
Inverted Index Compression via Online Document Routing

Gal Lavee, Ronny Lempel, Edo Liberty, and Oren Somekh
Yahoo! Labs., Haifa, Israel

Email: {gallavee, rlempel, edo, orens}@yahoo-inc.com

ABSTRACT
Modern search engines are expected to make documents
searchable shortly after they appear on the ever changing
Web. To satisfy this requirement, the Web is frequently
crawled. Due to the sheer size of their indexes, search en-
gines distribute the crawled documents among thousands of
servers in a scheme called local index-partitioning, such that
each server indexes only several million pages. To ensure
documents from the same host (e.g., www.nytimes.com) are
distributed uniformly over the servers, for load balancing
purposes, random routing of documents to servers is com-
mon. To expedite the time documents become searchable
after being crawled, documents may be simply appended to
the existing index partitions. However, indexing by merely
appending documents, results in larger index sizes since doc-
ument reordering for index compactness is no longer per-
formed. This, in turn, degrades search query processing
performance which depends heavily on index sizes.

A possible way to balance quick document indexing with
efficient query processing, is to deploy online document rout-
ing strategies that are designed to reduce index sizes. This
work considers the effects of several online document rout-
ing strategies on the aggregated partitioned index size. We
show that there exists a tradeoff between the compression
of a partitioned index and the distribution of documents
from the same host across the index partitions (i.e., host
distribution). We suggest and evaluate several online rout-
ing strategies with regard to their compression, host distri-
bution, and complexity. In particular, we present a term
based routing algorithm which is shown analytically to pro-
vide better compression results than the industry standard
random routing scheme. In addition, our algorithm demon-
strates comparable compression performance and host dis-
tribution while having much better running time complexity
than other document routing heuristics. Our findings are
validated by experimental evaluation performed on a large
benchmark collection of Web pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WWW2011 Mar. 28 - Apr. 1, Hyderabad, India
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Categories and Subject Descriptors
H.3.m [Information Systems]: Information Storage and
Retrieval

General Terms
Algorithms

Keywords
Inverted Index, Index Compression, Index Partitioning, Doc-
ument Routing, Online Algorithm

1. INTRODUCTION
Modern search engines serve enormous query loads over

tens of billions of Web pages, and are expected to deliver
fresh and relevant results to users in sub-second time. Due
to the sheer size of the Web, search engines partition their
index over thousands of servers, where each server typically
processes only several millions documents. At query time,
the top results retrieved from all servers are merged to pro-
duce the final results, which are returned to the user.

The main data structure used by search engines to effi-
ciently map queries to Web pages is the inverted index [2,
23]. The inverted index contains a postings list for each
unique term appearing in the corpus. The postings list of
a term consists of the list of document identifiers1 (docIds)
containing it, which are typically sorted by increasing docId
values. The list is represented by encoding the gaps (called
dGaps) between successive docIds. Another data structure
in an inverted index is the lexicon, or dictionary, which is a
lookup table that for each term in the corpus, points to the
postings list corresponding to it.

It is well known that index size has a major effect on
query processing throughput. In addition to the direct re-
duction in memory and disk space, more compact indexes
lead to savings in data transfers and increase the hit rate
of memory caches [22, 21]. Therefore, a large body of work
has focused on index compaction and compression meth-
ods. The structure described above leaves two main degrees
of freedom for compression optimization. The first is the
assignment of docIds to documents (also referred to as doc-
ument reordering). The second is the actual encoding of
the dGaps into bits (also referred to as dGap compression).
The basic idea behind an effective docId assignment is to

1Although terms frequencies and offsets within the docu-
ment occupy a major portion of modern inverted indexes,
we focus here on the documents identifiers only.

assign “similar” documents with close docIds, hence, poten-
tially reducing the dGaps since similar documents contain
many common terms. Alas, the problem of finding the opti-
mal docId assignment is NP-hard and so various heuristics
have been proposed in the literature.

However, previous work has focused on compacting the
inverted index of a single server, whereas large corpora are
indexed over thousands of servers. A standard approach dis-
tributes the corpus in a random fashion across the servers,
which in particular routes (with high probability) similar
documents to different servers. While this adversely affects
document reordering schemes, it creates a more balanced
query processing workload across the servers and eases com-
munication bottlenecks as pages of popular Web sites are
scattered about evenly across the servers.

This work considers a real-time partitioned indexing sce-
nario where newly arriving content must be indexed on some
server and made available for search immediately upon ar-
rival. This prohibits the application of time consuming state-
of-the-art document reordering schemes. However, the par-
titioned setting allows a degree of freedom in the form of
the policy that routes incoming documents to the various
partitions. We thus apply online document routing schemes
– instead of the industry standard random routing scheme –
to reduce the aggregated size of the partitioned index. We
further monitor and constrain the distribution of documents
belonging to the same hosts across the partitions (referred
to as host distribution hereafter). We tested our algorithms
on the 25 million Web page TREC .gov2 collection. Our
main contributions are the following:

• We introduce the idea of using online document rout-
ing for aggregated index size compression in locally
partitioned indexes. As far as we are aware, this novel
approach has not been studied previously.

• We propose and evaluate several online routing strate-
gies with regard to their compression, host distribu-
tion, and complexity. We show that there exists a
tradeoff between the compression of an partitioned in-
dex and host distribution across the partitions.

• In particular, we present a term-based routing algo-
rithm. Adhering to a simple document generating
model presented in [11], we show analytically that the
algorithm provides better compression results than the
industry standard random routing scheme. In addi-
tion, our algorithm demonstrates comparable compres-
sion performance and host distribution while having
much better running time complexity than other doc-
ument routing heuristics.

The rest of this work is organized as follows. Section 2
surveys related work. Section 3 formally defines our model,
problem and metrics. Algorithms for document routing are
presented in Section 4, with the term-based algorithm ana-
lyzed in Section 5. Our experimental results are reported in
Section 6. We conclude in Section 7.

2. RELATED WORK

2.1 Index Partitioning
The sheer size of the Web, the enormous number of search

queries, and the required low latency, enforce a distributed

inverted index architecture [2, 4, 5, 23]. To support these re-
quirements, both distribution and replication principles are
applied. Replication (also known as mirroring) means mak-
ing enough identical copies of the system so that the required
query load can be served, and is beyond the scope of this
work. Distribution means the way the inverted index is par-
titioned across a collection of nodes.

The two main strategies of partitioning an inverted index
are local index-partitioning and global index-partitioning [4].
According to the local index-partitioning strategy (or docu-
ment based partition), each node is responsible for a disjoint
subset of documents in the collection. In the global index-
partitioning strategy (or term based partition), terms are
divided into subsets, such that each node stores postings
lists only for a subset of the terms in the collection.

Due to various theoretical and practical considerations,
modern large-scale search engines follow the local inverted
index-partitioning strategy and distribute the documents
across the nodes [4, 5]. Documents can be assigned to nodes
using different policies. For example, the hash distribution
policy allocates documents to nodes in a random fashion
by hashing the documents’ URLs to yield a node identifier
[2]. Various other distribution policies such as round-robin
distribution are also possible [14].

2.2 Inverted Index Compression
Here we focus on a single node of a local index-partitioning

architecture. We consider a simplified model of an inverted
index in which the postings list of term t holds the list of
docIds containing t, sorted by increasing value. Denote the
list by dt1, d

t
2, . . . , d

t
nt
, where dti denotes the docId of the

i’th document containing t out of nt such documents. The
list is actually represented by encoding the first docId and
the sequence of gaps (dGaps) between successive identifiers
thereafter, i.e. dt1, d

t
2 − dt1, . . . , d

t
nt

− dtnt−1. The two degrees
of freedom available for compressing the size of the lists are
(a) docId assignment; and (b) dGap encoding. As we focus
on the former, we start by briefly reviewing the latter. dGap
encoding techniques aim to compress a sequence of integers.
The literature contains schemes that encode each gap indi-
vidually, e.g. Gamma, Delta, Golomb-Rice [20] and Zeta [9]
encodings, as well as schemes that encode certain blocks of
gaps, e.g. PForDelta [22, 13] and Simple9 [1]. Additionally,
the Interpolative Encoding scheme [15] is applied directly
on the docIds rather than their dGaps, and works well for
clustered term occurrences.

In general, the docId assignment problem seeks a per-
mutation of the the documents that minimizes the inverted-
index size under a specific dGap encoding scheme. As shown
in [6], this problem is NP-hard and various heuristics are
used to provide approximations.

The size of an inverted-index is a function of the dGaps.
All effective dGap encoding techniques represent smaller
numbers with fewer bits (about logarithmic in the number
value). Hence, assigning docIds in a way which results in
smaller dGaps is the key for better compression. This prin-
ciple drives most works dealing with docId assignment, and
they strive to assign close docIds to“similar” documents, i.e.
documents that share many terms.

Technically, most works define a graph G = (D,E), where
D is the set of documents, and E is a set of edges represent-
ing the similarity between two documents di, dj ∈ D. One
line of work started by [16] traverses the graph G to find

the maximal weight path connecting all the nodes, assign-
ing docIds accordingly. This is equivalent to the NP-Hard
traveling salesman problem (TSP). Several TSP approxima-
tions were applied for docId assignment in [16, 7, 12]. In
[16], a simple greedy nearest neighbors (GNN) approach is
used to add one edge at a time. To reduce the compu-
tational load, [7] uses singular value decomposition (SVD)
to reduce the dimensionality of the term-document matrix.
To scale up TSP-based schemes [12] proposes a new frame-
work based on computing TSP on a reduced sparse graph
obtained through locality sensitive hashing.

In yet another line of work, the nodes of G are clustered
according to their similarity and close docIds are assigned
to the nodes (documents) within each cluster. A top-down
approach is used in [8], where the whole collection is re-
cursively split into sub-collections, inserting “similar” nodes
into the same sub-collections. Then, the sub-collections are
merged into an ordered group of nodes. A bottom-up ap-
proach called k-scan was proposed in [18]. A hybrid method
which combines k-scan clustering and TSP for intra-cluster
docId assignment is proposed by [6].

A different approach, which is both highly scalable and
highly effective, was proposed for Web collections in [17].
It assigns docIds according to the lexicographically sorted
order of the documents’ URLs, utilizing the fact that URL
similarity is a strong indicator of document similarity. The
scheme was found to perform remarkably well on various
Web collections indexed as a whole.

In all the aforementioned works, a heuristic of docId as-
signment or an encoding of dGaps were empirically tested
against several collections and compared to the results of
other works. In contrast, [11] analyzes the compressibility
of a collection whose documents are generated by a simple
probabilistic model in which terms are chosen independently
from a given distribution.

2.3 Online Problems
Online algorithms propose solutions to problems where

the input is not known in advance and must be processed
as it arrives in a sequential “online” fashion [10]. At first
glance, the document routing problem tackled in this pa-
per resembles two classical online problems - the Metrical
Task System (MTS) and the Load Balancing (a.k.a. Job
Scheduling) problems.

MTS is a general framework for online problems that
generalizes several known online problems such as the pag-
ing problem and the k-servers problem [10]. An MTS is
composed of two components. The first is a metric space
M =< S,d >, where S is a set of points in the space and
d : S× S → R is a metric over S. The second component of
an MTS is a set of tasks R. Each task r ∈ R may be seen as
a vector < r1, r2, . . . , r|S| > of costs where each entry, ri, is
the cost of processing the request in state i ∈ S. Since the
requests must be processed in the order which they arrive,
the cost of an MTS algorithm is then the cost of moving
from one state to another plus the cost of processing each
request in the current state, given by the formula:

ALG(σ) =

n
∑

i=1

d(ALG(i− 1), ALG(i)) +

n
∑

i=1

ri(ALG(i)) ,

Here σ denotes a particular request sequence of size n and
ALG(i) denotes the state of the algorithms immediately be-
fore processing request i.

The Load Balancing problem seeks to assign arriving jobs
requests tom possible machines (one machine per job). Each
of the jobs is associated with a cost, and a load balancing
algorithm’s objective is to balance the cumulative cost of
jobs assigned to each machine. We may think of a job j as
a vector rj =< rj,1, rj,2, . . . , rj,m >, where rj,i is the cost of
job j on machine i [3].

The major difference between the document routing prob-
lem and either MTS or Load Balancing stems from the fact
that the cost associated with appending document d to index
partition j depends on the sequence of documents previously
routed to j. This doesn’t fit at all within the Load Balanc-
ing framework, and causes a factorial explosion of states in
MTS that renders its computation infeasible and its com-
petitiveness non-existent. Therefore, we cannot transfer the
analytical results of MTS or Load Balancing to our setting.
Nevertheless, load balancing approaches and intuitions may
still be applied and assessed empirically (see Section 4).

3. FORMAL PROBLEM DEFINITION
The online problem setting we tackle is the following. The

system consists of a document dispatcher and m (initially
empty) index partitions. Documents, modeled as bags of
words, arrive in some arbitrary sequence to the dispatcher
(e.g. as the result of a large scale distributed crawl pol-
icy). Each document belongs to some Web-host. The dis-
patcher must immediately route each document to one of
the m partitions, whereby that partition simply appends
the document to its existing inverted index. Each index
consists of (1) a dictionary, and (2) inverted lists per term.
The inverted lists encode document IDs only, i.e. no intra-
document offsets or any other payload.

For example, consider a document d containing terms
t1, . . . , tk that is appended as the j’th document of partition
ℓ. d will be assigned docId j on ℓ. Any of t1, . . . , tk that has
not appeared in any of the previous j− 1 documents routed
to ℓ will be added to ℓ’s dictionary, and docId j will then
be appended - by dGap encoding - to the k postings lists
corresponding to the terms.

The dispatcher attempts to minimize the overall index
size, i.e. the sum of index sizes on all partitions, while
maintaining some balance between the number of pages from
each host residing on each partition. Specifically, our algo-
rithms will typically attempt to minimize the overall index
size subject to some constraint on the skewness allowed in
the distribution of same-host pages across the m partitions.

Since documents are routed and indexed one at a time (no
buffering is allowed, either at the dispatcher or on the parti-
tions), only single dGap encoding schemes apply. Specif-
ically, our experiments use Delta encoding. Block-based
dGap encoding schemes such as PForDelta and Simple9 are
not applicable.

The following subsections formally define our metrics for
index size and host distribution across partitions.

3.1 The Bits per Posting Metric
Let a corpus with N overall postings be indexed across m

partitions, and let Ti denote the set of distinct terms on the
i’th partition. Let t be a term appearing in nt documents
in some partition, and denote those docIds by dt1 < dt2 <
. . . < dtnt

. Assume all postings lists are encoded using Delta
encoding. Then, the overall size of all postings lists on the

i’th partition, Pi, is given by

Pi =
∑

t∈Ti

(

δ(dt1) +

nt
∑

j=2

δ(dtj − dtj−1)

)

,

where δ(k) is the length (in bits) of the Delta encoding of
the integer k:

δ(k) = 1 + ⌊log2 k⌋ + 2⌊log2(1 + ⌊log2 k⌋)⌋ . (1)

The overall size of the postings across the m partitions, P ,
is defined as

P =
m
∑

i=1

Pi .

We further define the overhead OH of a partitioned index
as the space taken by the m dictionaries of the individual
partitions. Each entry of the i’th dictionary is a pointer into
the sequence of postings lists on the i’th server, and hence
requires log2 Pi bits. Overall,

OH =
m
∑

i=1

|Ti| log2 Pi .

Finally, the bits per posting metric comes in two flavors,
with and without overhead. Those are simply P+OH

N and
P
N
, respectively.

3.2 Host-Distribution Measure
We evaluate the distribution of pages belonging to Nh

hosts across m partitions using the Chi squared (χ2) distri-
bution [19]. Let Nh,i denote the number of documents from
host h on partition i, and denote by Ni the total number of
documents on partition i. Also, let ph denote the proportion
of the documents belonging to host h of the total number
of documents, N . The following host-balancing value B is
distributed χ2 with (m− 1)(Nh − 1) degrees of freedom:

B =
m
∑

i=1

Nh
∑

h=1

(Nh,i −Ni · ph)
2

Ni · ph

Essentially, this expression checks the null hypothesis that
the host distribution resulted from a random routing of doc-
uments to the partitions. Intuitively, the value correspond-
ing to a document routing scheme that approximately pre-
serves the overall host distribution on each of the servers
will be low.

When the number of degrees of freedom is large, the exact
χ2 distribution is difficult to compute. Hence we use a stan-
dard Normal approximation, where the mean is the number
of degrees of freedom and the variance is twice this number.
We will thus report the value

B − (m− 1)(Nh − 1)
√

2(m− 1)(Nh − 1)
,

which is approximately distributed N (0, 1).

4. ALGORITHMS
This section described several Algorithms for online doc-

ument routing in the framework defined in Section 3.

Random document routing.
The random algorithm, commonly used in search engines,

simply routes each incoming document to a partition chosen
uniformly and independently at random.

Greedy document routing.
The greedy algorithm routes each document d to the parti-

tion whose inverted lists will grow by the least amount when
appending d to its existing index.

Let d contain the set of terms Td and denote by φ(j, t) the
dGap created in the postings list of term t ∈ Td on partition
j, j ∈ {1, 2, . . .m} upon appending d to the current state of
partition j. Note that φ(j, t) ranges from 1 to the number
of documents already routed to partition j (in case term t
has not yet appeared there).

The change in the size of the inverted lists of partition j
upon appending document d, ∆(j, d) is thus given by:

∆(j, d) =
∑

t∈Td

δ(φ(j, t)) , (2)

where δ(·) denotes the Delta dGap encoding function (1).

Load-balancing document routing.
The load balancing algorithm is inspired by the relation-

ship of our problem to the online load balancing problem
of permanent jobs on unrelated machines. In this algo-
rithm, which is based on [3], we start with an initial es-
timate L of the maximum load (i.e., the maximum aggre-
gated index size). We then calculate the normalized load

ℓ̃j,d = ℓj,d/L and normalized cost of adding the next docu-
ment d, C(j, d) = ∆(j, d)/L, for each partition j = 1 . . .m.
Here ∆(j, d) denotes the cost of adding document d to parti-
tion j (see equation (2)), and ℓj,d denotes the size of partition
j assuming document d will be routed to it.

Next, we compute the following cost function for all par-
titions:

aℓ̃j,d+C(j,d) − aℓ̃j,d , where a = 1 +
1

1.1
,

and route the document to the partition of lowest cost. As
more documents are added to the index, it is possible that
the initial guess of the maximum load, L, will be exceeded.
In this case we simply update our maximum load estimate
to 2L. More precisely, we check if ℓj,d + ∆(j, d) > βL,
where β is a parameter (see [3]). For the unrelated ma-
chines load balancing problem, this algorithm promises an
O (logm) competitive solution. Of course, as our document
routing algorithm is different, this analytical guarantee does
not hold.

Term based document routing.
The term-based algorithm associates a disjoint set of “rep-

resenting”terms with every partition. Each new document is
routed to the partition with which it has the most overlap-
ping terms. Section 5 proves that this algorithm achieves
better compression than random routing, the current de
facto standard.

The algorithm requires a strategy for associating the terms
in such a way that the probability of a particular term to
“represent”each partition is about equal, as is the total prob-
ability mass of terms assigned to each partition. Due to
the Power-law nature of term popularities, random associa-
tion of terms to partitions creates partitions with imbalanced

probability mass of their assigned terms. We therefore used
a heuristic approach which first sorts the terms in the corpus
according to frequency2, and then associates them in a “zig
zag” pattern, i.e. the m highest frequency terms are asso-
ciated with partitions 1..m in ascending order; the next m
highest frequency terms are associated with partitions m...1
in descending order; and so on. After this initial phase, we
use iterative swapping of the highest frequency term from
the partition with the maximum cumulative frequency (over
all terms associated with it) with the lowest frequency term
from the partition with the minimum total frequency. This
process is allowed to iterate until convergence of the dif-
ference between the maximal cumulative frequency and the
minimal cumulative frequency.

Note that in practice there’s no need to associate all terms
in the corpus among the servers. Our experiments will leave
most terms unassigned, effectively ignoring them when mak-
ing routing decisions.

4.1 Adding Host-Balancing Constraints
We extend both the Greedy and Term-based routing al-

gorithms by limiting the number of documents from each
host that are assigned to any single partition3. The result-
ing routing schemes are called Constrained Greedy and Con-
strained Term-based, respectively.

For each host h of (estimated) size nh, we bound the num-
ber of its documents which may be routed to any single
partition. Then, upon arrival of a document of host h, the
constrained algorithm (either Greedy or Term-based) simply
considers only partitions on which the number of already-
routed documents belonging to host h is below the bound.

We apply two flavors of bounds, denoted b1(h) and b2(h),
to each host:

b1(h) = max
{⌈

α
nh

m

⌉

, 3
}

(3)

b2(h) = max

{⌈

nh

m
+ α

√

nh

m

⌉

, 3

}

(4)

The first bound flavor requires a slack value of α > 1, to
allow each partition to hold some multiplicative factor of its
“fair share” of documents from host h. Our experiments use
α ∈ {1.05, 1.1, 1.2}. The second bound defines the slack in
terms of the (approximate) standard deviation of the ran-
dom routing of h’s documents across the m partitions. Our
experiments use α ∈ {1, 2, 3}. With either flavor, we always
allow partitions to hold 3 documents of each host. This re-
laxes our constraints over hosts with very few pages relative
to the number of partitions.

4.2 Implementation Notes
The Random routing algorithm is obviously trivial to im-

plement, with each routing decision being made by the dis-
patcher in O(1). All other algorithms compute some value
for routing document d to each of the m partitions, where
the value depends on the set of terms Td contained in d.

The Greedy and Load Balancing algorithms each compute
a cost, which requires examining all |Td| terms in the doc-
ument to be appended, for each of the m partitions. These
computations can be done in a centralized fashion in the

2We assume that approximate term statistics are known
from previous crawls.
3We assume here that the sizes of the hosts are approxi-
mately known due to previous crawls.

dispatcher, or in a distributed fashion with an extra round
of communication between the dispatcher and each of the
partitions.

For the centralized computation, the dispatcher must keep
track of the number of documents routed to each partition,
as well as the serial number of the last document routed to
each partition for each term in the corpus. Effectively, this
means keeping a global dictionary with m entries per term.
Let T denote the number of distinct terms in the corpus.
The centralized computation requires O(mT) memory at
the dispatcher and O(m |Td|) time upon dispatching d.

In the distributed computation, the dispatcher sends d to
each partition, which computes its local cost and sends it
back to the dispatcher, who then sends an indexing request
to the “cheapest” partition. Each local cost computation
requires O(|Td|) time and requires O(T) extra memory per
partition, as the last document ID per term needs to be kept
in the local dictionary4.

Turning to the Term-based algorithm, the centralized com-
putation requires the dispatcher to keep track of the terms
associated with each partition. This requires O(T) space.
The routing decision can then be achieved in O(|Td| + m)
time while maintaining m additional counters, for overall
space complexity of O(T + m). Therefore, comparing cen-
tralized implementations, this algorithm requires about m
times less time and space than the Greedy and Load Bal-
ancing algorithms. This becomes significant as m grows.
In the distributed computation, each partition can track its
own set of associated terms at the cost of O(T) space across
all partitions, or roughly O(T /m)per partition.

In addition to the above resources, the Constrained ver-
sions of the Greedy and Term-based algorithms must also
store the Nh host size estimates (or bounds), as well as the
number of pages per host that have been routed to each
partition. This entails some extra O(mNh) memory. This
memory can be kept at the dispatcher, or (in case of a dis-
tributed implementation) each partition may maintain its
own counters for the number of pages per host it holds.

5. TERM BASED DOCUMENT ROUTING
ALGORITHM - ANALYSIS

This section shows that the Term-based routing algorithm
results in a smaller aggregated index size than that of the
industry standard random routing scheme under the simpli-
fied document generation model of [11].

According to the model of [11], the N documents of the
corpus may include up to L unique terms. Documents are
independently generated as follows: each of the L terms is
chosen independently with replacement, according to some
frequency rank distribution {pi} (e.g., power-law or double-
Pareto distributions) defined over the vocabulary T . The
resulting corpus can be described by a |T |×N boolean term-
doc matrix that has a 1 in entry (i, j) if term i is included
in document j.

Let Si denote the r.v. corresponding to the size of the
postings list that encodes the ith row of the term-doc matrix
(i.e. term ti), when applying some single dGap encoding

(e.g., Delta encoding). In addition, let Pi , Pr (ti ∈ d) =

1− (1− pi)
L denote the probability that term ti is included

in document d. Moreover, for 1 ≤ g ≤ N , let Xg,i be the

4While this ID is already encoded in the inverted index,
decoding it requires decoding a long sequence of dGaps.

r.v. denoting the number of dGaps of length g in row i.
According to [11, Thm. 2]

S(N, Pi) = E [Si] =
N
∑

g=1

δ(g)E [Xg,i] , (5)

where

E [Xg,i] = Pi (1− Pi)
g−1 + P 2

i (1− Pi)
g−1 (n− g) , (6)

and δ(g) is the number of bits needed to encode a dGap of
length g. In particular, [11, Sec. 7] shows that S(N, Pi)
achieves the entropy bound for every term ti that satisfies

5

w
(

logN

N

)

= Pi = o(1). Hence, for these terms the expected

size can be approximated by6 S(N,Pi) ≈ N H(Pi).

Let T̂ denote the subset of terms that satisfy the condi-
tions of [11, Sec. 7] and randomly divide it into m disjoint

sets of size |T̂ |/m (a set for each partition). We represent
the sets by vectors {Vℓ}

m

ℓ=1 with Vℓ(i) = 1 if ti is included
in the ℓth set and Vℓ(i) = 0 otherwise. A document d is as-
signed to the kth partition if it maximizes the dot product
between the document term vector and the corresponding
partition-defining term vector, i.e.

k = argmax
ℓ

{Vℓ · d} . (7)

We note that since the terms of T̂ are randomly and evenly
divided between the partitions, them dot products {Vℓ · d}

m

ℓ=1

are identically distributed random variables.

Proposition 1 For the above document generating model,
the Term-based document routing algorithm achieves smaller
expected aggregated index size than that of the Random doc-
ument routing scheme.

Proof. We start by examining how the probability of
a term being included in a document changes given that
the document was assigned to a certain partition according
to the Term-based routing algorithm. Focusing on the ℓth
partition,

Pi,ℓ , Pr (ti ∈ d|d ∈ ℓ)
(a)
=

Pr (d ∈ ℓ|ti ∈ d)

Pr (d ∈ ℓ)
Pr (ti ∈ d)

= βi,ℓPi,
(8)

where (a) is achieved by applying Bayes’ theorem; Pi ,

Pr(ti ∈ d), and βi,ℓ , Pr (d ∈ ℓ|ti ∈ d) /Pr (d ∈ ℓ). We
note that since the partition “representing” terms were di-
vided randomly and equally among the partitions (hence,
the decision dot products are identically distributed r.v.’s),
then the probability that a document d is routed to the ℓth
partition Pr (d ∈ ℓ) ≈ 1/m. Examining the definition of
βi,ℓ we observe that three cases should be considered: (1)
the term ti is a member of the set which “represents” the ℓth
partition, i.e., Vℓ(i) = 1 - in this case it is easily verified that
βi,ℓ > 1; (2) the term ti is a member of the set which “rep-
resents” some other partition ℓ′ 6= ℓ - in this case it is easily
verified that βi,ℓ < 1 ; and (3) the term ti is not “represent-

ing” any partition ti /∈ T̂ - in this case βi,ℓ = 1. Hence, the
probability that a term ti appears in a document which was

5Practically it means terms with not “too high”and not “too
low” probability.
6Here H(q) denotes the binary entropy function H(q) =
−q log2 q − (1− q) log2(1− q).

routed to partition ℓ increases in case ti “represents” the ℓth
partition, decreases in case ti “represents” some other par-
tition, and remains unchanged otherwise. Moreover, since
every document is always routed to one of the servers, we
have that

m
∑

ℓ=1

Pr (d ∈ ℓ)Pi,ℓ = Pi ≈
1

m

m
∑

ℓ=1

Pi,ℓ . (9)

. Intuitively, this states that the overall probability of a term
in the corpus remains unchanged regardless of the partition-
ing. We complete the proof by showing that the expected
aggregated size difference between the Random routing and
the Term-based routing setups is positive

∆
(a)
≈

m
∑

ℓ=1

∑

ti∈T

(S(N/m,Pi)− S(N/m,Pi,ℓ))

(b)
=

m
∑

ℓ=1

∑

ti∈T̂

(S(N/m,Pi)− S(N/m,Pi,ℓ))

(c)
≈
∑

ti∈T̂

m
∑

ℓ=1

N

m
(H(Pi)−H(Pi,ℓ))

= N
∑

ti∈T̂

(

H(Pi)−
1

m

m
∑

ℓ=1

H(Pi,ℓ)

)

(d)
> N

∑

ti∈T̂

(

H(Pi)−H

(

1

m

m
∑

ℓ=1

Pi,ℓ

))

= 0 ,

(10)

where (a) holds assuming each partition for both setups in-
cludes approximately N/m documents due to the strong law
of large numbers and since partitions are homogeneous; (b)

is achieved since we show that Pi,ℓ = Pi for all terms ti /∈ T̂ ;

(c) is achieved since S(N,Pi) ≈ N H(Pi) for ti ∈ T̂ ; (d)
holds since H(·) is a strictly concave function; and the last
equality is due to (9).

To corroborate the results of the last Proposition, we gen-
erated a corpus using the document generation model of
[11], selected the partition “representing” term sets, applied
term based document routing, and appended the routed doc-
uments to their partitions using Delta encoding. The re-
sulting aggregated bits per posting were compared to those
calculated for an identical system using the Random docu-
ment routing scheme. The comparison shows a consistent
although minor reduction in the aggregated index size when
Term-based routing is used. This small improvement, while
obeying Proposition 1, is far from the 20% improvement
achieved by the Term-based routing when applied to the
.gov2 corpus (see Section 6). We conjecture that the perfor-
mance gap stems from the simplified nature of the document
generation model used to produce the synthetic corpus, as
assuming independent documents of independent terms does
not capture the inherent similarity between real documents
belonging to the same host (the properties which make URL
document ordering so successful [17]). Hence, the probabil-
ity for .gov2 documents of the same host ending up in the
same partition is much higher than that of two arbitrary
documents generated by the model of [11]. Accordingly, as
indicated by our experiments, the difference (10) is expected
to be much larger for real life documents.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
We use the TREC .gov2 Web corpus, a collection of about

25.2 million pages crawled from the gov domain, for the
experiments7. After parsing, tokenizing, and removing all
empty documents, we are left with 24.9 million documents
across 17,000 hosts, 74.5 million distinct terms, and 5,705.2
million postings (distinct term appearances in documents).

Our experiments apply a random order of documents ar-
rival and measure the resulting aggregated bits per posting
metric for every algorithm (see section 3.1). As mentioned
earlier, we use the Delta dGap encoding scheme throughout
our experiments.

6.2 Index Compression Results
Figure 1 plots the Bits per Posting measure achieved by

the different online algorithms as functions of the number
of servers m. The left plot focuses on the inverted lists
alone (without the overhead incurred by the dictionaries),
and shows a downward trend in the number of bits per post-
ing needed to encode the partitioned index as the number
of servers increases. This trend was observed in all algo-
rithms and is mainly an artifact of the additional degrees of
freedom present when there are more partitions to choose
from when routing. However, random routing also enjoys
the increasing number of machines - this can be understood
intuitively by considering the extreme case where there are
as many servers as documents and each server uses only 1
bit to encode each posting.

Turning to the right side of the figure which takes into
account the dictionary-induced overhead, there is an upward
trend in the amount of bits per posting needed to encode
the partitioned index. This is caused by overlapping term
sets across the various partitions - overlapping terms require
multiple dictionary entries, up tom entries in the worst (and
realistic for many words) case.

The relative performance of the various algorithms is the
same in both plots, and so the following discussion is ap-
plicable to both. At the two extremes, Random routing up-
per bounds the compression results, whereas Greedy routing
trumps all algorithms and saves about a third of the space as
compared with Random. It manages to decrease the overall
index size (i.e. including overhead) for most of the growth
in the number of partitions. The reason for this is that the
greedy algorithm manages to assign documents with similar
term sets to the same server, keeping the overlap in term
sets across the partitions relatively small.

As we further discuss in Section 6.3, Greedy and Ran-
dom routing also perform at the two extremes in terms of
host distribution, but the Random performs best (quite in-
tuitively) while Greedy performs worst, as same-host docu-
ments tend to share many terms and will thus tend to be
routed by Greedy to the same small set of partitions, rather
than uniformly across all servers.

The Load Balancing algorithm shows result very similar
to those of the random algorithm, for a low number of parti-
tions (m < 200). Around 200 servers, its curve starts to im-
prove on that of Random’s, achieving fewer bits per posting.
For m = 1000, Load Balancing beats out the constrained

7We note that since it was crawled almost to exhaustion,
.gov2 is very “dense” and includes almost all relevant pages
[12].

versions of the Greedy and Term-based routing schemes, but
still loses to the unconstrained versions.

The Term-based algorithm whose curve is plotted in Fig-
ure 1 is based on the association of about 8 million terms to
the various partitions. The terms are those whose frequen-
cies in the corpus range from 5 to 106. It achieves about
20% improvement in index size over the Random algorithm
at m = 1000.

The constrained versions of both the Greedy and Term-
based schemes attempt to decrease index size while not de-
viating too much from a balanced allocation of each host’s
pages across the partitions. Qualitatively, they achieve about
the average compression of Random and their non-constrained
version. Note that the curves shown in Figure 1 use found
flavor b1(h) with α = 1.2, as defined in Section 4.1. Sec-
tion 6.3 will further analyze the constrained versions of the
algorithms.

Other results (not presented here) reveals that the Term-
based routing is not so sensitive with regards to the num-
ber of terms associated with the various partitions. Experi-
ments with 6 and 4 millions terms of the unconstrained and
constrained Term-based routing yields similar index sizes as
those presented here for the 8 million terms version.

6.3 Host Distribution Results
This section further studies the trade-off between the qual-

ity of compression and the balanced routing of same-host
documents across the different partitions. The conclusion
from the data points given below is one of “no free lunch”.
Most of the redundancy in the document stream that is
exploited by the better-compressing routing schemes stems
from the ability to route same-host documents to a small set
of partitions, rather than scattering them evenly across the
partitions. This is yet another indication of why reordering
Web collections by URL sorting[17] is so successful.

Table 1 shows the normalized Chi-squared host distribu-
tion values, as defined in Section 3.2, for the routing schemes
presented in Figure 1, for several values of m. The schemes
are listed in the order of their compression effectiveness,
from worst (Random, left) to best (Greedy, right). Observe
the following:

• Random routing, as expected, achieves values that are
typical of a Normal(0, 1) random variable.

• The tradeoff between compression (Figure 1) and host-
balancing (Table 1) is near-perfect. The relative order
of the schemes in terms of the two measures is almost
entirely reversed. The sole exception is that the Con-
strained Greedy scheme outperforms the Constrained
Term-based scheme in both measures8.

• Whenever the Load Balancing scheme achieves random-
level host-balancing (m = 10, 40, 100), it is basically
similar to Random routing in terms of compression.
Other than those three points, all other schemes dis-
tribute same-host pages with an imbalance that is sta-
tistically impossible to achieve with random routing.

• The constrained versions of the Greedy and Term-
based schemes achieve a host-balancing value that is

8The difference between Random and Load Balancing for
m = 10, 40 is just a random fluctuation and does not con-
tradict the above statement.

10
0

10
1

10
2

10
3

4

5

6

7

8

9

10

11

12

13
(a) Agregatted index size without overhead

Number of partitions

B
its

 p
er

 p
os

tin
g

Random
Load−balancing
Constrained term based (8M terms)
Constrained greedy
Term based (8M terms)
Greedy

10
0

10
1

10
2

10
3

4

5

6

7

8

9

10

11

12

13
(b) Agregatted index size with overhead

Number of partitions

B
its

 p
er

 p
os

tin
g

Random

Load−balancing

Constrained term based (8M terms)

Constrained greedy

Term based (8M terms)

Greedy

Figure 1: Bits per posting as function of the number of partitions for different document routing strategies
and Delta encoding applied to .gov2 corpus, (a) without and (b) with overhead.

Scheme Random Load Constrained Constrained Term-based Greedy
m Balancing Term-based (8M) Greedy (8M)
10 0.06 -0.47 3314 2050 77229 177828
40 0.96 -1.49 1607 1390 97814 389281
100 -1.31 2.59 734 825 123029 382995
400 0.79 303 897 427 111377 428874
700 -1.88 1820 1704 457 113754 433871

Table 1: Normalized host-distribution values per scheme, as functions of the number of partitions m

orders of magnitude lower (i.e. more balanced) than
the corresponding non-constrained schemes, while sac-
rificing about half of the compression improvement
over Random routing. While they still distribute same-
host pages in a manner that is statistically very far
from random, they are also very far from the skewed
distribution of the non-constrained versions.

Next, Table 2 checks the sensitivity of both measures, Bits
per Posting and host-balancing, to the bound flavor and
value of α as defined in Section 4.1, with the Constrained
Term-based scheme overm = 400 partitions. The sensitivity
is quite minor9. Still, it preserves the trend of the normal-
ized host-distribution value being larger when the Bits per
Posting value is lower.

7. CONCLUSIONS
This work introduced the problem of reducing a parti-

tioned index size in a low-latency indexing setting via doc-
ument routing. In such settings, incoming documents must
be made searchable quickly, and time-consuming document

9This was true also for the Constrained Greedy scheme,
whose results are not shown

Constraint type Bits per Normalized
Posting host-distribution

max
{⌈

nh

m
+ 3
√

nh

m

⌉

, 3
}

9.47 1284
max

{⌈

nh

m
+ 2
√

nh

m

⌉

, 3
}

9.48 917
max

{⌈

1.2nh

m

⌉

, 3
}

9.48 897
max

{⌈

nh

m
+
√

nh

m

⌉

, 3
}

9.49 562
max

{⌈

1.1nh

m

⌉

, 3
}

9.495 428
max

{⌈

1.05nh

m

⌉

, 3
}

9.5 325

Table 2: Normalized host-distribution and bits per
postings (without overhead) values, with the Con-
strained Term-based scheme (8 million terms) over
m = 400 partitions, as functions of the constraint
parameter α.

reordering algorithms cannot be applied. The industry stan-
dard routes documents randomly to the partitions, evenly
distributing same-host pages across the partitions, which is
advantageous for query-time performance. However, this
results in indexes which do not compress well. We frame
document routing as an online problem, and present docu-
ment routing schemes that result in indexes that are up to

30% more compact. These algorithms can be run in both
centralized and distributed fashions.

We prove that one such scheme – Term-based routing –
yields better compression than Random routing over a cor-
pus model appearing in the literature. Its advantages are ac-
centuated on real-life corpora, where same-host documents
exhibit high similarity between them. Term-based routing
is also lightweight in terms of time and space complexity as
compared with the other non-random routing schemes.

For each routing scheme, we explored how same-host pages
are spread across the partitions, and found a clear trade-
off between compression and a balanced host distribution.
This holds also when the routing algorithms are constrained
to not exceed certain imbalance criteria. Essentially, this
shows that much of the redundancy that routing algorithms
exploit in Web collections stems from routing each host’s
pages unevenly, to a small set of partitions.

We believe that low-latency partitioned index systems of-
fer additional trade-offs between issues that are well under-
stood in batch indexing settings, and plan to pursue such
trade-offs in future work. In addition, we plan to investi-
gate weighted versions of the Term-based routing scheme.
These weights, which will be functions of the terms’ fre-
quencies, will refine the current intersection-based score of
a document with respect to each partition.

8. REFERENCES
[1] V. Anh and A. Moffat. Inverted index compression

using word-aligned binary codes. In in Proc.
Information Retrieval, pages 8(1):151–166, Jan 2005.

[2] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and
S. Raghavan. Searching the web. ACM Trans. Interet
Technol., 1(1):2–43, 2001.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and
O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine
scheduling. J. ACM, 44(3):486–504, 1997.

[4] C. Badue, R. Baeza-yates, B. Ribeiro-neto, and
N. Ziviani. Distributed query processing using
partitioned inverted files. In In Proc. of the 9th String
Processing and Information Retrieval Symposium
(SPIRE’01), pages 10–20. IEEE CS Press, 2001.

[5] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, April 2003.

[6] R. Blanco. Index Compression for Information
Retrieval Systems. PhD thesis, University of A
Coruña, 2008.

[7] R. Blanco and R. Barreiro. Tsp and cluster-based
solutions to the reassignment of document identifiers.
Journal of Information Retrieval (IR), 9(4), Sep. 2006.
499-517.

[8] D. Blandford and G. Blelloch. Index compression
through document reordering. Data Compression
Conference, 0:0342, 2002.

[9] P. Boldi and S. Vigna. Codes for the world wide web.
Internet Mathematics, 2(4):405–427, 2005.

[10] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press, New
York, NY, USA, 1998.

[11] F. Chierichetti, R. Kumar, and P. Raghavan.
Compressed web indexes. In in Proc. WWW 2009,

pages 451–460, North-Carolina, USA, Apr. 20-24 2009.

[12] S. Ding, J. Attenberg, and T. Suel. Scalable
techniques for document identifier assignment. In in
Proc. WWW 2010, pages 311–320, North-Carolina,
USA, Apr. 26-30 2010.

[13] S. Háman. Super-scalar database compression between
ram and cpu-cache. Master’s thesis, Centrum voor
Wiskunde en Informatica (CWI), 2005.

[14] J. Hirai, S. Raghavan, H. Garcia-Molina, and
A. Paepcke. Webbase: A repository of web pages. In
in Proc. of the Ninth International World-Wide Web
Conference (WWW’00), pages 277–293, May 2000.

[15] A. Mofat and L. Stuiver. Binary interpolative coding
for effective index compression. Inf. Retr., 3(1):25–47,
2000.

[16] W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted
file compression through document identifier
reassignment. Inf. Processing and Management,
39(1):117̈ı£¡131, 2003.

[17] F. Silvestri. Sorting out the document identifier
assignment problem. In In Proc. of 29th European
Conference on IR Research (ECIR’07), pages 101–112,
2007.

[18] F. Silvestri, R. Perego, and S. Orlando. Assigning
document identifiers to enhance compressibility of web
search engines indexes. In in Proc. of the 2004 ACM
Symposium on Applied Computing (SAC’04), pages
600–605. ACM Press, 2004.

[19] G. Snedecor and W. Cochran. Statistical Methods.
Iowa State University Press, eighth edition edition,
1989.

[20] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann, 1999.

[21] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. In in Proc. WWW 2009, Madrid,
Spain, Apr.20-24 2009.

[22] J. Zhang, X. Long, and T. Suel. Performance of
compressed inverted list caching in search engines. In
in Proc. WWW 2008, pages 387–396, Beijing, China,
2008.

[23] M. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2), Jul.

