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1 Introduction

Up until this point, we encountered a few different data types. These were either
arbitrary elements, or elements in a metric space, vectors in a normed space,
or matrices. Another very common type of data is a Graph. In many different
scenarios a graph is the most natural representation of the data. Example
include communication networks, transportation routes, online social networks
etc. In these cases, a lot of information is captured by the connections (and their
strengths) between the different elements. For example, the graph describing
the physical layout of the internet infrastructure defines how well messages can
pass or how robust it is to congestion. Or, friendship connections between users
in a social network can offer insights to their topics of interest.

In this class we will review three ways to represent a graph as a matrix.
The Adjacency matrix, the Markov transition matrix, and the Graph Laplacian.
Relating properties of graphs to properties of the matrices which represent them
is researched in a subfield of computer science called Spectral Graph Theory.
Here, we will barely scratch the surface of this vast literature. The aim is to
provide some intuitions and access to the terminology.

2 The adjacency matrix

One of the most natural matrices associated with a graph G(V,E) is the adja-
cency matrix. It is defined by A(i, j) = 1 if {i, j} ∈ E and zero else.

Fact 2.1. Let α1 be the largest eigenvalue of A. Then, α1 ≤ maxi deg(i)

Proof. Given in class.

Fact 2.2. Let α1 be the largest eigenvalue of A. Then, α1 ≥ 1
n

∑
i deg(i)

Proof. Given in class.

Fact 2.3. Let β1 be the largest eigenvalue of B which is the adjacency graph of
G with one node removed. Then, β1 ≤ α1.

Proof. Given in class.
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Fact 2.4. Let α1 be the largest eigenvalue of A. Then, the graph G is bα1c+ 1
colorable.

Proof. Given in class.

3 The Markov transition matrix

The adjacency matrix also defines the diffusion or Markov transition matrix of
G. Let D = diag(A1n), that is D(i, i) =

∑
j A(i, j). We define the transition

matrix M = AD−1. The columns of the matrix M sum up to 1. The entries
of M can be seen as giving transitional probability between nodes in the graph.
That is, let pt denote the distribution over nodes in time t then:

pt+1 = Mpt

Let us see that there exists a stationery distribution p∞.

p∞ = lim
t→∞

pt = lim
t→∞

M tp0

Our goal is to understand the structure of limt→∞M t.

Fact 3.1. Let d be the vector such that d(i) = deg(i)/
∑

j deg(i). If the graph

G is connected and irreducible then limt→∞M t = d1T .

Before we show that let us see what that means.

p∞ = lim
t→∞

pt = lim
t→∞

M tp0 = d1T p0 = d

That is, regardless of the original distribution, after a sufficient number of steps
we arrive at a terminal distribution which remains unchanged. Surprisingly, the
probability of being at node i is relative only to its degree deg(i) and does not
depend on the structure of the graph.

Let’s turn to proving fact 3.1. First, note that M is congruent to the sym-
metric matrix D−1/2AD−1/2

M ∼ D−1/2MD1/2 = D−1/2AD−1/2 ≡ Ã

Where Ã is the normalized adjacency matrix. That means that M and Ã share
the same eigenvalues and that their eigenvectors are related.

fTM = λfT → fTD1/2D−1/2MD1/2 = λfTD1/2 → (fTD1/2)Ã = λ(fTD1/2)

Which means that λ is also an eigenvalue of Ã which corresponds to eigenvector
fTD1/2.

Fact 3.2. The top eigenvalue of M is 1 and the all other eigenvalues of M are
strictly smaller than 1 if the graph G is connected and irreducible (which we will
not define here).
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Proof. Given in class.

Due to the above and since 1TM = 1T we know that the top eigenvalue
of Ã is 1 an its top eigenvector is proportional to D1/21. Since it must be
normalized (eigenvectors have norm 1) it must be d1/2 were that means that

d1/2(i) =
√
deg(i)/

∑
j deg(i). Moreover, since all other eigenvalues of Ã are

strictly smaller than 1 we get that

lim
t→∞

Ãt = 1t · (d1/2)(d1/2)T

Combining with the fact that:

M t = D1/2ÃtD−1/2

we get that

lim
t→∞

M t = D1/2ÃtD−1/2 = D1/2(d1/2)(d1/2)TD−1/2 = d1T .

4 The graph Laplacian

The most natural matrix representing a graph (in my opinion) is the Graph
Laplacian Matrix which is defined as:

L = D −A

The graph Laplacian is positive semidefinite and symmetric matrix which in-
capsulates many different properties of the graph.

Fact 4.1. The graph Laplacian L is positive semidefinite.

Proof. Let us define Li,j as an n × n matrix whose entries are all zero apart
for Li,j(i, i) = Li,j(j, j) = 1 and Li,j(i, j) = Li,j(j, i) = −1. We have that
L =

∑
{i,j}∈E Li,j . That means that if Li,j is positive than so is L. computing

xT (Li,j)x = (xi − xj)
2 ≥ 0 for all x. Therefore, xTLx ≥ 0 for all x which

completes the proof.

The vector 1n exhibits 1T
nL1n = 0. That means that L has at least one

eigenvalue 0.

Fact 4.2. If the graph G is connected then all other eigenvalues of L are strictly
positive.

Proof. Given in class

Fact 4.3. The multiplicity of the eigenvalue 0 is equal to the number of con-
nected components in G.

Proof. Given in class
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The second eigenvector of L, the one corresponding to the second smallest
eigenvalue (λ2) is an extremely important parameter of any graph. It tells
us how well connected it is. We unfortunately cannot explain this here. The
corresponding vector is called the Fiedler vector and is heavily used in spectral
clustering. I will try to explain more in class if we have time.
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