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Plan of the talk 

2 

 Part 1: Introduction and fundamental results 
› Clustering: from the Euclidean setting to the graph setting 

› Correlation clustering: motivations and basic definitions,  

› Fundamental results 

› The Pivot Algorithm 

 
 Part 2: Correlation clustering variants 

› Overlapping, On-line, Bipartite, Chromatic 

› Clustering aggregation 

 
 Part 3: Scalability for real-world instances 

› Real-world application examples 

› Scalable implementation 

› Local correlation clustering 

 
 



Part I :   
Introduction and fundamental results 
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Clustering, in general 
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Partition a set of objects such that “similar” objects are grouped 
together and “dissimilar” objects are set apart. 
 

Setting 
 
 

Objective function 
 
 

Algorithm 
 



Euclidean Setting 
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Points 

Small                       indicates the two points are “similar” 



Euclidean Setting 
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Clusters Points 

A cluster is a set of points 



Euclidean Setting 
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Centers 

Points Clusters 

Each cluster has a cluster center 



Euclidean objectives 
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K-means objective 

Points 

Centers 

Clusters 



Euclidean objectives 
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K-median objective 

Points 

Centers 

Clusters 



Euclidean objectives 
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K-centers objective 

Points 

Centers 

Clusters 



Graph setting 
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Nodes  Edges 

means the two nodes are “similar” 



Graph setting 
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Cluster   

means the two nodes are “similar” 



Graph setting 

14 

We want       and      large and                small   

Cluster   



Graph objectives 
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Cluster   

Sparsest cut objective 



Graph objectives 
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Cluster   

Edge expansion                         s.t. 



Graph objectives 
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Cluster   

Graph Conductance                      s.t. 



Graph objectives 
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k-balanced partitioning 
 
Where  



Graph objectives 
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Multi-way spectral partitioning 
  



Correlation Clustering objective 
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Let       be a collection of cliques (clusters). 



Correlation Clustering objective 
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Find the clustering that correlates  
the most with the input graph 

Redundant edge Missing edge 



4 Basic variants 
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Unweighted Weighted 

Min-
disagree 

Max-
agree 
 



4 Basic variants 
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Unweighted Weighted 

Min-
disagree 

Max-
agree 
 



Correlation Clustering objective 
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Important points to notice 
 There is no limitation on the number of clusters 
 and no limitation on their sizes 

 
For example: the best solution could be  
 1 giant cluster  
 n singletons 
 



Document de-duplication 
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Document de-duplication 
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They are not identical 



Document de-duplication 
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And which is similar to which is not always clear… 



Document de-duplication 
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Motivation from machine learning 
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Motivation from machine learning 
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Input graph 
(Result of classifier) 

Space of valid  
clustering solutions 
 

True clustering 
(unknown) 

Output of the  
clustering algorithm 

Classification  
Errors 

Clustering Errors 
w.r.t. input 

Clustering Errors 
w.r.t. true clustering 



Some bad news : min-disagree 
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 Unweighted complete graphs - NP-hard (BBC02) 
› Reduction from “Partition into Triangles” 
 
 Unweighted general graphs - APX-hard (DEFI06) 

› Reduction from multiway cuts. 
 
 Weighted general graphs - APX-hard (DEFI06) 

› Reduction from multiway cuts. 
 

 

 



An algorithms is a      approximation if:  

Algorithms for unweighted min-disagree 
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Paper Approximation Running time 
[BBC02] 
[DEFI06] LP 
[CGW03] LP 
[ACNA05] LP 
[ACNA05] 

[AL09] 



Algorithm warm-up 
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From 
 

Correlation clustering, 2002 
Nikhil Bansal, Avrim Blum, and Shuchi Chawla.  

 
 
 
 
 



Algorithm warm-up 
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Algorithm warm-up 
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Consider only clustering to 2 clusters (for now…) 



Algorithm warm-up 
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Consider all clustering to 2 clusters of the form   
 



Algorithm warm-up 
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Consider the one whose neighborhood disagrees 
the least with the best clustering. 
(Here          ) 



Algorithm warm-up 
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Each node “contributes” at least        mistakes. 
Therefore  
 



Algorithm warm-up 
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On the other hand 
(Each of the    disagreements adds at most    errors)   
 



Algorithm warm-up 
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Putting it all together                      and 
 

Gives: 



LP based solutions 
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Erik D. Demaine, Dotan Emanuel, Amos Fiat, Nicole Immorlica 

Correlation clustering in general weighted graphs, 2006 
 

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth.  
Clustering with qualitative information, 2003 

 
Nir Ailon, Moses Charikar, Alantha Newman 2005 

Aggregating inconsistent information: ranking and clustering 
 
 



LP relaxation 
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Minimize 
 
 

s.t.                                                                 
 



LP relaxation 
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Minimize 
 
 

s.t.                                                                instead of     
 
                                                                             triangle inequality 
 
 
 
The solution is at least as good as 
But, it’s fractional… 
 



Region growing 
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Region growing 
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Pick an arbitrary node 



Region growing 
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Start growing a ball around it 



Region growing 
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Stop when some condition holds. 



Region growing 
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And repeat until you run out of nodes.  



Some good and some bad news 
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Good news:  
 [DEFI06] [CGW03] For weighted graphs we get: 

 
 
 [CGW03] For unweighted graphs we get: 

 



Pivot 
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Nir Ailon, Moses Charikar, Alantha Newman 2005 
Aggregating inconsistent information: ranking and clustering 

 
 
 
 



Pivot 
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Pivot 
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Pick a node (   ) uniformly at random 



Pivot 
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With probability               for all  



Pivot 
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Recourse on the rest of the graph.  



Some good and some bad news 
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Good news:  
 The algorithm guaranties  

 
 

 This is the best known approximation result! 
 
Bad news:  
 Solving large LPs is expensive. 
 This LP has              constraints… argh…. 

 



Pivot – skipping the LP 
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Nir Ailon, Moses Charikar, Alantha Newman 2005 
Aggregating inconsistent information: ranking and clustering 

 
 
 
 



Pivot  
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Pivot  
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Pick a random node (uniformly!!!) 



Pivot  
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Declare itself and its neighbors as the first cluster. 



Pivot  
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Pick a random node again (uniformly from the rest) 



Pivot  
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And continue until you consume the entire graph. 



Some good and some bad news 
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Good news:  
 The algorithm guaranties  

 
 

 Running time is           , very efficient!!   
 

Bad news:  
 Works only for complete unweighted graphs 
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Correlation clustering variants 
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 Overlapping 
 Chromatic 
 On-line 
 Bipartite 
 Clustering aggregation 

 



 
 Overlapping correlation clustering 
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F. Bonchi, A. Gionis, A. Ukkonen: Overlapping Correlation Clustering ICDM 2011 



68 

overlapping clusters are very natural 
 social networks 
 proteins 
 documents 



From correlation clustering 
to overlapping correlation clustering 
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 Correlation clustering: 
› Set of objects  

› Similarity function 

› Labeling function 

 
 
 

 Overlapping correlation clustering: 
› Labeling function  

› Similarity function between sets of labels  



OCC problem variants 
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 Based on these choices: 
› Similarity function s takes values in  

› Similarity function s takes values in 

 

› Similarity function H is the Jaccard coefficient 

› Similarity function H is the intersection indicator 

 

› Constraint on the maximum number of labels per object 

› Special cases:  

                                                      normal Correlation Clustering 

                no constraint 

 



Some results 
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              is NP-Hard    [from hardness of             ]  
                                  is NP-Hard       [from                                 ] 
             is hard to approximate  [from                                 ] 
                  the optimal solution can be found in polynomial time 
                   admits a zero-cost polynomial time solution 

 
 Connection with graph coloring 
 Connection with dimensionality reduction 



Local-search algorithm 
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 We observe that cost can be rewritten as: 
 
 
 
 
 

   where 



Local step for Jaccard 

73 

                             
 
› Given 

 

› Find                      that minimizes 

 

 

 

 

                                             is NP-Hard 
› generalization of “Jaccard median” problem* 

› non-negative least squares + post-processing of the fractional solution 

 

F. Chierichetti, R. Kumar, S. Pandey, S. Vassilvitskii: Finding the Jaccard Median. SODA 2010 



Local step for set intersection indicator 
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                         problem 
 Inapproximable within a constant factor 
                     approximation by Greedy algorithm        

 



Experiments on ground-truth overlapping clusters 
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 Two datasets from multilable classification 
 

› EMOTION: 593 objects, 6 labels 

› YEAST: 2417 objects, 14 labels 

 

 Input similarity s(u,v) is the Jaccard coefficient of the labels of u 
and v in the ground truth  

 



Experiments on ground-truth overlapping clusters 
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Application: overlapping clustering of trajectories 
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 Starkey project dataset containing the radio-telemetry locations of 
elks, deer, and cattle. 

 88 trajectories  
› 33 elks 

› 14 deers 

› 41 cattles 

 80K (x,y,t) observations (909 observations per trajectory in avg) 
 Use EDR* as trajectory distance function, normalized to be in [0,1] 

 
 

 Experiment setting: k = 5, p = 2, Jaccard  
 

* L. Chen, M. T.  Özsu, V. Oria: Robust and Fast Similarity Search for Moving Object 
Trajectories. SIGMOD 2005 



Application: overlapping clustering of trajectories 
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Chromatic correlation clustering 
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F. Bonchi, A. Gionis, F. Gullo, A. Ukkonen:  
Chromatic correlation clustering  

KDD 2012 
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 heterogeneous data 
 objects of single type 
 associations between objects are categorical 
 can be viewed as edges with colors in a graph 
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Example: social networks 
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Example : protein interaction networks 
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Research question 

 how to incorporate edge types in the clustering 
framework? 
 
 Intuitively: 
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Chromatic correlation clustering 
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Chromatic correlation clustering 
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Cost of chromatic correlation clustering 
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Cost of chromatic correlation clustering 



From correlation clustering 
to chromatic correlation clustering 
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 Correlation clustering: 
› Set of objects  

› Similarity function 

› Clustering 

 
 
 

 Chromatic correlation clustering: 
› Pairwise labeling function  

› Clustering 

› Cluster labeling function  
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chromatic PIVOT algorithm 

 Pick a random edge (u,v), of color c 
 Make a cluster with u,v and all neighbors w, such that 

(u,v,w) is monochromatic 
 assign color c to the cluster 
 repeat until left with empty graph 

 
 
 approximation guarantee 6(2D-1) 

› where D is the maximum degree 

 Time complexity  
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how good is this bound ? 
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Lazy chromatic pivot 

 Same scheme as Chromatic Pivot with two 
differences: 
 

 The way how the pivot (x,y) is picked:  
 not uniformly at random, but with probability 

proportional to the maximum chromatic degree 
 

 The way how the cluster is built around (x,y):  
 not only vertices forming monochromatic triangles 

with the pivots, but also vertices forming 
monochromatic triangles with non-pivot vertices 
belonging to the cluster. 

 
 Time complexity 
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An algorithm for finding a predefined  
number of clusters 

 Based on the alternating-minimization paradigm: 
› Start with a random clustering with K clusters 
› Keep fixed vertex-to-cluster assignments and optimally update 

label-to-cluster assignments 
› Keep fixed label-to-cluster assignments and optimally update 

vertex-to-cluster assignments 
› Alternately repeat the two steps until convergence 

 
 Guaranteed to converge to a local minimum of the 

objective function 



Experiments on synthetic data with planted clustering 
q = level of noise, |L| = number of labels,  

K = number of ground truth clusters 
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Experiments on real data 
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Extension: multi-chromatic correlation clustering 
(to appear) 

 object relations can be expressed by more than one label 
 i.e., the input to our problem is an edge-labeled graph whose 

edges may have multiple labels.  
 

 Extending chromatic correlation clustering by: 
1. allowing to assign a set of labels to each cluster (instead of 

a single label) 
2. measuring the intra-cluster label homogeneity by means of 

a distance function between sets of labels 



From chromatic correlation clustering  
to multi-chromatic correlation clustering 
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 Chromatic correlation clustering: 
› Set of objects  

› Pairwise labeling function  

› Clustering 

› Cluster labeling function  

 

 
 
 Multi-chromatic correlation clustering: 

› Pairwise labeling function  

› Distance between set of labels  

› Cluster labeling function  
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 As distance between sets of labels we adopt 
Hamming distance 
 
 
 
 A consequence is that inter-cluster edges cost the 

number of labels they have plus one 
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Multi-chromatic pivot 

 Pick randomly a pivot 
 Add all vertices       such that 
 The cluster is assigned the set of colors 

 
 approximation guarantee 6|L|(D-1) 

› where D is the maximum degree 

 



 
 Online correlation clustering 
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C. Mathieu, O. Sankur, W. Schudy:  
Online correlation clustering  

STACS 2010 



Online correlation clustering 

 Vertices arrive one by one.  
 The size of the input is unknown. 
 Upon arrival of a vertex v, an online algorithm can 

› Create a new cluster {v}. 

› Add v to an existing cluster. 

› Merge any pre-existing clusters. 

› Split a pre-existing cluster 

 
 



Main results 
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 An online algorithm is c-competitive if on any input I , the 
algorithm outputs a clustering ALG(I) s.t.  

profit(ALG(I)) ≥ c · profit(OPT(I))  
where OPT(I) is the offline optimum. 
 
 Main results: 

›                             is hopeless: O(n)-competitive and this is proved optimal. 

› For                    
• Greedy 0.5-competitive 

• No algorithm can be better than 0.834-competitive 

• (0.5+c)-competitive randomized algorithm 
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 If profit(OPT) ≤ (1 − α)|E|,                   has competitive ratio > 0.5 

 IDEA: design an algorithm with competitive ratio > 0.5 when  
profit(OPT) > (1 − α)|E|          

 
 
 
 
 
 

                                           is (0.5 + ε)-competitive. 



Algorithm Dense 
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 Reminder: focus on instances where profit(OPT) > (1 − α)|E| 
 Fix 
 When new vertices arrive put them in a singleton cluster 
 At times 
 Compute (near)                    
 Merge clusters as explained next 
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 Suppose we start with OPT at time t1. 
 Until time t2, we put all new vertices to singletons. 
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 At time t2, we run the merging procedure. 
 First, compute OPT(t2). 
 Then try to recreate OPT(t2). 
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 Clusters at the previous step, that are more than half covered 
by a cluster in the new optimal clustering are merged in the 
cluster. 
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 B1 and B2 are kept as ghost clusters. 
 At time 3, the new optimal cluster are compared to the ghost 

clusters at the previous step 
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 B1 and B2 are kept as ghost clusters. 
 At time 3, the new optimal cluster are compared to the ghost 

clusters at the previous step 

 



Main results 
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 An online algorithm is c-competitive if on any input I , the 
algorithm outputs a clustering ALG(I) s.t.  

profit(ALG(I)) ≥ c · profit(OPT(I))  
where OPT(I) is the offline optimum. 
 
 Main results: 

›                             is hopeless: O(n)-competitive and this is proved optimal. 

› For                    
• Greedy 0.5-competitive 

• No algorithm can be better than 0.834-competitive 

• (0.5+c)-competitive randomized algorithm 

 



 
 Bipartite correlation clustering 
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N. Ailon, N. Avigdor-Elgrabli, E. Liberty, A. van Zuylen 
Improved Approximation Algorithms for Bipartite Correlation Clustering  

ESA 2011 



Correlation bi-clustering 

 



Correlation bi-clustering 

 Users – Items 
 Raters – Movies 
 B-cookies – User_Id 
 Web Queries - URLs 



Input for correlation bi-clustering 
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The input is an undirected unweighted bipartite graph. 



Output of correlation bi-clustering 
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The output is a set of bi-clusters. 



Cost of a correlation bi-clustering solution 
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The cost is the number of erroneous edges. 



PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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PivotBiCluster 
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 Let OPT denote the best possible bi-clustring of G. 
 Let B be a random output of PivotBiCluster.  
 Then: 
 

E[cost(B)] ≤ 4cost(OPT) 
 

 Let's see how to prove this... 



Tuples, bad events, and violated pairs 
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Tuples, bad events, and violated pairs 
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Tuples, bad events, and violated pairs 
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 Since every violated pair can be blamed on (or colored by) one 
bad event happening we have: 
 
 
 
 

where qT denotes the probability that a bad event happened to 
tuple T. 
 

 Note: the number of tuples is exponential in the size of the 
graph. 



Proof sketch 
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Clustering aggregation 
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ICDE 2004 & TKDD 



Clustering aggregation 

 Many different clusterings for the same dataset! 
 
› Different objective functions 
› Different  algorithms 
› Different number of clusters 

 
 Which clustering is the best? 

› Aggregation: we do not need to decide, but rather find a 
reconciliation between different outputs 



The clustering-aggregation problem 

 Input 
› n objects V = {v1,v2,…,vn} 
› m clusterings of the objects C1,…,Cm 
 

 Output 
› a single partition C, that is as close as possible to all input 

partitions 
 

 How do we measure closeness of clusterings? 
› disagreement distance 



Disagreement distance 

U C P 

x1 1 1 

x2 1 2 

x3 2 1 

x4 3 3 

x5 3 4 

d(C,P) = 3 



Clustering aggregation 



Why clustering aggregation? 

 Clustering categorical data 
 
 
 
 
 
 
 
 
 
 

 The two problems are equivalent 

U City Profession Nationality 

x1 New York Doctor U.S. 

x2 New York Teacher Canada 

x3 Boston Doctor U.S. 

x4 Boston Teacher Canada 

x5 Los Angeles Lawer Mexican 

x6 Los Angeles Actor Mexican 



Why clustering aggregation? 
 Clustering heterogenous data 

› E.g., imcomparable numeric attributes 

 

 Identify the correct number of clusters 
› the optimization function does not require an explicit number of clusters 

 
 Detect outliers 

› outliers are defined as points for which there is no consensus 

 

 Improve the robustness of clustering algorithms 
› different algorithms have different weaknesses. 

› combining them can produce a better result. 

 

 Privacy preserving clustering 
› different companies have data for the same users. They can compute an 

aggregate clustering without sharing the actual data. 

 
 



Clustering aggregation 
= 

Correlation clustering with fractional similarities 
satisfying triangle inequality  

150 Yahoo Confidential & Proprietary 



Metric property for disagreement distance 

 d(C,C) = 0 
 d(C,C’)≥0 for every pair of clusterings C, C’  
 d(C,C’) = d(C’,C) 
 Triangle inequality? 
 It is sufficient to show that for each pair of points x,y 

єV: dx,y(C1,C3)≤ dx,y(C1,C2) + dx,y(C2,C3) 

 dx,y takes values 0/1; triangle inequality can only be 
violated when 

dx,y(C1,C3) = 1 and dx,y(C1,C2)= 0 and dx,y(C2,C3) = 0 
› Is this possible? 

 
 



A 3-approximation algorithm 

 The BALLS algorithm:  
› Sort points in increasing order of weighted degree 
› Select a point x and look at the set of points B within distance ½ of 

x 
› If the average distance of x to B is less than ¼ then create the 

cluster B∪{x} 
› Otherwise, create a singleton cluster {x} 
› Repeat until all points are exhausted 

 

 The BALLS algorithm has approximation factor 3 



Other algorithms 

153 

 Picking the best clustering among the input clusterings, 
provides 2(1-1/m) approximation ratio. 
› However, the runtime is O(m^2n) 

 
 Ailon et al. (STOC 2005) propose a similar pivot-like algorithm 

(for correlation clustering) that for the case of similarity 
satisfying triangle inequality gives an approximation ratio of 2. 

 For the specific case of clustering aggregation they show that 
chosing the best solution between their algorithm and the best 
of the input clusterings, yelds a solution with expected 
approximation ratio of 11/7. 



Part I I I :   
Scalabi l ity for real-world instances 
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Application 1: B-cookie de-duplication

SID = Andre

SID = Steffi

B = A work

B = A laptop

B = AS home

B = S work

� Each visit to Yahoo sites is tied to a browser B-cookie.
� We also know the hashed Yahoo IDs (SIDs) of users who are logged in.
� Many-many relationship between B-cookies and SIDs.

Problem
How to identify the set of distinct users and/or machines?



Application 1: B-cookie de-duplication (II)

� Data for a few days may occupy tens of Gbs and contain hundreds of
millions of cookies/SIDs.

� It is stored across multiple machines.

� We have developed a general distributed and scalable framework for
correlation clustering in Hadoop.

� The problem may be modeled as correlation bi-clustering, but we choose
to use standard CC for scalability reasons.



Application 1: B-cookie de-duplication (II)

� Data for a few days may occupy tens of Gbs and contain hundreds of
millions of cookies/SIDs.

� It is stored across multiple machines.
� We have developed a general distributed and scalable framework for

correlation clustering in Hadoop.
� The problem may be modeled as correlation bi-clustering, but we choose

to use standard CC for scalability reasons.



B-cookie de-duplication: graph construction

� We build a weighted graph of B-cookies.
� Assing a (multi)set SIDs(B) to each B-cookie.
� The weight (similarity) of edge B1 ↔ B2 is

w(B1,B2) = J(SIDs(B1),SIDs(B2)) ,
|SIDs(B1) ∩ SIDs(B2)|
|SIDs(B1) ∪ SIDs(B2)| ∈ [0, 1].

� We use correlation clustering to find ` : V → N minimizing∑
`(B1) 6=`(B2)

J(B1,B2) +
∑

`(B1)=`(B2)

[1− J(B1,B2)] .



Application 2 (under development): Yahoo Mail

Spam detection

� Spammers tend to send groups of groups emails very similar contents.
� Correlation clustering can be applied to detect them.



How is the graph given?

How fast we can perform correlation clustering depends on how the edge
information is accessed.
For simplicity we describe the case of 0-1 weights.

1. Neighborhood oracles: given v ∈ V , return its positive neighbours:

E+(v) = {w ∈ V | (v ,w) ∈ E+}.

2. Pairwise queries: given a pair v ,w ∈ V , determine if (v ,w) ∈ E+.



Part  1 :  CC wi th  ne ighborhood orac les

1



Constructing neighborhood oracles

� Easy if the input is the graph of positive edges explicitly given.
� Otherwise, locality sensitive hashing may be used for certain distance

metrics such as Jaccard similarity.
� This technique involves computing a set Hv of hashes for each node v

based on its features, and building an inverted index.
� Given a node v , we can retrieve the nodes whose similarity with v

exceeds a certain threshold by inspecting the nodes w with
H(w) ∩H(v) 6= ∅.



Large-scale correlation clustering with neighborhood oracles

� We show a system that achieves an expected 3-approximation
guarantee with a small number of MapReduce rounds.

� A different approach with high-probability bounds has been developed by
Chierichetti, Dalvi and Kumar: Correlation Clustering in MapReduce,
KDD’14 (Monday 25th, 2pm).



Running time of Pivot with neighborhood oracles

Algorithm Pivot

while V 6= ∅ do
v ← uniformly random node from V
Create cluster Cv = {v} ∪ E+(v)
V ← V \ Cv

E+ ← E+ ∩ (V × V )

� Recall that Pivot attains an expected 3-approximation.
� Its running time is O(n + m+), i.e., linear in the size of the positive graph.
� Later we’ll see that a certain variant runs in O(n3/2), regardless of m+.



Running time of Pivot (II)

Observe that if the input graph can be partitioned into a set of cliques, Pivot
actually runs in O(n).

Can it be faster than O(n + m) if the graph is just close to a union of cliques?



Running time of Pivot (II)

Observe that if the input graph can be partitioned into a set of cliques, Pivot
actually runs in O(n).

Can it be faster than O(n + m) if the graph is just close to a union of cliques?



Running time of Pivot (III)

Theorem (Ailon and Liberty, ICALP’09)
The expected running time of Pivot with a neighborhood oracle is
O(n + OPT ), where OPT is the cost of the optimal solution.

Proof:
� Each edge from a center either captures a cluster element or disagrees

with the final clustering C.
� There are at most n− 1 edges of the first type, and cost(C) ≤ 3 ·OPT of

the second.



Running time of Pivot (III)

Theorem (Ailon and Liberty, ICALP’09)
The expected running time of Pivot with a neighborhood oracle is
O(n + OPT ), where OPT is the cost of the optimal solution.

Proof:
� Each edge from a center either captures a cluster element or disagrees

with the final clustering C.
� There are at most n− 1 edges of the first type, and cost(C) ≤ 3 ·OPT of

the second.



So where’s the catch?

� The algorithm needs Ω(n) memory to store the set of pivots found so far
(including singleton clusters.)

� It is inherently sequential (needs to check if the new candidate pivot has
connections to previous ones).

� We would like to be able to create many clusters in parallel.



Running Pivot in parallel

Observation #1: after fixing a random vertex permutation π, Pivot becomes
deterministic.

Algorithm Pivot

π ← random permutation of V
for v ∈ V by order of π do

if v is smaller than all of E+(v) according to π then
Create cluster Cv = {v} ∪ E+(v) # v is a center, E+(v) are spokes
V ← V \ Cv

E+ ← E+ ∩ (V × V )

Observation #2: If a vertex comes before all its neighbours (in the order
defined by π), it is a cluster center. We can find them in parallel in one round.

Observation #3: We should remove remove edges as soon as possible, i.e.,
when we know for sure whether or not a vertex is a cluster center.



Running Pivot in parallel
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Example: clustering a line

1 2 3 4 5 6 7 8 9 10 11

11 31 3 51 3 5 71 3 5 7 91 3 5 7 9 11

� If π = id , a single cluster of size 2 is found per round⇒ dn/2e rounds.

� But π was chosen at random!
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Clustering a line: random permutation (II)

Some intuition:
� For a line, we expect to find 1/3 of the vertices to be pivots in the first

round.
� The ”longest dependency chain“ has expected size O(log n).
� Thus we expect to cluster the line in about log n rounds.



Pseudocode for ParallelPivot

Pick a random bijection π : V → |V | # π encodes a random vertex permutation
C = ∅ # C is the set of vertices known to be cluster centers
S = ∅ # S is the set of vertices known not to be cluster centers
E = E+ ∩ {(i, j) | π(i) < π(j)} # Only keep “+” edges respecting the permutation order
while C ∪ S 6= V do

# For each round, pick pivots in parallel and update C, S and E .
for i ∈ V \ (C ∪ S) do

# i ’s status is unknown
N(i) = {j ∈ V | (i, j) ∈ E} # Remaining neighbourhood of i
if N(i) = ∅ then

# i has no smaller neighbour left; it is a cluster center.
# Also, none of the remaining neighbours of i is a center (but they may be assigned to another center).
C = C ∪ {i}
S = S ∪ N(i)
E = E \ E({i} ∪ N(i))

� Each vertex can be a cluster center or a spoke (attached to a center).
� When a vertex finds out about its own status, it notifies its neighbours.
� Otherwise it asks about the status of the neighbours it needs to know.



ParallelPivot: analysis

We obtain the exact same clustering that Pivot would find for a given vertex
permutation π. Hence the same approximation guarantees hold.

The i th round (iteration of the while loop) requires O(n + mi ) work, where
mi = |E+| is the number of edges remaining (which is strictly decreasing).

Question: How many rounds before termination?



Pivot and Maximal Independent Sets (MISs)

Focus on the set of cluster centers found:

Algorithm Pivot

π ← random permutation of V
C ← ∅
for v ∈ V in order of π do

if v has no earlier neighbours in C then
C ← C ∪ {v}
Cv = {v} ∪ E+(v) # v is a center, E+(v) are spokes
V ← V \ Cv

� C is an independent set: there are no edges between two centers.
� It is also maximal: cannot be extended by adding more vertices to C.
� Finding set of pivots ≡ finding a lexicographically smallest MIS (after

applying π).



Lexicographically Smallest MIS

� The lexicographically smallest MIS is P-hard to compute [Cook’67].
� This means that it is very unlikely to be parallelizable.
� Bad news?

� Recall that π is not an arbitrary permutation, but was chosen at random.
� For this case, a result of Luby (STOC’85) implies that the number of

rounds of Pivot is O(log n) in expectation. X
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MapReduce implementation details

� Each round of ParallelPivot uses two MapReduce jobs.
� Each vertex uses key-value pairs to send messages to its neighbours

whenever it discovers that it is/isn’t a cluster center.
� These two rounds do not need to be separated.



B-cookie de-duplication: some figures

� We take data for a few weeks.
� The graph can be built in 3 hours.
� Our system computes a high-quality clustering in 25 minutes, after 12

Map-Reduce rounds.
� The average number of erroneous edges per vertex (in the CC measure)

is less than 0.2.
� The maximum cluster size is 68 and the average size among

non-singletons is 2.89.
� For a complete evaluation we wold need some ground truth data.



Part  2:  CC wi th pa i rwise  quer ies
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Correlation clustering with pairwise queries

Pairwise queries are useful when we don’t have an explicit input graph.

Problem
Making all

(n
2

)
pairwise queries may be too costly to compute or store.

Can we get approximate solutions with fewer queries?

Constant-factor approximations require Ω(n2) pairwise queries...
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Query complexity/accuracy tradeoff

Theorem
With a “budget” of q queries, we can find a clustering C with
cost(C) ≤ 3 ·OPT + n2

q in time O(nq).

This is nearly optimal.

� We call this a (3, ε) approximation (where ε = 1
q ).

� Restating, we can find a (3, ε)-approximtion in time O(n/ε).
� This allows to find good clusterings up to a fixed an accuracy threshold ε.
� We can use this result about pairwise queries to give a faster

O(1)-approximation algorithm for neighborhood queries that runs in
O(n3/2).

This result is a consequence of the existence of local algorithms for
correlation clustering.

Bonchi, Garcı́a-Soriano, Kutzkov: Local correlation clustering,
arXiv:1312.5105.
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Local correlation clustering (LCC)

Definition
A clustering algorithm A is said to be local with time complexity t if having
oracle access to any graph G, and taking as input |V (G)| and a vertex
v ∈ V (G), A returns a cluster label AG(v) in time O(t). Algorithm A implicitly
defines a clustering, described by the labelling `(v) = AG(v).

� Each vertex queries t edges.
� Outputs a label identifying its own cluster in time O(t).



LCC → explicit clustering

An LCC algorithm can output a explicit clustering by:

1. Computing `(v) for each v in time O(t);

2. Putting together all vertices with the same label ` (in O(n)).

Total time: O(nt).

In fact we can use LCC to cluster the part of the graph we’re interested in
without having to cluster the whole graph.
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LCC → Local clustering reconstruction

Queries of the form “are x , y in the same cluster”? can be answered in time
O(t).

� How: compute `(x) and `(y) in O(t), and check for equality.
� No need to partition the whole graph!
� This is is like “correcting” the missing/extraneous edges in the input data

on the fly.
� It fits into the paradigm of “property-preserving data reconstruction”

(Ailon, Chazelle, Seshadhri, Liu’08).



LCC → Distributed clustering

The computation can be distributed:

1. We can assign vertices to diffent processors.

2. Each processor computes `(v) in time O(t).

3. All processors must share the same source of randomness.



LCC → Streaming clustering

Edge streaming model: edges arrive in arbitrary order.

1. For a fixed random seed, the set of v ′s neighbours the LCC can query
has size at most 2t .

2. This set can be compute before any edge arrives.

3. We only need to store O(n · 2t ) edges (this can be improved further.)

This has applications in clustering dynamic graphs.



LCC → Quick cluster edit distance estimators

The cluster edit distance of a graph is the smallest number of edges to
change for it to admit a perfect clustering (i.e., a union of cliques).
Equivalently, it is the cost of the optimal correlation clustering.

� We can estimate the cluster edit distance by sampling random pairs of
vertices and checking whether `(v) = `(w).

� This also gives property testers for clusterability.
� This allows us to quickly reject instances where even the optimal

clustering is too bad.
� Another application may be in quickly evaluating the impact of decisions

of a clustering algorithm.



Local correlation clustering: results

Theorem
Given ε ∈ (0, 1), a (3, ε)-approximate clustering can be found locally in time
O(1/ε) per vertex, (after O(1/ε2) preprocessing.) Moreover, finding an
(O(1), ε)-approximation with constant success probability requires Ω(1/ε)
queries.

This is particularly useful where the graph contains a relatively small number
of “dominant” clusters.



Local correlation clustering: algorithm

Algorithm LocalCluster(v , ε)

P ← FindGoodPivots(ε)
return FindCluster(v ,P)

Algorithm FindCluster(v ,P)

if v /∈ E+(P) then
return v

else
i ← min{j | v ∈ E+(Pj )};

return Pi



Algorithm FindGoodPivots(ε)

for i ∈ [16] do
P i ← FindPivots(ε/12);
d̃ i ← estimate of the cost of P i with O(1/ε) local clustering calls

j ← arg min{d̃ i | i ∈ [16]}
return P j

Algorithm FindPivots(ε)

Q ← random sample of O(1/ε) vertices.
P ← [] (empty sequence)
for v ∈ Q do

if FindCluster(v ,P) = v then
append v to P

return P



Part IV:  
 Chal lenges and directions  
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Edo Liberty 
Yahoo Labs, NYC 



Future challenges 

157 

 Can we have efficient algorithms for weighted or partial graphs 
with provable approximation guaranties? 

 In practice, greedy algorithms work very well but provably fail 
sometimes. Can we characterize when that happens? 

 Practically solving Correlation Clustering problems in large 
scale is still a challenge. 

 Better conversion and representation of data as graphs will 
enable fast and efficient clustering. 

 Can we develop machine learned pairwise similarities that can 
support neighborhood queries over sets of objects? 
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Thank you! 
Questions? 
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