
Dense Fast Random Projections and Lean Walsh Transforms

Edo Liberty∗ Nir Ailon† Amit Singer‡

Abstract

Random projection methods give distributions over k × d matrices such that if a matrix Ψ (chosen

according to the distribution) is applied to a finite set of vectors xi ∈ Rd the resulting vectors Ψxi ∈ Rk

approximately preserve the original metric with constant probability. First, we show that any matrix

(composed with a random ±1 diagonal matrix) is a good random projector for a subset of vectors in

Rd. Second, we describe a family of tensor product matrices which we term Lean Walsh. We show that

using Lean Walsh matrices as random projections outperforms, in terms or running time, the best known

current result (due to Matousek) under comparable assumptions.

Introduction

Random Projection is a technique for reducing the dimensionality of vectors by multiplying them with a

random matrix. The critical property of a k × d random projection matrix, Ψ, is that for any vector x the

mapping x 7→ Ψx preserves its length, up to distortion ε, with probability at least 1− δ for any 0 < ε < 1/2

and δ > 0. Here, the target dimension k is much smaller than the original dimension d. The name random

projections was coined after the first construction by Johnson and Lindenstrauss in [1] who showed that

such mappings exist for k ∈ O(log(1/δ)/ε2). Other constructions of random projection matrices have been

discovered since [2, 3, 4, 5, 6]. Their properties make random projections a key player in rank-k approximation

algorithms [7, 8, 9, 10, 11, 12, 13, 14], other algorithms in numerical linear algebra [15, 16, 17], compressed

sensing [18, 19, 20], and various other applications, e.g, [21, 22].

Considering the usefulness of random projections it is important to understand their computational

efficiency under different circumstances. Using a dense k × d unstructured matrix Ψ with random i.i.d.

entries such as in [1, 2, 3, 4, 5, 6] would guarantee the desired low distortion property for the entire space of
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input vectors but requires an O(kd) application time.1 Ailon and Chazelle in [24] showed that if the `∞ norm

of the input vectors is bounded by O(
√
k/d) then a sparse random matrix containing only O(k3) non-zeros

can be used to project them onto Rk.2 Thus, reducing the running time of random projection from O(kd)

to O(d log(d) + k3).3 Matousek in [6] generalized the sparse projection process and showed that if the `∞

norm of the input vector is bounded from above by any value η, it can be projected by a sparse matrix,

Ψ, whose entries are non-zero with probability min(ckη2, 1) for some constant c. The expected number of

nonzeros in Ψ and the consequent cted application complexity are therefore O(k2dη2). The concentration

analysis, for both cases, requires that the entries Ψ(i, j) be i.i.d. However, they can be drawn from any

distribution satisfying very mild assumptions. Recently, Ailon and Liberty [25] improved the overall running

time of random projection to O(d log(k)) for k ≤ d1/2−δ for any arbitrarily small δ. They replaced the sparse

i.i.d. projection matrix, Ψ, with a deterministic dense code matrix, A, composed with a random ±1 diagonal

matrix, Ds.
4 In their analysis they show that Ψ = ADs is a good random projection for vectors x with

bounded `4 norm.

In this work we extend and simplify the result in [25]. Here we compose any column normalized fixed

matrix A with a random diagonal matrix Ds and give a sufficient condition on the `p norm of input vectors

x for which the composition ADs is a good random projection.

To show this, in Section 1.1, we restate a version of Talagrand’s inequality for Rademacher random

variables to characterize the concentration of high dimensional random walks. In Section 1.2 we show the

connection between random walks and random projections and give the relation between the fixed projection

matrix A and the set for which it is a good random projection. These good sets are given as bounds on a

special vector norm which depends on the matrix and is denoted by ‖x‖A. Since this special norm can be

rather complex, we give in Section 1.3 a simplified bound on ‖x‖A in terms of ‖x‖2p and ‖AT ‖2→2q for dual

norms p and q. The notation ‖AT ‖2→2q stands for the operator norm of AT from `2 to `2q.

The second section of the paper is dedicated to introducing a new family of fast applicable matrices

and exploring their random projection properties. Due to their construction similarity to Walsh-Hadamard

matrices and their rectangular shape we term them Lean Walsh Matrices5. They are constructed using tensor

products and can be applied to any vector in Rd in linear time, i.e., in O(d) operations. The motivation

behind this investigation is the fact that O(d) lower bounds the running time for general random projections.6

1The result of Achlioptas [5] can be improved to O(kd/ log(d)) using methods for fast application of binary matrices [23].
2Each entry is either zero or drawn from a Gaussian distribution with probability proportional to k2/d. The expected

number of non-zeros in the matrix is thus O(k3).
3O(d log(d)) is required for a preprocessing stage in which the `∞ norm is reduced.
4The random isometric preprocessing is also different from that of Ailon and Chazelle’s FJLT algorithm
5The terms Lean Walsh Transform or simply Lean Walsh are also used interchangeably.
6If no restriction is put on input vectors each entry must be read.
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The rectangular k × d matrix A
Application

time
x ∈ χ if ‖x‖2 = 1 and:

Johnson, Lindenstrauss [1] k rows of a random unitary matrix O(kd)

Various Authors [2, 4, 5, 6] i.i.d. random entries O(kd)

Ailon, Chazelle [24] Sparse Gaussian entries O(k3) ‖x‖∞ = O((d/k)−1/2)

Matousek [6] Sparse ±1 entries O(k2dη2) ‖x‖∞ ≤ η

Ailon, Liberty [25] 4-wise independent Code matrix O(d log k) ‖x‖4 = O(d−1/4)

This work Any deterministic matrix ? ‖x‖A = O(k−1/2)

This work Lean Walsh Transform O(d) ‖x‖∞ = O(k−1/2d−δ)

Table 1: Types of matrix distributions and the subsets χ of Rd for which they constitute a random projection.

Here k = O(log(1/δ)/ε2) where ε is the prescribed precision and 1−δ is the success probability. The meaning

of the norm ‖ · ‖A is given in Definition 1.1.

Thus, it is natural to ask: what is the largest possible subset of Rd that can be projected with low distortion

and with high probability in O(d) time? Using the mathematical framework presented in Section 1 we show

in Section 2.3 that a construction using Lean Walsh matrices succeeds for a larger portion of Rd than that

of sparse i.i.d. matrix distributions.

1 Norm concentration and χ(A, ε, δ)

1.1 High dimensional random walks

We will see in the next chapter that random projections from dimension d to dimension k can be viewed

as d-step random walks in dimension k, i.e., each step is a vector M (i) and the projection norm is the final

displacement ‖
∑
M (i)s(i)‖. The variable

∑
M (i)s(i) is called a Rademacher random variable. A thorough

investigation of concentration bounds for Rademacher random variables in Banach spaces can be found in

[26]. For convenience and completeness we derive in this section a more limited result for finite dimensional

vectors using a powerful theorem of Talagrand (Chapter 1, [26]) on measure concentration of functions on

{−1,+1}d extendable to convex functions on [−1,+1]d with bounded Lipschitz norm.

Lemma 1.1. For any matrix M and a random vector s, s(i) ∈ {+1,−1} w.p. 1/2 each. We have that:

Pr[| ‖Ms‖2 − ‖M‖F | > t] ≤ 16e
− t2

32‖M‖22 (1)

where ‖ · ‖2 denotes the 2 norm for vectors and the spectral norm for matrices and ‖ · ‖F denotes the Frobenius

norm ‖M‖F = [
∑
i,jM(i, j)2]1/2.
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To prove this we use a result by Talagrand.

Lemma 1.2 (Talagrand [26]). Given a Lipschitz bounded convex function f over the solid hypercube and a

point s chosen uniformly from the hypercube let Y denote the random variable f(s) and let µ be its median.

Also denote by σ = ‖f‖Lip the Lipschitz constant of f . Then:

Pr [ |Y − µ| > t] ≤ 4e−t
2/8σ2

(2)

We set f(s) = ‖Ms‖2. This function is convex over [−1, 1]d and Lipschitz bounded σ = ‖f‖Lip = ‖M‖2,

the spectral norm of M . To estimate the median, µ, we substitute t2 → t′ and compute:

E[(Y − µ)2] =

∫ ∞
0

Pr[(Y − µ)2] > t′]dt′

≤
∫ ∞
0

4e−t
′/(8σ2)dt′ = 32σ2

Furthermore, (E[Y ])2 ≤ E[Y 2] = ‖M‖2F , and so E[(Y − µ)2] = E[Y 2]− 2µE[Y ] + µ2 ≥ ‖M‖2F − 2µ‖M‖F +

µ2 = (1− µ)2. Combining, |‖M‖F − µ| ≤
√

32σ. Using this fact we get Pr[|Y − µ| > t] ≥ Pr[|Y − ‖M‖F | >

t + |‖M‖F − µ|] ≥ Pr[|Y − ‖M‖F | > t +
√

32σ] Changing of variables t′ = t +
√

32 and t′′ = t′/
√

8σ and

using that e−(t
′′−2)2 < 4e−t

′′2/4 the lemma follows.

1.2 Random projections

In this section we compose an arbitrary deterministic d̃×d matrix A with a random sign diagonal matrix Ds

and study the behavior of such matrices as random projections. In order for ADs to exhibit the property of

a random projection it is enough for it to preserve the length of any single unit vector x ∈ Rd, with arbitrary

low probability δ of failure:

Pr [| ‖ADsx‖2 − 1 | ≥ ε)] < δ (3)

Here Ds, like before, is a diagonal matrix such that Ds(i, i) = s(i) are random signs (i.i.d. {+1,−1} w.p. 1/2

each) and δ is chosen according to a desired success probability. Setting M = ADx where Dx is a diagonal

matrix holding on its diagonal Dx(i, i) the values of x(i) we have ‖Ms‖ = ‖
∑d
i=1A

(i)xisi‖ = ‖ADsx‖.

To get the concentration result in Equation 3 from Lemma 1.1 two conditions must hold. First, that

‖M‖F = 1. This is true for any unit vector x and matrix A whose columns have norm 1 since
∑
i,jM(i, j)2 =∑

j x(j)2
∑
iA(i, j)2. From this point on, we will limit ourselves to such matrices and refer to them as being

column normalized. Second, setting k = 32 log(16/δ)
ε2 , we must have that ‖M‖2 ≤ k−1/2. In terms of the

matrix A, we get that only two conditions must hold for ADs to be a good random projection for x: (a) it

needs to be column normalized, and (b) ‖ADx‖2 ≤ k−1/2. This gives a simple characterization of a “good”

set for A.
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Definition 1.1. For a given matrix, A, we define the vector pseudonorm of x with respect to A as ‖x‖A ≡

‖ADx‖2 where Dx is a diagonal matrix such that Dx(i, i) = x(i). Remark: since we only consider column

normalized matrices, no column of A has norm zero and so, in our case, ‖x‖A is a proper norm.

Definition 1.2. We define χ(A, ε, δ) as the intersection of the Euclidian unit sphere and a ball of radius

k−1/2 in the ‖ · ‖A norm.

χ(A, ε, δ) =
{
x ∈ Sd−1 | ‖x‖A ≤ k

−1/2
}

(4)

for k = 32 log(16/δ)/ε2.

Lemma 1.3. For any column normalized matrix, A, and an i.i.d. random ±1 diagonal matrix, Ds, the

following holds:

∀x ∈ χ(A, ε, δ) Pr [ |‖ADsx‖2 − 1| ≥ ε] ≤ δ (5)

Proof. The lemma follows by substituting: ‖M‖2 = ‖ADx‖2 = ‖x‖A ≤ k−1/2 and ‖M‖F = ‖ADx‖F =√∑
j x(j)2

∑
iA(i, j)2 = 1 into (1).

Since ‖ · ‖A can be a rather complex norm, below we bound it using more conventional norms.

1.3 An `p bound on ‖ · ‖A

In this section, for the sake of clarity, we change our notation for the spectral norm of matrices to ‖A‖2→2.

This is to point out that it is the norm of A as an operator from `2 to `2. More generally, ‖A‖a→b =

max‖x‖a=1 ‖Ax‖b.

Lemma 1.4. Let p and q be dual norm indices such that 1/p+ 1/q = 1.

‖x‖A ≤ ‖x‖2p‖A
T ‖2→2q (6)

Proof.

‖x‖2A = ‖ADx‖22→2 = max
y,‖y‖2=1

‖yTADx‖
2

2 (7)

= max
y,‖y‖2=1

d∑
i=1

x2(i)(yTA(i))2 (8)

≤

(
d∑
i=1

x2p(i)

)1/p(
max

y,‖y‖2=1

d∑
i=1

(yTA(i))2q

)1/q

(9)

= ‖x‖22p‖A
T ‖22→2q (10)

The transition from (8) to (9) follows from Hölder’s inequality for dual norms p and q, satisfying 1/p+1/q =

1.
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It is important to state that this bound is not tight and might indeed be too crude for some applications.

For example, ‖ · ‖p is invariant to permuting the vector whereas the ‖ · ‖A norm is highly influenced by it.

2 Lean Walsh transforms

The Lean Walsh Transform, similar to the Walsh Hadamard Transform, is a recursive tensor product matrix.

It is initialized by a constant seed matrix, A1, and constructed recursively by using Kronecker products

A`′ = A1 ⊗ A`′−1. The main difference is that, unlike regular Hadamard matrices, the Lean Walsh seeds

have fewer rows than columns. We formally define them as follows:

Definition 2.1. A1 is a Lean Walsh seed (or simply ‘seed’) if i) A1 is a rectangular matrix A1 ∈ Cr×c, such

that r < c; ii) A1 is column normalized, ∀ j
∑
iA1(i, j)2 = 1; iii) the rows of A1 are orthogonal to each other

and equinormed: ∀ i
∑
j A1(i, j)2 = c/r.

Definition 2.2. A` is a Lean Walsh transform, of order `, if for all `′ ≤ ` we have A′` = A1⊗A`′−1, where

⊗ stands for the Kronecker product and A1 is a seed according to definition 2.1.

The following are examples of seed matrices:

A′1 = 1√
3


1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 A′′1 = 1√
2

 1 1 1

1 e2πi/3 e4πi/3

 (11)

These examples are a part of a large family of possible seeds. This family includes, amongst other con-

structions, sub-Hadamard matrices (like A′1) or sub-Fourier matrices (like A′′1). In general, any selection of

r rows from a c × c Hadamard or Fourier transform (normalized by 1/
√
r) would serve as a possible seed.

Elementary properties of Kronecker products give us some properties of A`.

Fact 2.1. i) A` is of size dα × d, where ` = log(d)/ log(c) and α = log(r)/ log(c) < 1 is the skewness

of A1 ii) A` is column normalized; and iii) the rows of A` are orthogonal to each other and equinormed

∀ i
∑
j A`(i, j)

2 = d/dα.7

Fact 2.2. The time complexity of applying A` to any vector z ∈ Rd is O(d).

Proof. Let z = [z1; . . . ; zc] where zi are sections of length d/c of the vector z. Using the recursive decom-

position for A` we compute A`z by first summing over the different zi according to the values of A1 and

applying to each sum the matrix A`−1. Denoting by T (d) the time to apply A` to z ∈ Rd we get that

T (d) = rT (d/c) + rd. Due to the Master Theorem, and the fact that r < c we have that T (d) = O(d). More

precisely, T (d) ≤ dcr/(c− r).
7The size of A` is r` × c`. Since the running time is linear, we can always pad vectors to be of length c` without having an

effect on the asymptotic running time. From this point on we assume w.l.o.g. d = c` for some integer `
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For clarity, we demonstrate Fact 2.2 for A′1 (equation (11)):

A′`z = A′`


z1

z2

z3

z4

 =
1√
3


A′`−1(z1 + z2 − z3 − z4)

A′`−1(z1 − z2 + z3 − z4)

A′`−1(z1 − z2 − z3 + z4)

 (12)

Remark 2.1. For the purpose of compressed sensing, an important parameter of the projection matrix is

its coherence. The coherence of a column normalized matrix is simply the maximal inner product between

two different columns. The coherence of a Lean Walsh matrix is equal to the coherence of its seed and the

seed coherence can be reduced by increasing its size. For example, seeds which are r = c − 1 rows of c × c

Hadamard of Fourier matrix have coherence 1/r.

In what follows we characterize χ(A, ε, δ) for a general Lean Walsh transform by the parameters of its

seed. The omitted notation, A, stands for A` of the right size to be applied to x, i.e., ` = log(d)/ log(c).

Also, we freely use α to denote the skewness log(r)/ log(c) of the seed at hand and d̃ = dα the number of

rows in A`. Note that d̃ is not (in general) equal to k the target dimension. We assume that k ≤ d̃ and use

a second random projection, R, to move from dimension d̃ to k. This is explained in Section 2.2.

2.1 ‖AT‖2→2q for Lean Walsh matrices

We first use Riesz-Thorin’s theorem to bound ‖AT ‖2→2q of any Lean Walsh matrix.

Theorem 2.1. [Riesz-Thorin] For an arbitrary matrix B, assume ‖B‖p1→r1 ≤ C1 and ‖B‖p2→r2 ≤ C2

for some norm indices p1, r1, p2, r2 such that p1 ≤ r1 and p2 ≤ r2. Let λ be a real number in the interval

[0, 1], and let p, r be such that 1/p = λ(1/p1) + (1 − λ)(1/p2) and 1/r = λ(1/r1) + (1 − λ)(1/r2). Then

‖B‖p→r ≤ Cλ1C1−λ
2 .

In order to use the theorem, let us compute ‖AT ‖2→2 and ‖AT ‖2→∞. From ‖AT ‖2→2 = ‖A‖2→2 and

the orthogonality of the rows of A we get that ‖AT ‖2→2 =
√
d/d̃ = d(1−α)/2. From the normalization of

the columns of A we get that ‖AT ‖2→∞ = 1. Using the theorem for λ = 1/q, for any q ≥ 1, we obtain

‖AT ‖2→2q ≤ d(1−α)/2q.

Remark 2.2. It is worth noting that ‖AT ‖2→2q might actually be significantly lower than the given bound.

For a specific seed, A1, one should calculate ‖AT1 ‖2→2q and use ‖AT` ‖2→2q = ‖AT1 ‖
`

2→2q to achieve a possibly

lower value for ‖AT ‖2→2q.

Lemma 2.1. For a Lean Walsh transform, A, we have that for any p > 1 the following holds:

{x ∈ Sd−1 | ‖x‖2p ≤ k
−1/2d−

1−α
2 (1− 1

p )} ⊂ χ(A, ε, δ) (13)
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where k = 32 log(16/δ)/ε2 and α is the skewness of A, α = log(r)/ log(c) (r is the number of rows, and c is

the number of columns in the seed of A).

Proof. We combine the above and use the duality of p and q:

‖x‖A ≤ ‖x‖2p‖A
T ‖2→2q (14)

≤ ‖x‖2pd
1−α
2q (15)

≤ ‖x‖2pd
1−α
2 (1− 1

p ) (16)

The desired property, ‖x‖A ≤ k−1/2, is achieved if ‖x‖2p ≤ k−1/2d
− 1−α

2 (1− 1
p ) for any p > 1.

Remark 2.3. For p → ∞, only the spectral norm of A comes into play. In this case a simple matrix

containing d/k copies of k×k identity matrices is sufficient. The spectral norm of such matrices is the same

as that of Lean Walsh matrices and they are clearly row orthogonal and column normalized. However, their

norm as operators from `2 to `2q, for q larger than 1, is large and fixed, whereas that of Lean Walsh matrices

is still arbitrarily small and is controlled by the size of the their seed.

2.2 Controlling α and choosing R

The target dimension k is, in general, smaller than d̃ and so a second k × d̃ random projection matrix R

is required. Since the skewness α controls both d̃ and χ it is important to chose it carefully such that the

entire projection can be performed in O(d) operations and χ is as large as possible.

First we see that increasing α is beneficial from the theoretical stand point since it weakens the constraint

on ‖x‖p. From an application standpoint, this requires the use of a larger seed, which subsequently increases

the constant hiding in the big O notation of the running time.

Consider the seed constructions described above for which r = c− 1. Their skewness α = log(r)/ log(c)

approaches 1 as their size increases. Namely, for any positive constant δ there exists a constant size seed

such that 1− 2δ ≤ α ≤ 1.

Lemma 2.2. For any positive constant δ > 0 there exists a Lean Walsh matrix A such that:

{x ∈ Sd−1 | ‖x‖∞ ≤ k
−1/2d−δ} ⊂ χ(A, ε, δ) (17)

Proof. Generate A from a seed such that its skewness α = log(r)/ log(c) ≥ 1− 2δ and substitute p =∞ into

the statement of Lemma 2.1.

The skewness α also determines the minimal dimension d (relative to k) for which the projection can be

completed in O(d) operations, the reason being that the vectors z = ADsx must be mapped from dimension

d̃ (d̃ = dα) to dimension k in O(d) operations. This can be done using the Ailon and Liberty [25] construction
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serving as the random projection matrix R. R is a k× d̃ Johnson Lindenstrauss projection matrix which can

be applied in d̃ log(k) operations if d̃ = dα ≥ k2+δ
′′

for arbitrary small δ′′. For the same choice of a seed as

in lemma 2.2, the condition becomes d ≥ k2+δ′′+2δ which can be achieved by d ≥ k2+δ′ for arbitrary small δ′

depending on δ and δ′′. Therefore for such values of d the matrix R exists and requires O(dα log(k)) = O(d)

operations to apply.

2.3 Comparison to sparse projections

Sparse random ±1 projection matrices were analyzed by Matousek in [6]. For completeness we restate his

result. Theorem 4.1 in [6] (slightly rephrased to fit our notation) claims the following:

Theorem 2.2 (Matousek 2006 [6]). Let ε ∈ (0, 1/2) and η ∈ [1/
√
d, 1] be constant parameters. Set q =

C0η
2 log(1/δ) for a sufficiently large constant C0. Let S be a random variable such that

S =


+ 1√

qk
with probability q/2

− 1√
qk

with probability q/2

0 with probability 1− q

(18)

Let k be C1 log(1/δ)/ε2 for a sufficiently large C1. Let the matrix A contain in each entry an independent

copy of S then:

Pr[|‖Ax‖22 − 1| > ε] ≤ δ (19)

For any x ∈ Sd−1 such that ‖x‖∞ ≤ η.

With constant probability, the number of nonzeros in A is O(kdq) = O(k2dη2) (since ε is a constant

log(1/δ) = O(k)). Using the terminology of this paper, we say that for a sparse A containing O(k2dη2)

nonzeros on average (as above) {x ∈ Sd−1 | ‖x‖∞ ≤ η} ⊂ χ(A, ε, δ).

Since the running time of general dimensionality reduction is at least O(d) and at most O(d log(k))

(due to [25]), matrices that can be applied within this time range are especially interesting. We claim

that although Lean Walsh matrices can be applied in linear time, their `∞ requirement is weaker than that

achieved by sparse projection matrices. This holds even if the latter are allowed an O(d log(k)) running time.

For q = k−1 log(k) (in equation (18)) a matrix A as above contains O(d log(k)) nonzeros w.h.p. and thus

can be applied in that amount of time. Due to theorem 2.2 this value of q requires ‖x‖∞ ≤ O(k−1
√

log k)

for the length of x to be preserved w.h.p. For d = poly(k) this is a stronger constraint on the `∞ norm of x

than ‖x‖∞ ≤ O(k−1/2d−δ) which is required by Lean Walsh transforms.
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3 Conclusion and future work

We have shown that any k × d (column normalized) matrix, A, can be composed with a random diagonal

matrix to constitute a random projection matrix for some part of the Euclidian space, χ. Moreover, we have

given sufficient conditions, on x ∈ Rd, for belonging to χ depending on different `2 → `p operator norms of

AT and `p norms of x. We have also seen that Lean Walsh matrices enjoy both a “large” χ and a linear

time computation scheme which outperforms sparse projection matrices. These properties make them good

building blocks for the purpose of random projection.

In [24, 25] the projection included a preprocessing stage which, in the language of this paper, map

vectors from Sd−1 to χ with high probability. Designing such mappings for Lean Walsh matrices which

require only O(d) operations would give an optimal O(d) random projection algorithm. Possible choices

for these may combine random permutations, various wavelet/wavelet-like transforms, or any other sparse

orthogonal transformation.

After the publication of this paper, a new result by Dasgupta, Kumar and Sarlos [27] was accepted

to publication. Their result corrects and extends [28]. The authors generate an implicit random matrix

using a hash function which is closely related to combining the construction from remark 2.3 with a random

permutation preprocessor.

The authors would like to thank Steven Zucker, Daniel Spielman, and Yair Bartal for their insightful

ideas and suggestions.
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