Fast Random Projections

Edo Liberty¹

September 18, 2007

¹Yale University, New Haven CT, supported by AFOSR and NGA (www.edoliberty.com) Advised by Steven Zucker.

About

This talk will survey a few random projection algorithms, From the classic result by W.B.Johnson and J.Lindenstrauss (1984) to a recent faster variant of the FJLT algorithm [2] which was joint work with Nir Ailon (Google research). Many thanks also to Mark Tygert and Tali Kaufman.

Since some of the participants are unfamiliar with the classic results, I will also show these, later this week, for those who are interested.

We look for a mapping *f* from dimension *d* to dimension *k* such that $| \|\mathbf{u}_i - \mathbf{u}_j\|^2 - \|f(\mathbf{u}_i) - f(\mathbf{u}_j)\|^2 | < \epsilon$. And *k* is *m*uch smaller then *d*.

This idea is critical in many algorithms such as:

- Approximate nearest neighbors searches
- Rank k approximation
- Compressed sensing

and the list continues...

More precisely:

Lemma (Johnson, Lindenstrauss (1984) [3]) For any set of *n* points $\mathbf{u}_1 \dots \mathbf{u}_n$ in \mathbb{R}^d there exists a linear mapping $f : \mathbb{R}^d \to \mathbb{R}^k$ such that all pairwise distances are preserved up to distortion ϵ

$$\forall i,j \ (1-\epsilon) \|\boldsymbol{u}_i - \boldsymbol{u}_j\|^2 \leq \|f(\boldsymbol{u}_i) - f(\boldsymbol{u}_j)\|^2 \leq (1+\epsilon) \|\boldsymbol{u}_i - \boldsymbol{u}_j\|^2$$

if

$$k > \frac{9\ln n}{\epsilon^2 - \epsilon^3}$$

All random projection algorithms have the same basic idea:

- 1. Set $f(\mathbf{x}) = A\mathbf{x}$ and $A \in \mathbb{R}^{k \times d}$.
- 2. Choose *A* from a probability distribution such that each distance $||\mathbf{u}_i \mathbf{u}_j||$ is preserved with very high probability.
- 3. Union bound on the failure probabilities of all $\binom{n}{2}$ distances.
- 4. Choose k such that the failure probability is constant.

Similar to a definition given by Matousek,

Definition

A distribution D(d, k) on $k \times d$ real matrices ($k \le d$) has the Johnson-Lindenstrauss property (JLP) if for any unit vector $x \in \ell_2^d$ and $0 \le \epsilon < 1/2$,

$$\Pr_{A \sim D_{d,k}} [1 - \epsilon \le \|A\mathbf{x}\| \le 1 + \epsilon] \ge 1 - c_1 e^{-c_2 k \epsilon^2}$$
(1)

for some global $c_1, c_2 > 0$.

A union bound on $\binom{n}{2}$ distance vectors $(\mathbf{x} = \mathbf{u}_i - \mathbf{u}_j)$ gives a constant success probability for $k = O(\frac{\log(n)}{\epsilon^2})$

Proving the existence of a length preserving mapping reduces to finding distributions with the JLP.

Classic constructions

Classic distributions that exhibit the JLP.

- The original proof and construction, W.B.Johnson and J.Lindenstrauss (1984). They used k rows from random orthogonal matrix (random projection matrix).
- ► P.Indyk and R.Motowani (1998) use a random Gaussian distribution, A(i, j) ~ N(0, 1). Although it is conceptually not different from previous results it is significantly easier to prove due to the rotational invariance of the normal distribution.
- Dimitris Achlioptas (2003) showed that a dense A(i,j) ∈ {0,−1,1} matrix also exhibits the JLP.

Some other JLP distributions and proofs:

- P.Frankl and H.Meahara (1987)
- S.DasGupta and A.Gupta (1999)
- Jiri Matousek (2006) [4].

Let's think about applications

The amount of space needed is O(dk) and the time to apply the mapping to any vector takes O(dk) operations.

Try to apply the mapping to a 5Mp image, and project it down to 10^4 coordinates, that is roughly a 10G matrix! (somewhat unpleasant) (In some situations one can generate and forget *A* on the fly and thereby reducing the space constraint.)

Can we save on time and space by making A sparse?

The short answer is no.

Let **x** contains only 1 non zero entry, say *i*, then:

$$\|\mathbf{A}\mathbf{x}\| = \|\mathbf{A}^{(i)}\|$$

We need each column's norm to concentrate around 1 with deviation $k^{-1/2}$. It therefore must contain at least O(k) entries.

Fast Johnson Lindenstrauss Transform

Maybe we should first make x dense?

One way to achieve that is to first map $x \mapsto HDx$ and then use a sparse matrix *P* to project it.

Lemma (Ailon, Chazelle (2006) [1])

- ▶ Let $P \in \mathbb{R}^{k \times d}$ be a sparse matrix. Let $q = \Theta(\frac{\log^2(n)}{d})$, set $P(i,j) \sim N(0,q^{-1})$ w.p q and P(i,j) = 0 else.
- Let H denote the $d \times d$ Walsh Hadamard matrix.
- and let D denote a d \times d diagonal random ± 1 matrix.

The matrix A = PHD exhibits the JLP.

Notice that *P* contains only $O(k^3)$ entrees (in expectancy) which is much less then *kd*.

What did we gain?

- Time to apply the matrix A to a vector is now reduced to O(d log(d) + k³) which is much less then dk.
- The space needed for storing A is d + k³ log(d). (during application one needs d log(d) + k³ log(d) space).
- We also save on randomness, constructing A requires O(d + k³ log(d)) random bits. (Vs. O(dk) for classic constructions)

Can we do any better?

- 1. We are computing *d* coefficients of the Walsh Hadamard matrix although we use at most k^3 of them. Can we effectively reduce computation?
- 2. Where does the k^3 term come from? can we reduce it?
- 3. Can we save on randomness?

Answers:

- 1. Yes. We can reduce $d \log(d)$ to $d \log(k)$.
- 2. Yes. We can eliminate the k^3 term.
- 3. Yes. We can derandomize *P* all together.

Unfortunately, we only know how to do this for $k = O(d^{1/2-\delta})$ for some arbitrarily small delta.

Faster JL Transform

Theorem (Ailon, Liberty (2007) [2])

Let $\delta > 0$ be some arbitrarily small constant. For any d, k satisfying $k \le d^{1/2-\delta}$ there exists an algorithm constructing a random matrix A of size $k \times d$ satisfying JLP, such that the time to compute $x \mapsto Ax$ for any $x \in \mathbb{R}^d$ is $O(d \log k)$. The construction uses O(d) random bits and applies to both the Euclidean and the Manhattan cases.

	<i>k</i> in <i>o</i> (log <i>d</i>)	k in $\omega(\log d)$ and $o(\operatorname{poly}(d))$	k in $\Omega(poly(d))$ and $o((d \log d)^{1/3})$	k in $\omega((d \log d)^{1/3})$ and $O(d^{1/2-\delta})$
Fast	This work	This work	This work, FJLT	This work
	JL	FJLT		FJLT
Slow	FJLT	JL	JL	JL

Trimming the Hadamard transform

Answer for the first question, can we compute only the coefficients that we need from the transform?

The Hadamard matrix has a recursive structure as such:

$$H_{1} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, H_{d} = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix}$$
(2)

Let us look at the product *PHD***x**, let $\mathbf{z} = D\mathbf{x}$. and let \mathbf{z}_1 and \mathbf{z}_2 be the first and second half of \mathbf{z} , also P_1 and P_2 are the left and right halves of *P*. Assume that |P| = k

Trimming the Hadamard transform

$$PH_{q}\mathbf{z} = (P_{1} P_{2}) \begin{pmatrix} H_{q/2} & H_{q/2} \\ H_{q/2} & -H_{q/2} \end{pmatrix} \begin{pmatrix} \mathbf{z}_{1} \\ \mathbf{z}_{2} \end{pmatrix}$$
$$= P_{1}H_{q/2}(\mathbf{z}_{1} + \mathbf{z}_{2}) + P_{2}H_{q/2}(\mathbf{z}_{1} - \mathbf{z}_{2})$$

Which gives the relation $T(d, k) = T(d/2, k_1) + T(d/2, k_2) + d$. We use induction to show that $T(d, k) \le 2d \log(k + 1)$, T(d, 1) = d.

$$T(d,k) = T(d/2,k_1) + T(d/2,k_2) + d$$

$$\leq d \log(2(k_1+1)(k_2+1))$$

$$\leq d \log((k_1+k_2+1)^2) \text{ for any } k_1+k_2=k \geq 1$$

$$\leq 2d \log(k+1)$$

Finally $T(d, k) = O(d \log(k))$.

Notice that by applying the trimmed Walsh Hadamard transform one can use the FJLT algorithm as is with running time $O(d \log(k) + k^3)$ which is $O(d \log(k))$ for any $k = O(d^{1/3})$.

We move to deal with a harder problem which is to construct an algorithm that holds up to $k = O(d^{1/2-\delta})$.

Rademacher random variables

Answer for the second question, where does k^3 come from?

The hardest vectors to project correctly are sparse ones. Allon and Chazelle bound $||HDx||_{\infty}$ and then project the sparsest **z** such vectors. $\mathbf{z}(i) \in \{0, ||HDx||_{\infty}\}$, Intuitively these are actually very rare.

Let's try to bound $||PHDx||_2$ directly.

Rademacher random variables

- Let *M* be a real $m \times d$ matrix,
- Let **z** be a random vector $z \in \{-1, 1\}^d$
- $Mz \in \ell_2^m$ is known as a *Rademacher* random variable.
- ► Z = ||Mz||₂ is the norm of a Rademacher random variable in ℓ^d₂ corresponding to M

We associate two numbers with Z,

- The deviation σ , defined as $||M||_{2\rightarrow 2}$, and
- a median µ of Z.

Theorem (Ledoux and Talagrand (1991)) For any $t \ge 0$, $\Pr[|Z - \mu| > t] \le 4e^{-t^2/(8\sigma^2)}$.

Rademacher random variables

We write *PHDx* as *PHXz* where X is diag(x) and z is a random ± 1 , and recall the JLP definition:

$$\begin{aligned} & \Pr[| \|M\mathbf{z}\| - \mu | > t] \le 4e^{-t^2/(8\sigma^2)} \\ & \Pr[| \|PHX\mathbf{z}\| - 1 | \ge \epsilon] \le c_1 e^{-c_2 k\epsilon^2} \end{aligned}$$

To show that PHD has the JLP we need only show that:

•
$$\sigma = \| PHX \|_{2 \to 2} = O(k^{-1/2}).$$

$$|\mu - \mathbf{1}| = O(\sigma).$$

Notice that *P* does not need to be random any more! From this point on we replace *PH* with $B \in \mathbb{R}^{k \times d}$, We will choose *B* later.

Bounding σ

Reminder M = BDX and $\sigma = ||M||_{2 \to 2}$. $\sigma = ||M||_{2 \to 2} = \sup_{\substack{y \in \ell_2^k \\ ||y|| = 1}} ||y^T M||_2$ $= \sup \left(\sum_{i=1}^d x_i^2 (y^T B^{(i)})^2\right)^{1/2}$

$$\leq \|x\|_4 \sup \left(\sum_{i=1}^d (y^T B^{(i)})^4\right)^{1/4} \\ = \|x\|_4 \|B^T\|_{2 \to 4} .$$

Choosing B

Definition

A matrix $A(i, j) \in \{+k^{-1/2}, -k^{-1/2}\}$ of size $k \times d$ is 4-wise *independent* if for each $1 \le i_1 < i_2 < i_3 < i_4 \le k$ and $(b_1, b_2, b_3, b_4) \in \{+1, -1\}^4$, the number of columns $A^{(j)}$ for which $(A_{i_1}^{(j)}, A_{i_2}^{(j)}, A_{i_3}^{(j)}, A_{i_4}^{(j)}) = k^{-1/2}(b_1, b_2, b_3, b_4)$ is exactly $d/2^4$.

Lemma

There exists a 4-wise independent matrix A of size $k \times d_{bch}$, , $d_{bch} = \Theta(k^2)$, such that A consists of k rows of H_d .

We take *B* to be $\lceil d/d_{bch} \rceil$ copies of *A* side by side. Clearly *B* is still 4-wise independent.²

²The family of matrices is known as binary dual BCH codes of designed distance 5. Under the usual transformation $(+) \rightarrow 0$, $(-) \rightarrow 1$ (and normalized).

Bounding $||B||_{2\rightarrow 4}$

Lemma

Assume B is a $k \times d$ 4-wise independent code matrix. Then $||B^T||_{2 \rightarrow 4} \leq cd^{1/4}k^{-1/2}$.

Proof.

For $y \in \ell_2^k, \|y\| = 1$,

$$\begin{split} \|y^{T}B\|_{4}^{4} &= dE_{j\in[d]}[(y^{T}B(j))^{4}] \\ &= dk^{-2}\sum_{i_{1},i_{2},i_{3},i_{4}=1}^{k}E_{b_{1},b_{2},b_{3},b_{4}}[y_{i_{1}}y_{i_{2}}y_{i_{3}}y_{i_{4}}b_{1}b_{2}b_{3}b_{4}] \quad (3) \\ &= dk^{-2}(3\|y\|_{2}^{4}-2\|y\|_{4}^{4}) \leq 3dk^{-2} \;, \end{split}$$

Reducing $||x||_4$

Reminder: we need
$$\sigma \leq \|\mathbf{x}\|_{4} \|\mathbf{B}^{T}\|_{2 \rightarrow 4} = O(k^{-1/2}),$$

We already have that $||B^T||_{2\rightarrow 4} \leq cd^{1/4}k^{-1/2}$.

The objective is to get $||x||_4 = O(d^{-1/4})$ But *x* is given to us and $||x||_4$ might be 1.

The solution is to map $x \mapsto \Phi x$ where Φ is a randomized isometry. Such that with high probability $\|\Phi x\|_4 = O(d^{1/4})$.

Reducing $||x||_4$

The idea is to compose *r* Walsh Hadamard matrices with different random diagonal matrices.

Lemma

[ℓ_4 reduction for $k < d^{1/2-\delta}$] Let $\Phi = HD_r \cdots HD_2 HD_1$, with probability $1 - O(e^{-k})$

$$\|\Phi^{(r)}x\|_4 = O(d^{-1/4})$$

for $r = \lfloor 1/2\delta \rfloor$.

Note that the constant hiding in the bound (9) is exponential in $1/\delta$.

Putting it all together

We have that
$$\|\Phi^{(r)}x\|_4 = O(d^{-1/4})$$
 and
 $\|B^T\|_{2\to 4} = O(d^{1/4}k^{-1/2})$ and so we gain $\sigma = O(k^{-1/2})$, finally
Lemma
The matrix $A = BD\Phi$ exhibits the JLP.

But what about the running time?

Notice that applying Φ takes $O(d \log(d))$ time. Which is bad if $d \gg k^2$.

Remember that *B* is built out of many copies of the original $k \times d_{BCH}$ code matrix $(d_{BCH} = \Theta(k^2))$. It turns out that Φ can also be constructed of blocks of size $d_{BCH} \times d_{BCH}$ and Φ can also be applied in $O(d \log(k))$

Conclusion

Theorem

Let $\delta > 0$ be some arbitrarily small constant. For any d, k satisfying $k \le d^{1/2-\delta}$ there exists an algorithm constructing a random matrix A of size $k \times d$ satisfying JLP, such that the time to compute $x \mapsto Ax$ for any $x \in \mathbb{R}^d$ is $O(d \log k)$. The construction uses O(d) random bits and applies to both the Euclidean and the Manhattan cases.

	<i>k</i> in <i>o</i> (log <i>d</i>)	k in $\omega(\log d)$ and $o(\operatorname{poly}(d))$	k in $\Omega(\operatorname{poly}(d))$ and $o((d \log d)^{1/3})$	k in $\omega((d \log d)^{1/3})$ and $O(d^{1/2-\delta})$
Fast	This work	This work	This work, FJLT	This work
	JL	FJLT		FJLT
Slow	FJLT	JL	JL	JL

Future work

- Going beyond k = d^{1/2-δ}. As part of our work in progress, we are trying to push the result to higher values of the target dimension k (the goal is a running time of O(d log d)). We conjecture that this is possible for k = d^{1-δ}, and have partial results in this direction. A more ambitious goal is k = Ω(d).
- ► Lower bounds. A lower bound on the running time of applying a random matrix with a JL property on a vector will be extremely interesting. Any nontrivial (superlinear) bound for the case $k = d^{\Omega(1)}$ will imply a lower bound on the time to compute the Fourier transform, because the bottleneck of our constructions is a Fourier transform.
- If there is no lower bound, can we devise a linear time JL projection? This will of course be very interesting, it seems that this might be possible for very large values of d relative to n.

Thank you for listening

bibliography

Nir Ailon and Bernard Chazelle.

Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In Proceedings of the 38st Annual Symposium on the Theory of Compututing (STOC), pages 557–563, Seattle, WA, 2006.

Nir Ailon and Edo Liberty.

Fast dimension reduction using rademacher series on dual bch codes.

In Symposium on Discrete Algorithms (SODA), accepted, 2008.

W. B. Johnson and J. Lindenstrauss.

Extensions of Lipschitz mappings into a Hilbert space. *Contemporary Mathematics*, 26:189–206, 1984.

J. Matousek.

On variants of the Johnson-Lindenstrauss lemma. *Private communication*, 2006.

$|\mu - \mathbf{1}| = O(\sigma)$

Reminder:

- Z is our random variable $Z = ||Mz||_2$.
- $E(Z^2) = 1.$

•
$$\Pr[|Z - \mu| > t] \le 4e^{-t^2/(8\sigma^2)}$$

Let us bound $|\mathbf{1}-\boldsymbol{\mu}|$

$$\begin{split} E[(Z-\mu)^2] &= \int_0^\infty \Pr[(Z-\mu)^2] > s] ds \\ &\leq \int_0^\infty 4e^{-s/(8\sigma^2)} ds = 32\sigma^2 \\ E[Z] &= E[\sqrt{Z^2}] \le \sqrt{E[Z^2]} = 1 \text{ (by Jensen)} \\ E[(Z-\mu)^2] &= E[Z^2] - 2\mu E[Z] + \mu^2 \ge 1 - 2\mu + \mu^2 = (1-\mu)^2 \\ &|1-\mu| &\le \sqrt{32}\sigma \end{split}$$