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ABSTRACT

Online social networks have become very popular in recent
years and their number of users is already measured in many
hundreds of millions. For various commercial and sociolog-
ical purposes, an independent estimate of their sizes is im-
portant. In this work, algorithms for estimating the num-
ber of users in such networks are considered. The proposed
schemes are also applicable for estimating the sizes of net-
works’ sub-populations.

The suggested algorithms interact with the social networks
via their public APIs only, and rely on no other external in-
formation. Due to obvious traffic and privacy concerns, the
number of such interactions is severely limited. We there-
fore focus on minimizing the number of API interactions
needed for producing good size estimates. We adopt the
abstraction of social networks as undirected graphs and use
random node sampling. By counting the number of col-
lisions or non-unique nodes in the sample, we produce a
size estimate. Then, we show analytically that the estimate
error vanishes with high probability for smaller number of
samples than those required by prior-art algorithms. More-
over, although our algorithms are provably correct for any
graph, they excel when applied to social network-like graphs.
The proposed algorithms were evaluated on synthetic as well
real social networks such as Facebook, IMDB, and DBLP.
Our experiments corroborated the theoretical results, and
demonstrated the effectiveness of the algorithms.

Categories and Subject Descriptors

F.2.2 [Theory of Computing]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems

General Terms
Algorithms
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1. INTRODUCTION

Online social networks have become increasingly popular
in the recent decade which gave rise to an increasing need
in analyzing their properties and comparing them to one
another. Many properties of online social networks are con-
sidered important. These include, for example: their user
age distribution, net activity, connectivity, and many more.
The literature on attaining such parameters is vast and any
effort to reference all of it is bound to fail. We cite here
only a handful of directly related works as examples. In [12,
9] the authors present a way to detect proximity between
two users. In [19] the authors analyze the degree distribu-
tion, clustering property, degree correlation, and evolution
over time for three networks. That said, the total number
of users (or users in a certain demographic) seems to be one
of the most crucial factors in deriving the worth and over-
all performance of social networks. These figures are also
critical for business development issues, choosing between
networks for advertisement campaigns or for launching so-
cial applications. Although countless sites, blogs, and other
reports often present such numbers, these are usually based
on reports of the social networks themselves or on traffic
analysis and are not guaranteed to be accurate (e.g. [2]).*
Moreover, since each network reports slightly different fig-
ures, it is almost impossible to compare between them. For
example, Facebook reported lately on crossing the 500 mil-
lion active users mark. However, it is unclear what consti-
tutes as an “active user”. Thus, it is extremely important
to be able to accurately and reliably estimate the size of
social networks in a unified and unbiased way (without the
networks’ consent or control).

Since online social networks provide public interfaces, it
is possible to traverse their members’ network externally.
By “crawling” the network, we can collect statistics on any
of the above characterizes. In a similar spirit, in [3, 4] the
authors suggested ways to measure various parameters of
search engines by interacting with their public search inter-
face only. One approach, is to crawl the network extensively.
In other words, since online social networks can be modeled
as undirected unweighted graphs (where the users are nodes
and edges are connections/friendships) we can perform a
breadth-first search (BFS) on the graph.> This method is

"Moreover, the published statistics do not provide an es-
timate for connected sub-graphs (For example, 20-30 year
olds living at the US).

2Note that online social networks’ public APIs provide lists
of connected users for every user, Thus, acting like a neigh-
bor list representation of the graph.



impractical when dealing with online social networks since
the communication and computational burden of such an
undertaking would probably be prohibitive.

The second approach is to sample users uniformly at ran-
dom from the network. From a uniform sample, most statis-
tics can be estimated. This includes estimating the size
of the network using methods such as mark-and-recapture.
These methods have the advantage of requiring only O(y/n)
users to be sampled to get a good estimate (where n is the
overall number of users). Their disadvantage though, is that
users must be sampled uniformly. Since online social net-
works interfaces usually do not provide this functionality, it
must be simulated by other API queries which give for each
user the list of their neighbors. Alas, producing a single uni-
formly chosen user might require many such queries. This
is explained in the next section.

In this work we show that there is no need to sample users
uniformly. In fact, by using the sampling bias we reduce
the number of required samples dramatically. For example,
for networks with a Zipfian-like degree distribution our al-
gorithms require only O(n'/*log(n)) samples to converge.
Moreover, since the bias does not have to be corrected, each
such sample requires considerably less API queries. Surpris-
ingly, our algorithm is extremely simple and gives provable
error guarantees with high probability.

Experiments with our algorithm performed over a wide
range of real and synthetic data corroborate that it con-
verges significantly faster and to a more accurate estimate
than uniform sampling based approaches.

As a side note, simple variants of our algorithm also give
efficient sub-linear algorithm for estimating the size of tran-
sitive closures in graphs and for estimating the size of search-
indexes as in [3]. However, this is a matter of farther research
and is beyond the scope of this paper.

The rest of this work is organized as follows. Section 2
surveys related work. Our algorithms are presented and
analyzed in Sections 3 and 4. In Section 5 we report our ex-
perimental results and conclude in Section 6. Various proofs
and discussions are included in the Appendix.

2. BACKGROUND AND PRIOR WORK

From this point on we consider the general problem of
estimating the size of undirected graphs. The graph repre-
sentation of online social networks is the obvious one. Each
node refers to one user and an edge is present between two
nodes if their corresponding users are “friends” in the social
network. Although our algorithms are correct for general
graphs, they are especially suited for graphs which naturally
occur in large social networks.

In [16] the authors provide a possible solution for another
problem which could be used to solve the problem at hand
as well. They present an algorithm for estimating the num-
ber of attributes in a database. The algorithm samples rows
from the database uniformly at random. It then estimates
the total number of attributes using the collected informa-
tion of how many times each attribute was picked. This is
identical to a well known problem in statistics called “esti-
mating the number of unseen types”. Their algorithm can be
applied to estimating the size of graphs if the graph is rep-
resented as a database table containing two rows per edge,
one for each adjacent node.® Clearly, the number of distinct

3Sampling uniformly from this table is possible in our setting

attributes in this database is n, the number of nodes. The
algorithm presented in [16] is guaranteed to take at most
r = O(n) samples. However, in graphs, unlike in databases,
it is possible to sample nodes (analogously, attributes) uni-
formly at random which can dramatically decrease the num-
ber of samples.

In ecology, a method known as mark and recapture is used
to estimate population sizes.* It relies on the same phe-
nomenon as the so called “birthday paradox” effect. Infor-
mally, after sampling r nodes uniformly at random we expect
to encounter C' ~ r?/2n collisions (nodes already picked).
Thus, n can be estimated by r?/2C. Surprisingly, taking
only O(y/n) samples can guarantee that this estimate for n
is rather accurate.” In [7] the authors present a maximum
likelihood estimator for this problem and show that their es-
timator converges almost surly when the number of samples
increases. In [6, 10] the authors extend these methods to
non-uniform, but known, distributions.

That said, to use these methods one must sample nodes
uniformly at random from a graph, which is not straight
forward. To see how this can be done we remind the reader
a few basic facts from spectral graph theory. A random
walk on an undirected graph with n nodes {vi,...,vn} is
defined as such: start from an arbitrary node, then move to
a neighboring node uniformly at random and repeat. After
many such steps, the probability of being at any node v; is
close to p; = d;/D where d; is the degree of node v; and D =
> . di is the sum of all node degrees in the graph. This
is called the stationary distribution of the random walk on
the graph. The number of random walk steps needed for the
stationary distribution to be reached depends on the mixing
rate property of the graph (see a survey by Lovasz [13]).
Fortunately, social network graphs and small world graphs
are known to have good mixing rates. We therefore assume
that nodes can be repeatedly sampled from the stationary
distribution without much computational overhead.

Using these properties of random walks, one can sample
nodes also uniformly at random by using, for example, re-
jection sampling. To be precise, a node v; is first sampled
according to the stationary distribution. Then, with proba-
bility 1/d; it is kept. With probability 1—1/d; it is rejected.
Clearly the set of kept nodes is uniformly sampled. How-
ever, since we only expect to accept a node with probabil-
ity n/D, to sample Q(y/n) un-rejected nodes would require
an expected r = Q(D/+/n) biased samples. Several rejec-
tion sampling ideas and other methods for turning the node
sampling distribution to uniform were suggested for specific
graphs. Namely, the bipartite graph between search queries
and search results [5, 3].6 Another approach was considered
in [8]. The authors present a modified Metropolis-Hastings
random walk which transitions from node v; to an adjacent
node v; with probability 1/ max(d;,d;). With the remain-
ing probability, it stays in v;. Due the symmetry in the
transition probabilities it can be shown that the stationary
distribution of this walk is uniform on the nodes. However,

since random walks on graphs sample edges uniformly.
4Other names for this method or closely related ones,
include capture-recapture, capture-mark-recapture, mark-
recapture, and mark-release-recapture.

SWe make a more general statement later in this paper.
STn fact, the authors try to compare between two different
search services but their approach is suitable for this task as
well.



the mixing rate of this walk can be significantly worse than
that of the original graph, and so, it is unclear when it is ex-
pected to outperforms rejection sampling, i.e., require fewer
random walk steps.

An interesting tangentially related problem is known as
the “German tank problem” [1]. It was supposedly used dur-
ing world-war II to estimate the number of German tanks
based on manufacturing numbers found on those captured
by the allied forces. In its mathematical formulation, ele-
ments with serial ID’s are sampled uniformly without re-
placement and the objective is to provide an estimate for
the total number of elements. This is not applicable to our
scenario since the users do not have serially allocated and
publicly available ID’s.

Estimating the number of nodes in a graph was also stud-
ied. In [11] the authors estimate the size of a tree. Their
motivation was to estimate the running time of a backtrack-
ing programs. Later [17] extends their argument to acyclic
graphs. Finally [14] extends this idea to general undirected
graphs. However, the running time of the the latter is un-
bounded in the worst case and expected to be more than the
number of nodes in the graph. Recently, in [18] the authors
try to estimate the size of social networks in a setup very
similar to ours’. However, they either require that the users
be sampled uniformly or use the algorithm from [14] which
their experiments show is impractical.

3. COLLISION COUNTING

In this section we present our graph size estimator. We
start by taking r samples {z1,...,z,} independently from
the stationary distribution of the graph, i.e., each node v; is
sampled with probability p; = di/D where D =37, d;.

We define three variables that the algorithm keeps track
of. First, the number of collisions. A collision is a pair of
identical samples. More precisely, define Y; ; to be 1 if z; =
z; and O else. C'= ), Vi ;. Second, ¥y is the sum of all
sampled node degrees ¥; = 22:1 dz,. Last, we define ¥_;
as the sum of the reciprocal degrees, ¥_1 = >_"_, 1/d,.

Using linearity of expectation and the fact that the sam-
ples are taken independently it is easy to compute their ex-

pectation.
B0 = E[T ¥l <2>E i) = (2) >0t
E[W,] = E [zr; de,] = 7E [dey] = rzn;pidi = TDZn;p?
E[U_,] = E [Zl 1/dy,] = rE [1/da,] = r;n:lpi/di = % .

From the above three equations we can isolate n and get
that:

_ T E [\Ill]E [\11_1} ~ E [\Ifl]E [\11_1]
|2 rPE[C] ~  2E][C]

Intuitively, if C, ¥; and ¥_; are all close to their expected
values then the estimator ¥;W_;/2C should be close to n
as well.” This is stated in Corollary 1.

"It is also possible to use E [¥;¥_;] directly and get a
slightly different estimator. Namely, 7 = (U, W_; —r)/2C.
This however is different from W, W_;/2C only by a factor
of O(r/nc).

COROLLARY 1. For any degree distribution and C, V1,
and V_1 defined as above we have the estimator:

a WiV,
which guarantees for any € < 1/2 and 6 < 1:
Prin(l1-¢)<n<n(l+¢]>1-46

n

as long as the number of samples, r, satisfies:

1 i1 P e 1/pi

VoS p? €03 p)? eon? '

PrOOF. The proof goes by first calculating the variance
of C, W1 and W_;. Then, using Chebyshev’s inequality we
require that each of them gives an ¢/4 approximations to
their expected values with probability at least 1 — §/3. This
gives us a lower bound on the required number of sam-
ples. See Appendix A for more details. Since the prob-
ability of each for deviating from its expected value is at
most §/3, the probability of one or more of them deviat-
ing is at most § (the union bound). This gives us that
with probability at least 1 — § all three variables are ¢/4
close to their respective expectations. We then use the
facts that fi/n < (1 +¢/4)?/(1 —¢/4) < 1+ ¢ and A/n >
(1 —¢/4)?/(1 + €¢/4) > 1 — € to complete the proof for
e<1/2. O

Note that for regular graphs, where the degree distribu-
tion is uniform, this estimator is identical to the “birthday
paradox” estimator presented in the introduction. Moreover,
it will also require O(y/n) samples to converge (to see this
substitute 1/n for p;).

rZTCEO{

3.1 Performance for online social networks

In order to argue that our algorithm is suitable for sizing
social networks we have to assume something about their
node degree distributions. In [15], [19] and in [8] the authors
argue that, in several networks, the nodes’ degrees exhibits
different kinds of heavy tail distributions. Mainly: Expo-
nential, Double-Pareto and Zipfian. Here we analyze, as an
example, the Zipfian distribution. Similar analyses can be
performed for the other distributions as well.

If the nodes’ degrees are distributed according to a Zipfian
distribution with maximum degree of d,, and parameter o =
2 we have:

.2

Pr(dfj)f H 9 ]717"'7dm7
where H = Z?le& ~ %2 and 1 < dm, = ©(y/n). The £'th
moment of the degree distribution is defined as M, = E [d’]
and the first few moments of the Zipfian distribution are:
1 _ logdm _dm _
Mor < g H o Mo
We also assume that the moments of the observed degree
distribution are close to those of the generating distribu-
tion. This is true for large graphs by the strong law of large
numbers (SLLN). This gives us that .7 | pf ~ WJ{M
Substituting the above into Corollary 1 and using the fact
that d,, = ©(y/n) we get that r. € O(n'/*log(n)). There-
fore, only O(n'/*1og(n)) samples suffice for our estimator to
be accurate. Note the significant reduction in the number
of samples over the uniform distribution. For example, for
n =10%, \/n =~ 30,000 while n'/*log(n) ~ 6000.




3.2 Subgraph size estimation

One surprising aspect of this estimator is that it works for
subgraphs as well. Let X’ be the subset of samples X who
are also in the subgraph. We perform the same random walk
and compute the same parameters C’, ¥y and ¥’ ;, which
are defined as above but for X’ instead of X. The subgraph
size is estimated by W, W’ /2C". The proof provided above
works for this case as well. The only change is that D is
replaced by D’ which is the sum of node degrees in the sub-
graph. However, since D (and therefore D’ as well) cancels
itself in the analysis our estimator remains unchanged.

However, it turns out that it is usually more efficient to
first estimate the size of the entire graph and then estimate
the subgraphs’ relative size. From the above we have that
E [V_1] = rn/D, similarly for the subgraph, E [¥’ ;] =
r'n’/D’ (n' being the number of nodes in the subgraph).
Isolating n' we get:

,_ rDE[V.] N vy
"EMTDEW ) v,
If the number of samples is large enough, the last step is cor-
rect since 7' /r & E [r'/r] = D'/D and since E [¥'_ ;] ~ ¥’ ;
and E [¥_;] =~ ¥_;. Under most conditions, the ratio es-
timator requires only a constant number of samples to con-
verge. Thus, the main computational effort is in estimating
n, which is surprisingly lower than that of directly estimat-
ing n’. To see this, let r. and r. be the number of samples
needed to estimate the sizes of the graph and the subgraph
respectively. Since, in a random walk we only hit a node
in the subgraph with probability D’/D, we are expected to
require Dr,/D’ random samples to obtain 7, samples from
the subgraph. Thus, if ri,/D’ > r./D the second method is
preferable. Note that this holds in the natural situation that
the nodes’ degree distributions of the graph and subgraph
are similar.

4. NON-UNIQUE ELEMENT COUNTING ES-

TIMATOR

In this section we present another estimator which is based
on counting non-unique elements instead of collisions. On
the one hand, it tends to be consistently, yet marginally,
more accurate. On the other hand, its proof is much more
involved. We thus choose to present the estimator along
with its performance (in the experimental results section)
without providing a proof of its correctness.

An element in the sample is considered non-unique if it
was sampled at least once before. This is slightly differ-
ent from counting collisions. For example, in the sequence
{1,2,3,1, 1} there are two non-unique elements (the last two
1’s) but three collisions (z1 = x4, 1 = @5, and z4 = T5).
The intuition is that counting non-unique elements is less
sensitive to errors in which a specific node is oversampled.
This is because the non-unique count is linear in the number
of times each item was sampled whereas the collision count
is quadratic.

We estimate n by 7 which is the unique solution to the
following fixed point equation:

T

4R 1 de,U_1\"
n—r—C’—i—\P Zdzi (1— i ) (2)

-1 i=1

Note that r, C', ¥_; and d, , are all observed quantities. To
see why this is correct, first note that the expected number

of non-unique elements is E [C] = r — n + S (I—=p).
Now, consider that

Q

> (-p) = 1= p)] Sy

1w D
P2 (-

Also, D = \I/r: . Making these substitutions into the expec-
tation expression gives the above fixed point equation. Intu-
itively, the size estimate n is chosen such that the observed
number of non-unique elements is equal to its expectation.
As a remark, if the node distribution is uniform, this esti-

mator is identical to the maximum likelihood estimator [7].

S. EXPERIMENTAL EVALUATION

5.1 Networks of known sizes

In order to test our estimators’ accuracy we first experi-
mented with three networks whose exact sizes are known.
A synthetic network; a synthetically constructed graph
consisting of 1 million nodes whose degree distribution is
Zipfian with parameter a« = 2 and maximal degree d,, =
1, 000.

The Digital Bibliography and Library Project; we
used the Digital Bibliography and Library Project’s (DBLP)
entire database.® Edges in the graph were associated with
co-authorship of at least one paper. The resulting graph
included 845,211 nodes, each with at least one edge (authors
with no co-authors were omitted).

The Internet Movie Database; we useed public Internet
Movie Database’s (IMDB) entire database.” Edge connec-
tions between actors were established according to joint par-
ticipation in at least one movie or TV episode. The resulting
graph included 1,955, 508 nodes.

We produced three types of curves. All three were plot-
ted as functions of the percent of sampled nodes. FError
curves present the normalized absolute estimation error, i.e.,
[n — 7| /n where n is the true size of the network and 7 is
our estimate of it. Confidence interval curves give for each
estimator the 5’th and 95’th percentile value from 10,000
independent estimations. In other words, 90% of the esti-
mated sizes fell between the lower and upper curves. Lastly,
comparison curves present the ratio between the errors of
the non-unique element estimator and that of the collision
estimator. It is important to stress that this ratio is between
the normalized absolute estimation errors and not between
the estimated values. All presented plots were produced by
averaging over 10,000 independent experiments.

Examining the error curves depicted in Figure 1, the supe-
riority of degree sampling estimation (both non-unique and
collisions based) over uniform sampling estimation is well
observed. In particular, for the synthetic network, uniform
sampling estimation requires 5 times as many samples as
required by degree sampling estimation (0.5% vs. 2.5%), to
ensure a normalized absolute estimation error of less than
5%. Also, for the IMDB network, uniform sampling esti-
mation required almost 3 times more samples than required
by degree sampling estimation (0.3% vs. 0.8%) to ensure a
normalized absolute error of less than 10%.

8The DBLP database can be found at http://dblp.uni-
trier.de/xml/.

°The IMDB database can be found at ftp://ftp.fu-
berlin.de/pub/misc/movies/database/.
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Figure 1: Error curves - absolute normalized size
estimation errors vs. the percent of sampled nodes
for three networks: a 1-million-node synthetic net-
work (top), a network constructed from the Digital
Bibliography and Library Project (DBLP) database
(middle), and a network obtained from the Internet
Movie Data Base (IMDB) database (bottom).

Similar observations regarding the estimation error are
also notable examining the confidence interval curves de-
picted in Figure 2. These curves also demonstrate that

Synthetic network — Confidence interval
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Figure 2: Confidence interval curves - relative es-
timated size vs. the percent of sampled nodes
for three networks: a 1-million-node synthetic net-
work (top), a network constructed from the Digital
Bibliography and Library Project (DBLP) database
(middle), and a network obtained from the Internet
Movie Data Base (IMDB) database (bottom).

there is an inherent asymmetrical bias towards size over-
estimation. This is probably because both estimators are
inversely proportional to the number of collisions or non-
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Figure 3: Comparison curves - absolute relative er-
ror ratio between the non-unique and collision esti-
mators vs. the percent of sampled nodes for three
networks: a 1-million-node synthetic network (top),
a network constructed from the Digital Bibliography
and Library Project (DBLP) database (middle), and
a network obtained from the Internet Movie Data
Base (IMDB) database (bottom).

unique elements. For example, a 50% discrepancy between
the observed number of collisions and its expectation can

result in 100% size overestimation but only in 35% size un-
derestimation.

In all the curves above and for all three networks the non-
unique elements estimator slightly outperformed the colli-
sions based estimator. This phenomenon is visible when
examining the comparison curves depicted in Figure 3. For
example, for DBLP, the non-unique elements estimator pro-
vides a 5% reduced relative error over the collision based
estimator when 3% of the network is sampled. The reader
should note that the actual size estimates in this case differ
by only 0.25%.

In all the aforementioned experiments we estimated the
sizes of networks (whose sizes were already known) up to
precision of a few single percents. We observed that both
collision and non-unique based estimators perform well and
that degree based sampling is significantly preferred to uni-
form sampling. In the next section we estimate the size of a
subnetwork within Facebook and size of their entire network.

5.2 Facebook

We used two crawls performed on Facebook by the Au-
thors of [8]. The first crawl consisted of 984,830 uniformly
sampled users collected during April 2009.1° The second
crawl was performed during October 2010 and consisted of
988,116 users. This crawl performed a simple random walk
on the Facebook graph and therefore selected users with
probability proportional to their degree.

5.2.1 Subnetwork size estimation

Since the actual size of Facebook is not known (other than
Facebook’s own reports) we first estimate the size of a sub-
graph whose size is known. We selected a random subset of
1,000,000 Facebook users and tried to estimate the size of
this sub-population using the first algorithm in Section 3.2.
This is done for two reasons. First, to test the subgraph
size estimation algorithm. Second, to make sure that Face-
book’s network’s topology and statistics are suitable for our
estismators. We present an error curve, a confidence inter-
val curve, and a comparison curve in Figure 4. Note that
the x-axis here gives the percent of nodes sampled from the
subnetwork and not the entire network as before.

These results corroborate that our subgraph size estima-
tors behave almost identically to the complete graph esti-
mators. This was expected since their analysis is essentially
identical. A more important discovery is that the network
topology and node degree distribution of Facebook are in-
deed suitable for our estimators to perform well.

5.2.2  Estimating the size of Facebook

We now estimate the size of the entire Facebook network.
Presenting accuracy plots in this case is not possible since
the true size of Facebook is not known. The uniform Face-
book sample collected during April 2009, contains 2053 col-
lisions and 2052 non-unique elements. Substituting these
into Equations (1) and (2) yields estimates of 237,197,785
and 236,984, 623 users respectively. The very same month,
Facebook ([2]) reported of having “more than 200 million
active users” and “more than 250 million active users” three
months later. The crawl that was performed during Oc-
tober 2010 contained 4099 collisions and 4064 non-unique
users. This gives estimates of 475, 566, 857 and 475, 864, 724

10The Facebook uniformly sampled crawl can be found at
http://odysseas.calit2.uci.edu/research/.
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Figure 4: Absolute relative estimation error (top),
confidence intervals (middle), and estimation rela-
tive error ratio (bottom) vs. the percentage of sam-
ples taken from a 1 million user subnetwork of Face-
book.

respectively. Facebook at the same time reported of having
"more than 500 million active users”. This is summarized in
Table 1.

Notice that the second crawl sampled half as many users
relative to the network size at the time it was made. Yet,
it produced roughly twice as many collisions. This is be-

Table 1: Crawl details and consequent size estimates
of the entire Facebook network for April 2009 and
October 2010.

April 2009 October 2010

Sampling distribution uniform degree
Number of samples 0.98 - 10° 1-10°
Number of collisions 2053 4099
Number of non-unique 2052 4064

Collision estimator 237-10° 475 - 10°

Nun-unique estimator 236 - 10° 475 - 10°

Facebook report 200 — 250 - 10° 500 - 10°

cause degree proportional sampling is expected to gener-
ate more collisions than uniform sampling. The discrep-
ancy between our estimates and the official reports by Face-
book stems from two main reasons. On the one hand, the
crawler cannot distinguish between active and non active
users. Thus our estimates include non-active users which
causes an over estimation. On the other hand, our crawler
cannot pass through users whose privacy settings hide their
list of friends, which causes underestimation. Thus, our esti-
mates and Facebook’s reports give slightly different figures.
While Facebook counts “active” users, we estimate the num-
ber of Facebook users whose list of friends is visible to the
crawler regardless of their activity.

Since the crawler has no indication of users’ activity and
since it is unclear what Facebook defines as “active”, we
cannot offset this effect. However, we can try to estimate the
number of blocked users (those whose privacy settings block
the crawler). This can be approximated using the fraction
of such users in other users’ friends lists which yields an
estimate of 650 - 10° users, active and non-active.

5.3 Synthetic network - large sample region

Interestingly, for a large enough number of samples (e.g.,
30% of the network’s size), uniform sampling estimation out-
performs degree sampling estimation. This phenomenon re-
peats itself for all three known size network we examined.
We provide an error curve, a confidence interval curve, and
a comparison curve in Figure 5 for the synthetic network
only but this time extending the number of samples all the
way to 100%.

6. CONCLUSIONS

We presented two algorithms for estimating the size of
graphs. Both algorithms rely on nodes being samples from
the graph’s stationary distribution. We showed both an-
alytically and experimentally that, for social-networks and
other small world graphs, these algorithms considerably out-
perform uniformly sampling nodes. They consistently pro-
vide more accurate estimates while using a smaller number
of samples. This result is even more outstanding since uni-
formly sampling nodes is strictly harder than sampling them
according to the stationary distribution.

However, there is still room for improvement. While per-
forming the random walk in order to sample nodes from the
stationary distribution, we encounter many nodes whose de-
grees or collisions we never use. Using this information can
possibly reduce the number of random walk steps even fur-
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node degree distribution is Zipfian. Note the large
number of samples relative to the network size.

ther. However, analyzing the entire random walk is hard
since this introduces dependencies on the graph topology in
a non-trivial way.
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APPENDIX

A. CONCENTRATION OF ¢, v,, AND v_,

In the proof of Corollary 1 we required that each of the
variables C, W1, and W_; give an €¢/4 appropriation their
respective expected values with probability at least 1 —§/3.
From Chebyshev’s inequality we get that this is true for any
variable Z for which

Var[Z] < 6¢°E *[Z]/48. (3)

To use this we must first bound the variance of all three
variables.

We start with C', the number of collisions. We remind
the reader our notations. Y;; = 1 if z; = z; and 0 else,
where {z1...,z,} are the r sampled nodes. Moreover, C =
>ic; Yij. We compute E [C?] using the linearity of the
expectation.

(Vi) ZZ]EY Yir ]

1<J i<j i’ <j’

To calculate the last summation we divide it into three
cases. When ¢ = ¢’ and j = j' we have that E [Y;;Yi/ ;1] =
E [Yi;] = 3>)_, pi. Moreover, we have (7) such case. In the
case where i # i’ and j # j', the number of the summands
is equal to the number of ways one chooses 4 elements out of
r elements and then split them to two pairs, i.e., 6(2). Also,
in this case E [Y; ;Y /] = (3,_,p7)°. In third and last
possibility is where i = i’ and j # j’ or i # i’ and j = j'.
We have 3! (g) such summands because this is the number of
ways to choose 3 elements out of r and then decide for each
index if it is from the lest sum, right sum, or both. In this

case we have E [Y; ;V; /] = >_/_, pi. Summing those up we
get that:
Var[C] = E [C?]—E ?[C]

(5ol
(5o
- ()5l

Substituting this into Equation 3 and demanding that each
of the summoned is less than half the right hand side gives

us the condition for 7.:

83 384zy e
Te > Max — 5
6\/7\/ i= 1p$ € 5 1= 1pz)

Since the nodes are picked independently, computing the
variance of W, is easy:

Var[¥] = r Var[d,, ] < rE [d3,] = eridf =rD? ZP?

i=1 i=1

From Equation 3, and the expectation of ¥ calculated in
the body of the paper we get the requirement:

48300 v}
€25 (X0, p?)z
We do the same for W_1:
Var[W_1] = r Var[l/ds, | < 7E [1/d2,]

n n 1

Thus W_; is also €/4 close to its expectation with probability
at least 1 — /3 if: which is satisfied by

485" i
e > i 1/p
- €20n?
Combining them gives us that C, ¥; and ¥_; are individ-

ually €/4 close to their expectation, each with probability at
least 1 —4/3 if:

{ 8v/3 384 zj L

e > Max

- i P eon?

6\[\/ ?11712 €24 (

Note that the condition for the concentration of ¥ is sub-
sumed by the conditions for the concentration of C'.

87, 1/pz~}

B. PARTIAL LISTS OF FRIENDS

In some settings, only a random subset of the list of friends
is given to the crawler. Thus, assuming the subset of given
friends is truly random, the crawler can keep performing the
random walk undisturbed. However, it can no longer eval-
uate ¥y and W_;. To this end, we provide estimators that
do not require ¥, and W_;. They do, however, require a
priori knowledge of nodes’ degree distribution. A similar as-
sumption was also made in [16] where the authors presented
an algorithm for estimating the number of attributes in a
database.

Defining as before the ¢’th moment of the degree distri-
bution as M, = E [d*] the collision estimator becomes

ﬁ_r Mo
“\2jomz

For the non-unique estimator we get

d'Vﬂ . r
L . _af_ ¢
n=r C’—&—;nP[d ] (1 ﬁ/\/ll) :




