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Introduction

I We view a psychological evaluation of a number of people
as a noisy function of their response to a test.

I We denoise the diagnosis function using the diffusion/heat
kernel.

I We then extend our denoised version to the rest of the
space.

I Finally the learned diagnostic function is used to score new
cases.
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Figure: A simplified sketch of the learning by extension process.
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Fourier series as a 1d kernel method
I We are given the values of a function f : [0, 1] → R on n

points from [0, 1], xi = i−1
n−1 , n ∈ 1 . . . n.

I We are also told that the values have been added random
noise.

I We want to find an approximation to f , namely f̃ .
I Such that ‖f − f̃‖ is sufficiently small.

I And that f̃ is somewhat smooth as well.
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Figure: Left: original function. Center: sampled function. Right: noise
added.



Fourier series as a 1d kernel method

I Decide on a measure of smoothness.
I For example minimizing the discrete curvature

c =
∑

(−f (xi+1) + 2f (xi)− f (xi−1))
2.

I c = fLf T where L is a symmetric PSD matrix.
I The functions that minimize this operator are the

eigenfunction of L.

I uk (xi) =
√

2
n−1sin(kπxi)

I Constructing an approximation to f as a linear combination
of these functions is easy f ≈ f̃ =

∑m
i=1〈uk , f 〉uk . (due to

the orthogonality of the uks.)

I If m is small then the curvature of f̃ is also bounded.



Fourier series as a 1d kernel method
1. Define a relevant operator, K ,on the sampled points.

2. Calculate the eigenfunctions (or eigenvectors) U of K .

3. Expand f as a linear combination of a small subset of U.
f̃ (xi) =

∑m
k=1〈uk , f 〉uk (xi)

4. Using the extended eigenvectors evaluate the function on
the whole space.
f̃ (x) =

∑m
k=1〈uk , f 〉uk (x).
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Figure: Left: The noisy sample. Center: denoised sample. Right:
extension to [0, 1].



The graph Laplacian kernel for functions over vertices
of undirected graphs

I Given a an undirected graph G(V , E) and edge weights
Wi,j

I minimize the difference between neighbors with heavy
weights between them.
min

∑
(i,j)∈E Wi,j(fi − fj)2.

I Define Di,i =
∑

j Wi,j , and L = D −W is the Graph
Laplacian.

I
∑

(i,j)∈E Wi,j(fi − fj)2 = fLf T

I It might be appropriate to expand f as a combination of the
eigenvectors of L corresponding to low eigenvalues.



The diffusion kernel for functions over manifolds

I Here we are not given a graph but a set of points X
sampled from a manifold M.

I The idea is to view the values of f as the ”temperatures” of
the vertices. Then let them cool down or warm up
according to their neighborhoods.

I This amounts to setting the kernel Ki,j = e−
‖xi−xj‖2

σ2

I σ here is proportional to the ”time waited”, or it can be
viewed as a scaling parameter.

I There are a few different normalizations of K . (diffusion
maps, laplacian eigenmaps).



Extending the diffusion kernel

I We now try to extend the eigenvectors of K to include x
using the Nyström extension.

I since uk are eigenvectors of K .
λkuk (xi) =

∑n
j=1 K (xi , xj)uk (xj).

I uk (x) = 1
λk

∑n
j=1 K (x , xj)uk (xj).

I Since we can evaluate K (x , xk ) we can approximate uk (x).
I Notice that as λk → 0 the operation becomes numerically

unstable.
I We get f̃ (x) =

∑m
k=1〈uk , f 〉uk (x).



Examples

Figure: A function f approximated with the heat diffusion kernel f̃DIF

and the PCA kernel f̃PCA
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Common psychological tests

I Aim to evaluate the amount of which a person possesses a
certain trait, quality, or ability

I IQ tests
I GRE, GMAT, SAT etc.
I Job placement tests

I Aim to evaluate the psychological state a person is in.
I Rorschach
I Anxiety tests, Stress Tests, etc.

I Aim to diagnose a Psychological pathology, or disorder
I MMPI-2TM (Minnesota Multiphasic Personality

Inventory-2TM)
I BPS (Bricklin Perceptual Scales)
I CPI (California Personality Inventory)
I .... and many more.

I Personality tests
I Myers-Briggs, MMPI-2, BPS, colorTest, etc.



MMPI-2 Structure and scoring

I 567 yes/no questions.
I A scale contains a subset of these questions (items) and

an indicated answer (response). Usually about 40-60.
I Example: a scale measuring Depression might include the

items
I I find it hard to wake up in the morning (yes).
I Most of the people I know are less fortunate then I’m (no).

I Each scale aims to measure one trait or condition.
I If a person answers in the indicated (keyed) way, his/her

score on that scale is incremented.
I T scores. Are the number of items answered in the keyed

way.
I The scales were constructed according to linear correlation

between items and conditions.



Problems with the scoring method

I No reason all items should be weighted equally.
I No reason the function from answer vector to score should

be linear.
I The method is highly sensitive to missing answers.
I The correlation between item and scale is sometime

debatable.
I New scales and changes to the existing ones are very

frequent.



MMPI-2 score interpretation

I T scores are normalized (mean 50, std 10).
I Only scores above 65, are considered abnormal.
I Scores above 60 are considered ”Elevated”.
I The set of elevated scales for a person is called his/her

”Type” or ”Profile”.
I Certain types are well known and studied and others are

ambiguous (at best).



Introduction

Fourier series as a 1d kernel method
Fourier series as a 1d kernel method
The graph Laplacian kernel for functions over vertices of
undirected graphs
The diffusion kernel for functions over manifolds

Psychological testing
Common psychological tests
MMPI-2 Structure and scoring

Applying the kernel technique to the MMPI-2 test
Assumptions and motivations
Application details

Experimental results

Discussion

Future work



Assumptions and motivations

I Assumptions:
I We assumed that similar types give similar responses.
I The set of responses lay on a low dimensional manifold,

with additive noise.
I The MMPI-2 scores and types are smooth on that manifold.

I Motivations:
I Test the validity and utility of our assumptions.
I Find a natural set of functions that spans (and denoises)

the space of psychological diagnosis.
I Find the types and disorders as clusters or areas on the

manifold.
I Hopefully devise an alternative scoring method.



Application details

I The diffusion kernel was chosen.
I The distance between responses was taken to be the

Hamming distance.
I The MMPI-2 score functions were learned using a training

set of 500 subject.
I The functions were evaluates on a test set of a 1000 other

subjects.
I The score approximation was done using 15 eigenvectors.

I Correlations between f and f̃ were calculated.
I Missing answers 1: The same experiment was repeated

while randomly deleting answers to check the robustness
of our method.

I Missing answers 2: Each scale was predicted after
deleting all the items that correspond to it.
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Scores over the diffusion map



Number of eigenvectors

I Using the first 15 eigenvectors of the diffusion kernel one
can achieve a good approximation of the MMPI-2 scale
scores.
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Figure: Pearson Correlations between f and f̃ for different numbers of
eigenvalues used. For comparison, on the righthand side, the same
plot using the PCA kernel.



Missing data results
q=30 q=50 q=100 q=200 q=300

r Hit rate r Hit rate r Hit rate r Hit rate r Hit rate
HS 95 89 95 89 94 87 94 83 92 80
D 93 83 93 83 93 83 92 80 92 77

HY 89 71 88 70 88 69 87 67 84 62
PD 91 76 91 77 91 76 90 74 89 71
PA 88 67 88 67 87 66 87 64 85 62
PT 98 97 98 97 98 97 98 97 97 96
SC 98 98 98 98 98 98 98 98 97 97
MA 87 67 87 67 86 67 86 64 85 65
SI 96 91 96 92 96 91 95 90 95 88

RCD 98 96 97 96 97 96 97 94 97 94
RC1 95 86 94 86 94 85 93 81 91 75
RC2 93 82 93 82 92 80 92 79 91 77
RC3 89 73 89 73 89 72 89 71 88 70
RC4 92 81 92 78 92 76 90 74 88 69
RC6 92 78 92 78 91 78 91 75 89 72
RC7 96 92 96 93 96 92 96 91 95 91
RC8 93 84 93 84 93 83 93 82 91 78
RC9 93 82 93 81 92 80 92 77 91 75

Table: Pearson correlations, r, between f and f̃ . Here q items were
randomly deleted from each answers sequence. The hit rate indicated
is the percent of subjects classified within 1/2 standard deviation
from their original score. The variance of the correlations and hit
rates, for different choices of the base data set, is smaller the 0.02.



Missing scale results

I In the table below each scale score was estimated while all
the items that belong to that scale were missing.

I For comparison we tried also to complete the missing
responses using a Markov process and score the
corrupted records using the usual scoring procedure.

Scale rGH Hit rateGH rMC Hit rateMC Scale rGH Hit rateGH rMC Hit rateMC
HS 79 59 69 46 RCD 94 85 60 35
D 86 67 65 0 RC1 77 57 74 57

HY 74 51 55 0 RC2 87 67 49 34
PD 80 59 48 0 RC3 81 59 39 36
PA 78 54 55 5 RC4 67 48 30 34
PT 94 88 70 26 RC6 79 62 41 38
SC 94 85 73 41 RC7 92 81 60 40
MA 80 58 35 2 RC8 87 70 56 47
SI 87 69 58 7 RC9 86 67 32 26

Table: The variance of the correlations and hit rates, for different
choices of the base data set, is smaller the 0.02.
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Discussion

I Using the above method proved to be a useful tool in
scoring personality tests.

I It has proven itself superior to other methods when dealing
with corrupted responses.

I It has not been shown in the results section but one can
score profiles directly from the test without the use of
scales (a task unachieved by psychologists).

I It allows to administer a shorter test while not losing
diagnostic ability. Saving time and money for clinicians and
institutes alike.

I We have not found any well defined clusters in responses.
This contradicts theories of ”personality categorization”
(Myers-Briggs, astrology, etc.)
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Future work

I We claimed that 15 eigenvectors were a suitable choice.
Yet, this was supported by experimental justification only.

I The assumption is that the difference between f and f̃
corresponds to the noise in the function f .

I One can automate this process if it could be checked that
the remainder is indeed noise.

I I now focus on eigenvalue concentration results for random
matrices and other randomity tests under different models
of independence.


