditional Synchronization

Checkpoints allow us to implement two forms of transac-

tional conditional synchronization. STMHaskell introduced

two constructs called retry and orElse . Both provide gen-
eral mechanisms for incorporating conditional synchroniza-

tion into transactional computation. Supporting them has
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List inbound, outbound;
AbstractLock inLock, outLock;
Object in = NULL;

atomic {
OP(inLock, 0, Prepare(inbound));
do {

in = OP(inLock, 0, Dequeue(inbound));
if (! in . isSpecial )

retry ;
}
OP(outLock, 0, Enqueue(outbound,in));

}

Figure 3. Example using retry in a boosted transaction.

HashTable htA, htB, htC;
AbstractLock alA, alB, alC;

atomic {
result t result = OP(alA, key, Remove(htA,key));

{ OP(alB, key, Add(htB,key, result )) }
orElse
{ OP(alC, key, Add(htC,key, result )) }

}

Figure 4. Example using orElse in a boosted transaction.

a pervasive effect on any STM implementation, while a

boosted implementation of transactional objects does not. In

this subsection, we use the notation:

result = OP(aLock, lockKey, dataStructureMethod)

to represent the combined task of (a) declaring a checkpoint

(b) acquiring abstract lock aLock for key lockKey (c) execut-
ing dataStructureMethod and (d) logging the corresponding
inverse.

Figure 3 depicts an example of the retry construct. First
the transaction prepares the inbound queue, and then begins
dequeuing elements. Each dequeued element is examined,

and if the thread has not found the desired element, it uses

the retry construct to partially abort the transaction. The
element is returned to the queue, and the transaction tries to

dequeue again, hoping that some other thread has enqueued

an element of interest. When such an element of interest

arrives, it is finally enqueued onto the outbound queue.
The example in Figure 4 illustrates the utility of the

orElse construct. In this example, the transaction removes
an element from htA and then tries to add it to another hash
table. While adding it to htB, it may experience a conflict
with another transaction concurrently accessing htB. In this
case, we can partially abort the transaction and, following

the directions of the orElsestatement, the transaction can
attempt to add the element to htC. This example has appli-
cations towards various forms of the work queue paradigm.

Context Lck(56) Inv(...) Context Lck(56) Inv(...) Context Lck(56)

0 1 2 3 4 5 6 7

Figure 5. Diagram of the runtime computation log, which

stores captured continuations (“Context”), abstract locks

(“Lck”), and inverse methods (“Inv”).

4.3 Contention Management

Contention Managers are used in transactional memory to

resolve conflicts with runtime heuristics to improve through-

put. Boosted transactions empower contention managers

with a more fine-grained abort mechanism. Rather than en-

tirely aborting transactions, contention managers can par-

tially abort transactions. Moreover, by examining the opera-

tion log, contention managers can revert transactions to just

before the (first) conflicting operation. See [15] for a detailed

discussion of contention management.

4.4 Modularity

Modularity is a desirable attribute of transactional programs.

For example, during a transaction a user may want to invoke

library methods which themselves initiate transactions. Con-

sider the following code:

Object swap(HashTable ht, int key, Object newVal) {
atomic {

Object r = HashTable Remove(ht,key);
HashTable Insert(ht ,key,newVal);
return r ;

}
}

atomic {
Object x = swap(htA, key, y);
HashTable Insert (htB, key, x);

}

Here the transaction within swap() is “nested” within the
outer transaction by the program’s control flow.

Rather than initiating an entirely new inner transaction, a

boosted implementation with checkpoints can instead sim-

ply establish a new checkpoint at the beginning of each

nested transaction. Finding nested transactions is a sim-

ple runtime task, keeping a flag per thread which indicates

whether a transaction has been initiated. Moreover, this task

can often be further simplified by statically detecting syntac-

tically nested transactions and replacing them with check-

points.

5. Evaluation

5.1 Checkpoints and Continuations

We implemented Checkpoints on top of our Transactional

Boosting implementation in TL2 [9]. Much like abstract

locks and inverses, checkpoints are stored in a runtime com-

putation log. A diagram of the computation log is given in

Figure 5. At each checkpoint, the continuation is captured
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Figure 6. Normalized throughput of boosting with and

without checkpoints for two STAMP [2] benchmarks.

and appended to the log. Checkpoints (“Context”) precede

operations on shared data structures, which involves acquir-

ing an abstract lock (“Lck”), performing the operation, and

then recording the inverse operation (“Inv”) in the log.

When a transaction is aborted, as long as the log is tra-

versed in the reverse direction, invoking any context pro-

duces correct behavior. As a context is passed it is deallo-

cated, inverses are invoked to revert data structure opera-

tions, and abstract locks are released allowing other threads

to acquire them. In Section 4 we discussed application-

specific strategies for deciding how far to traverse.

5.2 Overhead

There is an overhead associated with capturing contexts and

storing them in the computation log. The amount of over-

head depends on the workload.When a transaction performs

simple operations such as incrementing a counter, then the

overhead is significant. More realistic workloads (indeed the

type of workloads for which it is desirable to partially abort

transactions in the first place) have a more manageable over-

head.

We modified two of the Stanford STAMP benchmarks [2]

(written in C) to use boosting with and without checkpoint-

ing. The benchmarks were run on a multiprocessor with four

2.0 GHz Xeon processors, each one two-way hyperthreaded

for a total of eight threads. Figure 6 we compare the through-

put of transactions with and without the capture of continu-

ations for the vacation and kmeans benchmarks2.

5.3 SpinLock Design and Implementation

The priority example in Section 4.1 requires a spin lock in

the queue form which is due to Craig, Landin and Hager-

sten [4, 11], with the added need for timeouts and priority

schemes.

As in [4, 11], threads attempting to acquire a lock append

new “lock nodes” to the tail of a queue, and examine the pre-

vious tail element. The threads append themselves by swing-

ing the tail pointer with a compare-and-swap (CAS) opera-

2 For vacation we used the flags −n4 −q90 −u80 −r65536 −t409 and
kmeans we used −m40 −n40 −t0.05 −i inputs/random1000 12

tion to ensure a serial ordering. Threads then spin, waiting

until their predecessor lock node is marked “unlocked,” at

which point the thread has logically acquired the lock. After

completing its critical section, the thread marks its own node

as “unlocked,” allowing the next thread to acquire the lock.

Threads may wish to timeout, in which case they can mark

a node as “abandoned.” The predecessor thread spinning on

the newly abandoned node deallocates the node and follows

a pointer to spin on the subsequent node in the queue.

We augment the queue lock for priority by defining one

queue per priority level. In the example of Section 4.1 only

two queues are necessary: a high priority queue and a low

priority queue. Threads trying to acquire the lock, add nodes

to the queue corresponding to their priority level. When a

low priority thread holding the lock completes its critical

section, it passes the lock to the high priority queue if it

is non-empty, or else passes it to the next node of the low

priority queue. Similarly, when a high priority thread com-

pletes its critical section, it either passes the lock to the next

high priority thread or else passes it back to the low priority

queue. This generalizes to any number of priority levels.

We also introduce preemption to the queue lock. When

a high priority thread tries to acquire a lock currently held

by a low priority queue, the high priority thread can request

that the low priority thread release the lock. The high priority

thread writes the name of the lock into the holder’s thread-

local field. The holder checks the field whenever it is spin-

ning on other locks, and if it notices that it is non-null, then

the low priority thread partially aborts itself to the check-

point which precedes the contested lock. To avoid deadlock,

we also allow low priority threads to abort each other, using

the transaction start time as a tie-breaker.

Pseudo-code for our implementation is given in Figure 7.

This implementation is different from the priority queue lock

due to Craig [3]. The lock of Craig stores priority as a field

within the queue. This has the advantage of compactness,

at the cost of a queue traversal before each acquisition. By

contrast, our implementation maintains separate queues for

each priority level. Thus, acquisition is done in constant

time. We also note the following implementation issues:

• The first enqueue case in Figure 7 is an important fast

path. When it is empty, high priority threads can simply

add themselves to the low priority queue.
• The second enqueue case occurs when the fast path does

not apply and the thread has high priority. In addition to

adding itself to the high priority queue, the thread must

also enqueue in the low priority queue so that the lock

can be passed from the low queue to the high queue.
• In the priority example, threads may try to acquire the

same lock repeatedly during a single transaction. We

added a counter to track how many times the lock had al-

ready been acquired, performing the actualQLockKey Lock().
• In order for high priority threads to find the low prior-

ity owner of a contested lock, threads “announce” them-
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void QLockKey Lock(QLockKey t∗ ql) {
// Enqueue
if (! HighPriority || QLockKey Empty(ql−>low queue))

QLockKey Enqueue(ql−>low queue);
else {

QLockKey Enqueue(ql−>high queue);
QLockKey Enqueue(ql−>low queue);
if (QLockKey Acquired(ql−>low queue))

QLockKey Dequeue(ql−>low queue);
else

QLockKey Abandon(ql−>low queue);
}
// Spin
while(high || pattience−−) {

if (SpinNode−>abandoned)
QLockKey Advance(SpinNode);

else if (! SpinNode−>locked)
// Acquired!

else if (ReceivedMessage(OtherLock))
PartiallyAbortTo (OtherLock);

else if (NeedToPreempt())
SendMessage(SpinNode−>owner());

else

// keep spinning !
}
// Timeout
QLockKey Abandon(ql−>low queue);

}

void QLockKey Unlock(QLockKey t ∗ql) {
QLockKey Dequeue(ql);

}

Figure 7. Pseudo-code for QLock Lock() and

QLock Unlock().

selves sometime after they acquire the lock, and “unan-

nounce” before releasing the lock.

6. Formal Model

Theorem 6.1. A transactional boosting implementation that

obeys the correctness rules specified in [8] and permits

partial aborts as described informally above yields histories

whose committed transactions are strictly serializable.

Proof. Trivial. Follows from the Main Theorem of [8], with

an added “Partial Abort” event.

Informally, the system is correct because partial aborts

“annihilate” a subsequence of a thread’s history, which is

later regenerated. When the thread commits (if it does com-

mit), commutativity ensures that the history defines the same

state as if the thread’s operations occurred instantaneously.

7. Related Work

Our work stands in contrast to the related work on nest-

ing approaches for transactional memory. We argue that

data checkpoints and control-flow continuations alleviate

the need for complex nesting strategies.

Closed nested transactions have been proposed by Mora-

van et al. [12] for the log-based transactional memory im-

plementation LogTM. LogTM implements STM by track-

ing read/write sets in a runtime log. Nested transactions are

implemented by maintaining layers of read/write, analogous

to activation records. Abstract nested transactions [7] are

closed nested transactions with an added optimization. In

this paper we argue that the need for nested transactions

is artificial and suggest that such complex nesting strategies

could be discarded in favor of simple data structure check-

points and continuations.

More recently, open nested transactions were proposed

by Ni et al. [13] and expose the layers of memory access to

developers through a simple API. The goal is to allow pro-

grammers to manually avoid aborts which arise from false

conflicts. Additionally, examples of how to implement col-

lection classes with open nested transactions was given by

Carlstrom et al. [6]. We again argue that nesting is unneeded.

Moreover, false conflicts can be eliminated with the transac-

tional boosting methodology [9] rather than exposing an API

that is prone to developer mistakes.

Hardware support for nested transactions has also been

proposed by Lev and Maessen [10], who show how nesting

can be implemented in hardware by subdividing a (software)

nested transaction into multiple hardware transactions.

8. Conclusion

We have shown that transactions on boosted objects can be

partially aborted without the need for nesting. We store con-

tinuations which capture the context before each method in-

vocation, and roll back transactions by operationally invok-

ing inverse object operations. We explored the utility of par-

tial aborts through several examples.

The added expressiveness of partial aborts comes with the

cost of storing continuations with each checkpoint. How-

ever, since continuations are stored sparingly (per logical

operation rather than per write operation) boosted check-

points are more feasible than conventional read/write check-

points. Nonetheless, it may be worth exploring applying the

techniques presented here toward conventional transactional

memory implementations such as LogTM [12].
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