Assignment 3

Edo Liberty
Algorithms in Data mining

1 Randomized meta-algorithms

setup
In this question we assume the common case where we have an input \(x \in X \) and we wish to approximate a function \(f : X \to \mathbb{R}^+ \) (i.e. \(\forall x \: f(x) \geq 0 \)). For that we have a black box randomized algorithm \(A : X \to \mathbb{R}^+ \) such that \(\mathbb{E}[A(x)] = f(x) \). The questions ask you to designing meta algorithms using \(A \) as a black box.

question

1. Show that
 \[
 \Pr[A(x) \geq 3f(x)] \leq \frac{1}{3}
 \]

2. Assume that for all \(x \) we have that \(\text{Var}[A(x)] \leq c \cdot [f(x)]^2 \). Describe an algorithm \(B_2 \) such that for any two constants \(\varepsilon, \delta > 0 \):
 \[
 \Pr[|B_2(x) - f(x)| \geq \varepsilon f(x)] \leq \delta
 \]

3. Assume that \(\Pr[|A(x) - f(x)| \leq t|] \geq \frac{1}{2} + \eta \) for some fixed value \(\eta > 0 \). In words, the algorithm gets an additive approximation \(t \) with probability slightly better than 1/2. (Here we do not assume anything on the variance of \(A(x) \)). Design and algorithm \(B_3 \) such that for any prescribed \(\delta > 0 \)
 \[
 \Pr[|B_3(x) - f(x)| \leq t|] \geq 1 - \delta
 \]
 That means the algorithm achieves the same additive approximation with probability arbitrary close to one.
2 SVD and the power method

setup

Here we will prove some basic facts about singular values, matrices, and the power method. For the reminder of the question we assume \(A \in \mathbb{R}^{m \times n} \) is an arbitrary matrix. For convenience and w.l.o.g. assume \(m \leq n \). Also, denote by \(\sigma_1 \geq \ldots \sigma_m \geq 0 \) the singular values of \(A \).

question

1. Let \(P \in \mathbb{R}^{m \times m} \) and \(Q \in \mathbb{R}^{n \times n} \) be unitary matrices. Show that \(\|PAQ\|_{\text{fro}} = \|A\|_{\text{fro}} \). Hint, begin with the case where one of the matrices \(P \) or \(Q \) are the identity matrix.

2. Using the above show that for any matrix \(A \) we have that

\[
\|A\|_{\text{fro}} = \sqrt{\sum_{i=1}^{m} \sigma_i^2}.
\]

It might help you to show that \(\|A\|_{\text{fro}}^2 = tr(AA^T) \) where \(tr(\cdot) \) stands for the matrix trace.

3. The numerical rank of a matrix \(\rho(A) = \frac{\|A\|_{\text{fro}}^2}{\|A\|_2^2} \) is a smoothed version of the algebraic rank \(\text{rank}(A) \). It is always true that \(1 \leq \rho(A) \leq \text{Rank}(A) \leq \min(m,n) \). If \(\rho(A) \leq 1 + \varepsilon \) for a sufficiently small \(\varepsilon \) the matrix is “close” to being of rank 1. Give an expression to the numerical rank of \(A \) in terms of its singular values \(\sigma_i \). Express the numerical rank of \((AA^T)^kA \) in terms of \(\sigma_i \).

4. Assume that the matrix \(A \) is such that \(\sigma_2/\sigma_1 \leq \eta \) for some \(\eta < 1 \). Use your expressions from above to find \(k \) such that \(\rho((AA^T)^kA)) \leq 1 + \varepsilon \). How does this relate to the the Power Method for computing the largest singular value and vectors of \(A \)?