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About

This talk will survey a few random projection algorithms, From
the classic result by W.B.Johnson and J.Lindenstrauss (1984)
to a recent faster variant of the FJLT algorithm [2] which was
joint work with Nir Ailon (Google research). Many thanks also
to Mark Tygert and Tali Kaufman.

Since some of the participants are unfamiliar with the classic
results, I will also show these, later this week, for those who are
interested.



Random Projections introduction

We look for a mapping f from dimension d to dimension k such
that | ‖ui − uj‖2 − ‖f (ui)− f (uj)‖2 | < ε. And k is much smaller
then d .

This idea is critical in many algorithms such as:
I Approximate nearest neighbors searches
I Rank k approximation
I Compressed sensing

and the list continues...



Random Projections introduction

More precisely:

Lemma (Johnson, Lindenstrauss (1984) [3])
For any set of n points u1 . . . un in Rd there exists a linear
mapping f : Rd → Rk such that all pairwise distances are
preserved up to distortion ε

∀i , j (1− ε)‖ui − uj‖2 ≤ ‖f (ui)− f (uj)‖2 ≤ (1 + ε)‖ui − uj‖2

if
k >

9 ln n
ε2 − ε3



Random Projections introduction

All random projection algorithms have the same basic idea:
1. Set f (x) = Ax and A ∈ Rk×d .
2. Choose A from a probability distribution such that each

distance ‖ui − uj‖ is preserved with very high probability.
3. Union bound on the failure probabilities of all

(n
2

)
distances.

4. Choose k such that the failure probability is constant.



Random Projections introduction

Similar to a definition given by Matousek,

Definition
A distribution D(d , k) on k × d real matrices (k ≤ d) has the
Johnson-Lindenstrauss property (JLP) if for any unit vector
x ∈ `d

2 and 0 ≤ ε < 1/2,

Pr
A∼Dd,k

[1− ε ≤ ‖Ax‖ ≤ 1 + ε] ≥ 1− c1e−c2kε2
(1)

for some global c1, c2 > 0.
A union bound on

(n
2

)
distance vectors (x = ui − uj ) gives a

constant success probability for k = O( log(n)
ε2 )

Proving the existence of a length preserving mapping reduces
to finding distributions with the JLP.



Classic constructions
Classic distributions that exhibit the JLP.

I The original proof and construction, W.B.Johnson and
J.Lindenstrauss (1984). They used k rows from random
orthogonal matrix (random projection matrix).

I P.Indyk and R.Motowani (1998) use a random Gaussian
distribution, A(i , j) ∼ N(0, 1). Although it is conceptually
not different from previous results it is significantly easier to
prove due to the rotational invariance of the normal
distribution.

I Dimitris Achlioptas (2003) showed that a dense
A(i , j) ∈ {0,−1, 1} matrix also exhibits the JLP.

Some other JLP distributions and proofs:
I P.Frankl and H.Meahara (1987)
I S.DasGupta and A.Gupta (1999)
I Jiri Matousek (2006) [4].



Let’s think about applications

The amount of space needed is O(dk) and the time to apply
the mapping to any vector takes O(dk) operations.

Try to apply the mapping to a 5Mp image, and project it down to
104 coordinates, that is roughly a 10G matrix! (somewhat
unpleasant)
(In some situations one can generate and forget A on the fly
and thereby reducing the space constraint.)

Can we save on time and space by making A sparse?



Can A be sparse?

The short answer is no.
Let x contains only 1 non zero entry, say i , then:

‖Ax‖ = ‖A(i)‖

We need each column’s norm to concentrate around 1 with
deviation k−1/2. It therefore must contain at least O(k) entries.



Fast Johnson Lindenstrauss Transform

Maybe we should first make x dense?

One way to achieve that is to first map x 7→ HDx and then use
a sparse matrix P to project it.

Lemma (Ailon, Chazelle (2006) [1])

I Let P ∈ Rk×d be a sparse matrix. Let q = Θ( log2(n)
d ), set

P(i , j) ∼ N(0, q−1) w.p q and P(i , j) = 0 else.
I Let H denote the d × d Walsh Hadamard matrix.
I and let D denote a d × d diagonal random ±1 matrix.

The matrix A = PHD exhibits the JLP.

Notice that P contains only O(k3) entrees (in expectancy)
which is much less then kd .



What did we gain?

I Time to apply the matrix A to a vector is now reduced to
O(d log(d) + k3) which is much less then dk .

I The space needed for storing A is d + k3 log(d). (during
application one needs d log(d) + k3 log(d) space).

I We also save on randomness, constructing A requires
O(d + k3 log(d)) random bits. (Vs. O(dk) for classic
constructions)



Can we do any better?

1. We are computing d coefficients of the Walsh Hadamard
matrix although we use at most k3 of them. Can we
effectively reduce computation?

2. Where does the k3 term come from? can we reduce it?
3. Can we save on randomness?

Answers:
1. Yes. We can reduce d log(d) to d log(k).
2. Yes. We can eliminate the k3 term.
3. Yes. We can derandomize P all together.

Unfortunately, we only know how to do this for k = O(d1/2−δ)
for some arbitrarily small delta.



Faster JL Transform
Theorem (Ailon, Liberty (2007) [2])
Let δ > 0 be some arbitrarily small constant. For any d , k
satisfying k ≤ d1/2−δ there exists an algorithm constructing a
random matrix A of size k × d satisfying JLP, such that the time
to compute x 7→ Ax for any x ∈ Rd is O(d log k). The
construction uses O(d) random bits and applies to both the
Euclidean and the Manhattan cases.

k in
o(log d)

k in
ω(log d)

and
o(poly(d))

k in
Ω(poly(d))

and
o((d log d)1/3)

k in
ω((d log d)1/3)

and
O(d1/2−δ)

Fast This work This work This work, FJLT This work
JL FJLT FJLT

Slow FJLT JL JL JL



Trimming the Hadamard transform

Answer for the first question, can we compute only the
coefficients that we need from the transform?

The Hadamard matrix has a recursive structure as such:

H1 =

(
1 1
1 −1

)
, Hd =

(
Hd/2 Hd/2
Hd/2 −Hd/2

)
(2)

Let us look at the product PHDx, let z = Dx. and let z1 and z2
be the first and second half of z, also P1 and P2 are the left and
right halves of P. Assume that |P| = k



Trimming the Hadamard transform

PHqz =
(

P1 P2
) (

Hq/2 Hq/2
Hq/2 −Hq/2

)(
z1
z2

)

= P1Hq/2(z1 + z2) + P2Hq/2(z1 − z2)

Which gives the relation T (d , k) = T (d/2, k1) + T (d/2, k2) + d .
We use induction to show that T (d , k) ≤ 2d log(k + 1),
T (d , 1) = d .

T (d , k) = T (d/2, k1) + T (d/2, k2) + d
≤ d log(2(k1 + 1)(k2 + 1))

≤ d log((k1 + k2 + 1)2) for any k1 + k2 = k ≥ 1
≤ 2d log(k + 1)

Finally T (d , k) = O(d log(k)).



Modifying the FJLT algorithm

Notice that by applying the trimmed Walsh Hadamard transform
one can use the FJLT algorithm as is with running time
O(d log(k) + k3) which is O(d log(k)) for any k = O(d1/3).

We move to deal with a harder problem which is to construct an
algorithm that holds up to k = O(d1/2−δ).



Rademacher random variables

Answer for the second question, where does k3 come from?

The hardest vectors to project correctly are sparse ones. Ailon
and Chazelle bound ‖HDx‖∞ and then project the sparsest z
such vectors. z(i) ∈ {0, ‖HDx‖∞}, Intuitively these are actually
very rare.

Let’s try to bound ‖PHDx‖2 directly.



Rademacher random variables

I Let M be a real m × d matrix,
I Let z be a random vector z ∈ {−1, 1}d

I Mz ∈ `m
2 is known as a Rademacher random variable.

I Z = ‖Mz‖2 is the norm of a Rademacher random variable
in `d

2 corresponding to M

We associate two numbers with Z ,
I The deviation σ, defined as ‖M‖2→2, and
I a median µ of Z .

Theorem (Ledoux and Talagrand (1991))
For any t ≥ 0, Pr[|Z − µ| > t ] ≤ 4e−t2/(8σ2) .



Rademacher random variables

We write PHDx as PHXz where X is diag(x) and z is a random
±1, and recall the JLP definition:

Pr[| ‖Mz‖ − µ | > t ] ≤ 4e−t2/(8σ2)

Pr[| ‖PHXz‖ − 1 | ≥ ε] ≤ c1e−c2kε2

To show that PHD has the JLP we need only show that:
I σ = ‖PHX‖2→2 = O(k−1/2).
I |µ− 1| = O(σ).

Notice that P does not need to be random any more! From this
point on we replace PH with B ∈ Rk×d , We will choose B
later.



Bounding σ

Reminder M = BDX and σ = ‖M‖2→2.

σ = ‖M‖2→2 = sup
y∈`k

2
‖y‖=1

‖yT M‖2

= sup

(
d∑

i=1

x2
i (yT B(i))2

)1/2

≤ ‖x‖4 sup

(
d∑

i=1

(yT B(i))4

)1/4

= ‖x‖4‖BT‖2→4 .



Choosing B

Definition
A matrix A(i , j) ∈ {+k−1/2,−k−1/2} of size k × d is 4-wise
independent if for each 1 ≤ i1 < i2 < i3 < i4 ≤ k and
(b1, b2, b3, b4) ∈ {+1,−1}4, the number of columns A(j) for
which (A(j)

i1
, A(j)

i2
, A(j)

i3
, A(j)

i4
) = k−1/2(b1, b2, b3, b4) is exactly d/24.

Lemma
There exists a 4-wise independent matrix A of size k × dbch, ,
dbch = Θ(k2), such that A consists of k rows of Hd .
We take B to be dd/dbche copies of A side by side. Clearly B is
still 4-wise independent. 2

2The family of matrices is known as binary dual BCH codes of designed
distance 5. Under the usual transformation (+) → 0, (−) → 1 (and
normalized).



Bounding ‖B‖2→4

Lemma
Assume B is a k × d 4-wise independent code matrix. Then
‖BT‖2→4 ≤ cd1/4k−1/2.

Proof.
For y ∈ `k

2, ‖y‖ = 1,

‖yT B‖4
4 = dEj∈[d ][(yT B(j))4]

= dk−2
k∑

i1,i2,i3,i4=1

Eb1,b2,b3,b4 [yi1yi2yi3yi4b1b2b3b4]

= dk−2(3‖y‖4
2 − 2‖y‖4

4) ≤ 3dk−2 ,

(3)



Reducing ‖x‖4

Reminder: we need σ ≤ ‖x‖4‖BT‖2→4 = O(k−1/2),

We already have that ‖BT‖2→4 ≤ cd1/4k−1/2.

The objective is to get ‖x‖4 = O(d−1/4) But x is given to us and
‖x‖4 might be 1.

The solution is to map x 7→ Φx where Φ is a randomized
isometry. Such that with high probability ‖Φx‖4 = O(d1/4).



Reducing ‖x‖4

The idea is to compose r Walsh Hadamard matrices with
different random diagonal matrices.

Lemma
[`4 reduction for k < d1/2−δ] Let Φ = HDr · · ·HD2HD1, with
probability 1−O(e−k )

‖Φ(r)x‖4 = O(d−1/4)

for r = d1/2δe.
Note that the constant hiding in the bound (9) is exponential in
1/δ.



Putting it all together

We have that ‖Φ(r)x‖4 = O(d−1/4) and
‖BT‖2→4 = O(d1/4k−1/2) and so we gain σ = O(k−1/2), finally

Lemma
The matrix A = BDΦ exhibits the JLP.



But what about the running time?

Notice that applying Φ takes O(d log(d)) time.
Which is bad if d À k2.

Remember that B is built out of many copies of the original
k × dBCH code matrix (dBCH = Θ(k2)) . It turns out that Φ can
also be constructed of blocks of size dBCH × dBCH and Φ can
also be applied in O(d log(k))



Conclusion
Theorem
Let δ > 0 be some arbitrarily small constant. For any d , k
satisfying k ≤ d1/2−δ there exists an algorithm constructing a
random matrix A of size k × d satisfying JLP, such that the time
to compute x 7→ Ax for any x ∈ Rd is O(d log k). The
construction uses O(d) random bits and applies to both the
Euclidean and the Manhattan cases.

k in
o(log d)

k in
ω(log d)

and
o(poly(d))

k in
Ω(poly(d))

and
o((d log d)1/3)

k in
ω((d log d)1/3)

and
O(d1/2−δ)

Fast This work This work This work, FJLT This work
JL FJLT FJLT

Slow FJLT JL JL JL



Future work

I Going beyond k = d1/2−δ. As part of our work in progress,
we are trying to push the result to higher values of the
target dimension k (the goal is a running time of
O(d log d)). We conjecture that this is possible for
k = d1−δ, and have partial results in this direction. A more
ambitious goal is k = Ω(d).

I Lower bounds. A lower bound on the running time of
applying a random matrix with a JL property on a vector
will be extremely interesting. Any nontrivial (superlinear)
bound for the case k = dΩ(1) will imply a lower bound on
the time to compute the Fourier transform, because the
bottleneck of our constructions is a Fourier transform.

I If there is no lower bound, can we devise a linear time JL
projection? This will of course be very interesting, it seems
that this might be possible for very large values of d
relative to n.



Thank you for listening
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|µ− 1| = O(σ)

Reminder:
I Z is our random variable Z = ‖Mz‖2.
I E(Z 2) = 1.
I Pr[| Z − µ | > t ] ≤ 4e−t2/(8σ2)

Let us bound |1− µ|

E [(Z − µ)2] =

∫ ∞

0
Pr[(Z − µ)2] > s]ds

≤
∫ ∞

0
4e−s/(8σ2)ds = 32σ2

E [Z ] = E [
√

Z 2] ≤
√

E [Z 2] = 1 (by Jensen)

E [(Z − µ)2] = E [Z 2]− 2µE [Z ] + µ2 ≥ 1− 2µ + µ2 = (1− µ)2

|1− µ| ≤
√

32σ


