1 Approximated histograms

In this section we will describe a simple modification of the algorithm described in [2]. Say we are given a stream of elements $X = [x_1, \ldots, x_N]$ where $x_i \in \{a_1, \ldots, a_n\}$. Let n_i denote the number of times element a_i appeared in the stream, i.e., $n_i = |\{j | x_j = a_i\}|$. Our goal is to estimate n_i for all frequent elements. This can be solved exactly by keeping a counter for each element $\{a_1, \ldots, a_n\}$. Alas, this might require, $\Theta(n)$ memory. Another approach is to sample a large enough fraction of the stream and compute count the frequencies in the sample (see homework question). Here we suggest a deterministic algorithm.

```
Algorithm 1 Frequent items counter

input: $\varepsilon, \theta \in (0, 1], X = [x_1, \ldots, x_N]$

$C \leftarrow \{\}$

for $x \in X$ do
    if $x \in C$ then
        $C[x] +$
    else if $size(C) < 1/\varepsilon \theta$ then
        $C[x] = 1$
    else
        for $a \in C$ do
            $C[a] -$
            if $C[a] == 0$ then
                del($C[a]$)
            end if
        end for
    end if
end for

for $a \in C$ do
    if $C[a] \leq N \theta (1 - \varepsilon)$ then
        del($C[a]$)
    end if
end for
```
Claim 1.1 For elements a_i for which $n_i \leq N\theta(1-\varepsilon)$ we have $n_i \not\in C$.

This is easy to see since we add 1 to the counter of $C[a]$ every time we encounter a. So, clearly $C[a_i] \leq n_i \leq N\theta(1-\varepsilon)$. Therefore, in the last loop of the algorithm it will be deleted.

Claim 1.2 For elements a_i for which $n_i \geq N\theta$ we have $n_i \geq C[a_i] \geq n_i(1-\varepsilon)$.

This is slightly less obvious. Notice that every time we decrease the counters in the map C we have that $size(C) \geq 1/\varepsilon \theta$. That means that we decrement at least $1/\varepsilon \theta$ different counters simultaneously. If we let t denote the number of times this step is performed, we have $t/\varepsilon \theta \leq N$ because we could not have deleted more items than the entire stream. Using the observation that $C[a_i] \geq n_i - t$ we have $C[a_i] \geq n_i - N\varepsilon \theta \geq n_i(1-\varepsilon)$.

Remarks: note that this algorithm uses $O(1)$ memory (assuming ε and θ are constants).

Count Sketches

Here we learn about a structure names CountSketch which was suggested in [?]. It will allow us to estimate the frequency of the k most frequent items in a stream even if it is less than a constant fraction of the stream. There will, however, be other limitations.

We denote the elements by o_1, \ldots, o_m having each appeared $n_1 \geq \ldots \geq n_m$ (the names of the elements are ordered according to their frequency). Before describing the CountSketch structure, let us first analyze one of its building blocks. For lack of a more creative name, we will call it B. B is an array of length b which is associated with two hash functions: $h : o \rightarrow [1, \ldots, b]$ and $s : o \rightarrow [-1, 1]$.

We define two function for B one for adding elements into it.

1. define Add(o):

 $B[h(o)] = B[h(o)] + s(o)$.

and one for returning an estimate for n_i given o_i

1. define Query(o):

 return $B[h(o)]s(o)$.

In order to compute the expectation of $B[h(o)]s(o)$ we need to define the “inverse” of h. Let $h^{-1}(o_i) = \{o_j | h(o_j) = h(o_i)\}$. In words, $h^{-1}(o_i)$ is the set of all elements for $h(o_i) = h(o_j)$. Since each element in $o_j \in h^{-1}(o_i)$ is encountered
exactly \(n_j \) times and for each of those \(s(o_j) \) is added to \(B[h(o)] \) we have that \(B[h(o_i)] = \sum_{o_j \in h^{-1}(o_i)} n_j s(o_j) \). Let us compute the expected result of a query.

\[
\mathbb{E}[B[h(o_i)] s(o_i)] = \mathbb{E}\left[\sum_{o_j \in h^{-1}(o_i)} n_j s(o_j) s(o_i) \right] \\
= n_i + \mathbb{E}\left[\sum_{o_j \in h^{-1}(o_i), o_j \neq o_i} n_j s(o_j) s(o_i) \right] = n_i
\]

As a reminder, we are interested in the frequencies \(n_1, \ldots, n_k \), for the top \(k \) most items. We see that if \(b > 8k \) we have that \(|h^{-1}(o_i) \cap \{o_1, \ldots, o_k\}| = 0 \) with probability at least 7/8. In other words, the element \(o_i \) does not map under \(h \) to the same cell in \(B \) with any of the top \(k \) frequency items. We will define \(h_{>k}^{-1} = h^{-1}(o_i) \setminus \{o_{k+1}, \ldots, o_m\} \). We will assume from this point on that \(h_{>k}^{-1} \subset \{o_{k+1}, \ldots, o_m\} \) or in other words that \(h_{>k}^{-1} = h^{-1}(o_i) \).

Now, let us bound the variance of \(B[h(o_i)] s(o_i) \).

\[
\text{Var}(B[h(o_i)] s(o_i)) \leq E[B[h(o_i)]^2 s(o_i)^2] \\
= E[\left(\sum_{o_j \in h_{>k}^{-1}(o_i)} n_j s(o_j) \right)^2] \\
= E_h \sum_{o_j \in h_{>k}^{-1}(o_i)} n_j^2 \\
= \sum_{j=k+1}^m n_j^2 / b
\]

Note that we have both an expectation over the choice of the hash function \(s \) and over the hash function \(h \).

Using this bound on the variance of \(B[h(o_i)] s(o_i) \) and Chebyshev’s inequality we attain that:

\[
\Pr \left[|B[h(o_i)] s(o_i) - n_i| > \sqrt{8 \sum_{j=k+1}^m n_j^2 / b} \right] \leq 1/8
\]

However, note that we also demanded that none of the top \(k \) elements map to the same cell as \(o_i \) which only happened with probability 7/8. Using the union bound on these two events we get:

\[
\Pr[|\hat{n}_i - n_i| \leq \gamma] \geq 3/4
\]

where we denote \(\hat{n}_i = B[h(o_i)] s(o_i) \) and \(\gamma = \sqrt{8 \sum_{j=k+1}^m n_j^2 / b} \).

Note that this happens for every elements individually only with constant probability. We would like to get that this holds with probability \(1 - \delta \) for all
elements simultaneously. We do that by repeating this entire structure \(t \) times creating the CountSketch \(B_1, \ldots, B_t \). When inserting an element we insert it into all \(t \) arrays \(B_1 \) and above. When querying the CountSketch we return
\[
query(o_i) = \text{Median}(\hat{n}_1^i, \ldots, \hat{n}_t^i)
\]
where \(\hat{n}_i^i \) is the estimator \(\hat{n}_i \) from \(B_t \).

Because \(\Pr[|\hat{n}_i^i - n_i| \leq \gamma] \geq 3/4 \) we get from Chernoff’s inequality that at least half the values \(\hat{n}_i^i \) will be such that \(|\hat{n}_i^i - n_i| \leq \gamma \) (including the median) for all \(m \) elements with probability at least \(1 - \delta \) for \(t \in O(\log(m/\delta)) \).

The only thing left to do is set the correct value for \(b \) (the length of \(B \)). We will demand that \(\gamma \leq \epsilon n_k \). This gives \(b \geq 8 \sum_{i=k+1}^{m} \frac{n_i^2}{\epsilon^2 n_k^2} \). Therefore, for \(t = O(\log(m/\delta)) \) and \(b \geq 8 \max(k, \frac{\sum_{i=k+1}^{m} n_i^2}{\epsilon^2 n_k^2}) \) with probability at least \(1 - \delta \) for each element in the stream \(|\hat{n}_i^i - n_i| \leq \epsilon n_k \).

The algorithm for finding the most frequent items is therefore to go over the stream and keep a CountSketch of all the elements seen this far. When we process an element, we also estimate its frequency \(\hat{n} \) and keep the top \(k \) most frequent items in estimated frequencies. These are guaranteed to contain all elements \(o_i \) for which \(n_i > (1 + 2\epsilon)n_k \) and not to contain any element \(o_i \) for which \(n_i < (1 - 2\epsilon)n_k \).