1 Probabilistic inequalities

In this question you will be asked to derive the three most used probabilistic inequalities for a specific random variable. Let \(x_1, \ldots, x_n \) be independent \(\{-1, 1\} \) valued random variables. Each \(x_i \) takes the value 1 with probability \(1/2 \) and -1 else. Let \(X = \sum_{i=1}^{n} x_i \).

1. Let the random variable \(Y \) be defined as \(Y = |X| \). Prove that Markov’s inequality holds for \(Y \). Hint: note that \(Y \) takes integer values. Also, there is no need to compute \(\Pr[Y = i] \).

2. Prove Chebyshev’s inequality for the above random variable \(X \). You can use the fact that Markov’s inequality holds for any positive variable regardless of your success (or lack of if) in the previous question. Hint: \(\text{Var}[X] = E[(X - E[X])^2] \).

3. Argue that
\[
\Pr[X > a] = \Pr[\prod_{i=1}^{n} e^{\lambda x_i} > e^{\lambda a}] \leq \frac{E[\prod_{i=1}^{n} e^{\lambda x_i}]}{e^{\lambda a}}
\]
for any \(\lambda \in [0, 1] \). Explain each transition.

4. Argue that:
\[
\frac{E[\prod_{i=1}^{n} e^{\lambda x_i}]}{e^{\lambda a}} = \frac{\prod_{i=1}^{n} E[e^{\lambda x_i}]}{e^{\lambda a}} = \frac{(E[e^{\lambda x_1}])^n}{e^{\lambda a}}
\]
What property of the random variables \(x_i \) did we use in each transition?

5. Conclude that \(\Pr[X > a] \leq e^{-\frac{a^2}{2n}} \) by showing that:
\[
\exists \lambda \in [0, 1] \text{ s.t. } \frac{(E[e^{\lambda x_1}])^n}{e^{\lambda a}} \leq e^{-\frac{a^2}{2n}}
\]
Hint: For the hyperbolic cosine function we have \(\cosh(x) = \frac{1}{2}(e^x + e^{-x}) \leq e^{x^2/2} \) for \(x \in [0, 1] \ \lambda \in [0, 1] \).
The number of unique elements in an array

setup

In this question we will approximate the number of unique elements in a array L of known length n into which we have random access. The array contains m unique elements a_1, \ldots, a_m each of which appears $n(a_i)$ times, i.e., $\sum_{i=1}^{m} n(a_i) = n$. We define the following sampling procedure:

1. Pick j uniformly at random from $[1, \ldots, n]$
2. $x \leftarrow L[j]$
3. return x

questions

1. Define $p(x)$ as the probability that the sampling procedure above returns element x. Compute $p(x)$ as a function of n and $n(x)$
2. Let $f(x) = \frac{n}{n(x)}$. Compute:
 $$E_{x \sim \text{smp}}[f(x)]$$
 where $x \sim \text{smp}$ denoted that x is chosen according the sampling procedure above.
3. A list is said to be k-frequency-bounded if no item in it appears more than k times. In Other words, $\max_{i \in [1,\ldots,m]} n(a_i) \leq k$. Show that for a k-frequency-bounded list L we have that:
 $$\text{Var}_{x \sim \text{smp}}[f(x)] \leq km^2$$
4. Let $Y = \frac{1}{s} \sum_{\ell=1}^{s} f(x_{\ell})$ where x_{ℓ} are chosen independently from the list according to the sampling procedure. Compute $E[Y]$ and show that $\text{Var}[Y] \leq km^2/s$.
5. Use Chebyshev’s inequality to find a value for s such that for any k-frequency-bounded list and any two constants $\varepsilon \in [0,1]$ and $\delta \in [0,1]$:
 $$\Pr[|Y - m| > \varepsilon m] < \delta.$$
 s should be a function of k, ε and δ.

2 Approximate pie-charts

setup

A list A of length n contains m distinct items. Each of which appears n_i times, i.e., $\sum_{i=1}^{m} n_i = n$. We define the frequency f_i of item i as n_i/n. A circle divided into sections relative to f_i is called a pie-chart and we would like to produce one. Alas, the list A is very long and we would rather perform $o(n)$ operations to produce it. Our strategy is to sample s items from the list uniformly at random with replacement and output the histogram of s. More formally, let s_i denote the number of times item i appeared in the sample and $g_i = s_i/s$. We would want to have that for each item:

$$f_i - \tau \leq g_i \leq f_i + \tau.$$

The value of τ is the prescribed precision, for example, 1%. Note that it is an additive error and not a multiplicative one.

questions

1. Compute $E[g_i]$.

2. Bound from above the probability of a large deviation. In other words, bound $\Pr[|g_i - f_i| > \tau]$.

3. Find a value for s such that with probability at least $1 - \delta$ for all i we have $|g_i - f_i| \leq \tau$.

4. Bonus question: show that the condition of 3 hold also for:

$$s \geq \frac{4 \log(2m/\delta)}{m \tau^2}.$$
3 Bloom-like filter

setup

This question will deal with a data structure for holding a set of objects in a space efficient manner such that membership queries can be performed quickly and reliably. For lack of a better name we will call this data-structure a bloom-like filter. Bloom-like filters consist of \(k \) bit arrays \(B_1, \ldots, B_k \) each of length \(n \) (all bits initially set to \(\text{False} \)). They are also associated with \(k \) hash functions \(h_1, \ldots, h_k \). Each hash function \(h_i : x \rightarrow [1, \ldots, n] \) is chosen independently at random from a family \(H \) such that for any object, \(x \), in the universe \(\Pr_{h \sim H}[h(x) = i] = 1/n \). We define the following two operations on bloom-like filters.

1. \(\text{insert}(x) \)
2. for \(i \) in \([1, \ldots, k]\)
3. \(B_i[h_i(x)] = \text{True} \)

1. \(\text{query}(x) \)
2. for \(i \) in \([1, \ldots, k]\)
3. if \(B_i[h_i(x)] == \text{False} \)
4. return \(\text{False} \)
5. return \(\text{True} \)

questions

1. Argue that for any element \(x \) which was inserted into the bloom-like filter (\(\text{insert}(x) \) was performed) the output of \(\text{query}(x) \) is \(\text{True} \).

2. Assume we have inserted exactly \(n \) different items into the bloom-like filter. What is the probability that \(\text{query}(x^{\text{new}}) \) return \(\text{True} \) for \(x^{\text{new}} \) which was not inserted. Provide a bound for this probability which does not depend on \(n \) (you can assume \(n \) is larger than 2)

3. We now query the bloom-like filter with \(m \) different new objects \(x_1^{\text{new}}, \ldots, x_m^{\text{new}} \). Provide a value for \(k \) such that \(\text{query}(x_i^{\text{new}}) \) returns \(\text{False} \) for all the \(m \) new objects with probability at least \(1 - \delta \). Note, the randomness is only the choice of the hash functions.
4 Useful facts

1. For any vector \(x \in \mathbb{R}^d \) we define the \(p \)-norm of \(x \) as follows:

\[
||x||_p = \left(\sum_{i=1}^{d} (x(i))^p \right)^{1/p}
\]

2. **Markov’s inequality:** For any non-negative random variable \(X \):

\[
\Pr[X > t] \leq \frac{E[X]}{t}.
\]

3. **Chebyshev’s inequality:** For any random variable \(X \):

\[
\Pr[|X - E[X]| > t] \leq \frac{\text{Var}[X]}{t^2}.
\]

4. **Chernoff’s inequality:** Let \(x_1, \ldots, x_n \) be independent \{0, 1\} valued random variables. Each \(x_i \) takes the value 1 with probability \(p_i \) and 0 else. Let \(X = \sum_{i=1}^{n} x_i \) and let \(\mu = E[X] = \sum_{i=1}^{n} p_i \). Then:

\[
\Pr[X > (1 + \epsilon)\mu] \leq e^{-\mu \epsilon^2 / 4}
\]
\[
\Pr[X < (1 - \epsilon)\mu] \leq e^{-\mu \epsilon^2 / 2}
\]

Or in a another convenient form:

\[
\Pr[|X - \mu| > \epsilon\mu] \leq 2e^{-\mu \epsilon^2 / 4}.
\]

5. **Hoeffding’s inequality:** Let \(x_1, \ldots, x_n \) be independent random variables taking values in \{+1, -1\} each with probability 1/2, then:

\[
\Pr[\left| \sum_{i=1}^{n} x_i a_i \right| > t] \leq 2e^{-\frac{t^2}{2\sum a_i^2}}.
\]

6. For any \(x \geq 2 \) we have:

\[
e^{-1} \geq (1 - \frac{1}{x})^{-x} \geq \frac{2}{3} e^{-1}
\]

7. For convenience:

\[
\frac{3}{5} \leq 1 - e^{-1} \approx 0.632 \leq \frac{2}{3} \quad \text{and} \quad \frac{3}{4} \leq 1 - \frac{2}{3} e^{-1} \approx 0.754 \leq \frac{4}{5}
\]