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Lecture 10: k-means clustering
Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do

not cite this note as a reliable source. If you find mistakes, please inform me.

Definition 0.1 (k-means). Given n vectors x1 . . . , xn ∈ Rd, and an integer k, find k points µ1, . . . , µk ∈ Rd
which minimize the expression:

fk−means =
∑
i∈[n]

min
j∈[k]
‖xi − µj‖2

I words, we aim to find k cluster centers. The cost is the squared distance between all the points to
their closest cluster center. k-means clustering and Lloyd’s algorithm [6] are probably the most widely used
clustering procedure. This is for three main reasons:

• The objective function is simple and natural.

• Lloyd’s algorithm (which we see below) is simple, efficient and often results in the optimal solution.

• The results are easily interpretable and are often quite descriptive for real data sets.

In 1957 Stuart Lloyd suggested a simple iterative algorithm which efficiently finds a local minimum for this
problem. This algorithm (a.k.a. Lloyd’s algorithm) seems to work so well in practice that it is sometimes
referred to as k-means or the k-means algorithm.

Algorithm 1 Lloyd’s Algorithm

µ1, . . . , µk ← randomly chosen centers
while Objective function still improves do
S1, . . . , Sk ← φ
for i ∈ 1, . . . , n do
j ← arg minj′ ‖xi − µj′‖2}
add i to Sj

end for
for j ∈ 1, . . . , k do
µj = 1

|Sj |
∑
i∈Sj

xi
end for

end while

This algorithm can be thought of as a potential function reducing algorithm. The potential function is

fk−means =
∑
j∈[k]

∑
i∈Sj

‖xi − µj‖2.

The sets Sj are the sets of points to which µj is the closest center. In each step of the algorithm the potential
function is reduced. Let’s examine that. First, if the set of centers µj are fixed, the best assignment is clearly
the one which assigns each data point to its closest center. Also, assume that µ is the center of a set of
points S. Then, if we move µ to 1

|S|
∑
i∈S xi then we only reduce the potential. This is because 1

|S|
∑
i∈S xi

is the best possible value for µ (can easily be seen by derivation of the cost function).
The algorithm therefore terminates in a local minimum. The question of course is whether we can

guaranty that the solution is close to optimal and under what computational cost.
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1 k-means and PCA

This section will present a simple connection between k-means and PCA (similar ideas given here [3]).

Figure 1: Example of k-means (k = 2) cost broken into a PCA cost and a k-means cost in dimension k.

First, consider the similarity between the k-means cost function

fk−means = min
µ1,...,µk

∑
i∈[n]

min
j∈[k]
‖xi − µj‖2

and that of PCA
fPCA = min

Pk

∑
i∈[n]

‖xi − Pkxi‖2 = min
Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖2

where Pk is a projection into dimension k and y ∈ Pk means that Pky = y. The equality stems from the fact
that for any point x and projection matrix P we have that arg miny∈P ‖x− y‖ = Px.

Now, think about the subspace P ∗k which contains the k optimal centers. Since µ∗j ∈ P ∗k we have that:

fk−means =
∑
i∈[n]

min
j∈[k]
‖xi − µ∗j‖2 (1)

≥
∑
i∈[n]

min
yi∈P∗k

‖xi − yi‖2 (2)

≥ min
Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖2 (3)

= min
Pk

∑
i∈[n]

‖xi − Pkxi‖2 = fPCA (4)

Now, consider solving k-means on the points yi instead. This intuitively will be an easier task because
they are isometrically embedded into dimension exactly k (by the projection Pk). Before we do that though,
we should argue that a good clustering for yi results in a good clustering to xi. Let P be any projection and
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let yi = Pxi and µ̂j = Pµj . We have that:∑
j∈[k]

∑
i∈Sj

‖xi − µj‖2 ≥
∑
j∈[k]

∑
i∈Sj

‖Pxi − Pµj‖2 (5)

≥
∑
j∈[k]

∑
i∈Sj

‖yi − µ̂j‖2 (6)

≥
∑
j∈[k]

∑
i∈Ŝj

‖yi − µ̂j‖2 = f̂k−means (7)

where Ŝ and µ̂ are the assignments and centers of the projected points yi.
The following gives us a simple algorithm. Compute the PCA of the points xi into dimension k. Solve

k-means on the points yi in dimension k. Output the resulting clusters and centers.

falg =
∑
j∈[k]

∑
i∈Ŝj

‖xi − µ̂j‖2 (8)

=
∑
j∈[k]

∑
i∈Ŝj

‖xi − yi‖2 + ‖yi − µ̂j‖2 (9)

=
∑
i∈[n]

‖xi − yi‖2 +
∑
j∈[k]

∑
i∈Ŝj

‖yi − µ̂j‖2 (10)

= fPCA + f̂k−means ≤ 2fk−means (11)

1.1 ε-net argument for fixed dimensions

Since computing the SVD of a matrix (and hence PCA) is well known. We get that computing a 2-
approximation to the k-means problem in dimension d is possible if it can be done in dimension k.

To solve this problem we adopt a brut force approach. Let Qε be a set of points inside the unit ball Bk1
such that:

∀z ∈ Bk1 ∃ q ∈ Qε s.t. ‖z − q‖ ≤ ε

Such sets of points exist such that |Qε| ≤ c( 1
ε )k. There are probabilistic constructions for such sets as well

but we will not go into that. Assuming w.l.o.g. that ‖xi‖ ≤ 1 we can constrain the centers of the clusters to
one of the points in the ε-net Qε. Let qj be the closest point in Qε to µj (so ‖µj − qj‖ ≤ ε). From a simple
calculation we have that: ∑

j∈[k]

∑
i∈Sj

‖xi − qj‖2 ≤
∑
j∈[k]

∑
i∈Sj

‖xi − µj‖2 + 5ε.

To find the best clustering we can exhaustively search through every set of k points from Qε. For each
such set, compute the cost of this assignment on the original points and return the one minimizing the cost.

That will require
(c( 1

ε )
k

k

)
iterations over candidate solutions each of which requires O(ndk) time. The final

running time we achieve is 2O(k2 log(1/ε))nd.

2 Sampling

Another simple idea is to sample sufficiently many points from the input as candidate centers. Ideas similar
to the ones described here can be found here [7].

First, assume we have only one set of points S. Also, denote by µ the centroid of S, µ = 1
‖S‖

∑
i∈S xi.

We will claim that picking one of the members of S as a centroid is not much worse than picking µ. Let q
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be a member of S chosen uniformly at random. Let us compute the expectation of the cost function.

E[
∑
i∈S
‖xi − q‖2] =

∑
i∈S

∑
j∈S

1

n
‖xi − xj‖2 (12)

≤
∑
i∈S

∑
j∈S

1

n
· 2(‖xj − µ‖2 + ‖xi − µ‖2) (13)

≤ 4
∑
i∈S
‖xi − µ‖2. (14)

Using Markov’s inequality we get that

Pr[
∑
i∈S
‖xi − q‖2 ≤ 8

∑
i∈S
‖xi − µ‖2] ≥ 1/2

If this happens we say that q is a good representative for S. Now consider again the situation where we have
k clusters S1, . . . , Sk. If we are given a set Q which contains a good candidate for each of the sets. Then,
restricting ourselves to pick centers from Q will result in at most a multiplicative factor of 8 to the cost.

The set Q can be quite small if the set are roughly balanced. Let the smallest set contain ns points. We
therefore succeed in finding a good representative for any set with probability at least 1

2
ns

n . The probability

of failure for any set is thus bounded by k(1− ns

2n )|Q|. Therefore |Q| = O(k log(k)) if ns ∈ Ω(n/k).

Again, iterating over all subsets ofQ of size k we can find an approximate solution is timeO(
(
ck log(k)

k

)
knd) =

2O(k log(k))nd.

3 Advanced reading

In the above, we gave approximation algorithms to the k-means problem. Alas, any solution can be improved
by performing Lloyds algorithm on its output. Therefore, such algorithms can be considered as ‘seeding’
algorithms which give initial assignments to Lloyds algorithm. A well known seeding procedure [2] is called
k-means++. In each iteration, the next center is chosen randomly from the input points. The distribution

Algorithm 2 k-means++ algorithm [2]

C ← {xi} where xi is a uniformly chosen from [n].
for j ∈ [k] do

Pick node x with probability proportional to minµ∈C ‖x− µ‖2
Add x to C

end for
return: C

over the points is not uniform. Each point is picked with probability proportional to the minimal square
distance from it to a picked center. Surprisingly, This simple and practical approach already gives an
O(log(k)) approximation guarantee. More precisely, let fk−means(C) denote the cost of k-means with the
set of centers C. Also, denote by C∗ the optimal set of centers. Then

E[fk−means(C)] ≤ 8(log(k) + 2)fk−means(C
∗)

In [1] the authors give a streaming algorithm for this problem. They manipulate ideas from [2] and
combine them with a hirarchical divide and conquer methodology. See also [4] for a thorough survey and
new techniques for clustering in streams.

Another problem which is very related to k-means is the k-medians problem. Given a set to points
x1, . . . , xn the aim is to find centers µ1, . . . , µk which minimize:

fk−medians =
∑
i∈[n]

min
j∈[k]
‖xi − µj‖
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Both k-means and the k-median problem admit 1 + ε multiplicative approximation algorithms but these are
far from being simple. See [5] for more details, related work, and a new core set based solution.
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