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Abstract. Correlation Clustering was defined by Bansal, Blum, and
Chawla as the problem of clustering a set of elements based on a, possi-
bly inconsistent, binary similarity function between element pairs. Their
setting is agnostic in the sense that a ground truth clustering is not
assumed to exist, and the cost of a solution is computed against the in-
put similarity function. This problem has been studied in theory and in
practice and has been subsequently proven to be APX-Hard.
In this work we assume that there does exist an unknown correct clus-
tering of the data. In this setting, we argue that it is more reasonable to
measure the output clustering’s accuracy against the unknown underly-
ing true clustering.
We present two main results. The first is a novel method for continuously
morphing a general (non-metric) function into a pseudometric. This tech-
nique may be useful for other metric embedding and clustering problems.
The second is a simple algorithm for randomly rounding a pseudometric
into a clustering. Combining the two, we obtain a certificate for the pos-
sibility of getting a solution of factor strictly less than 2 for our problem.
This approximation coefficient could not have been achieved by consid-
ering the agnostic version of the problem unless P = NP .

1 Introduction

Correlation Clustering was defined by Bansal, Blum and Chawla [9] as the prob-
lem of producing a clustering x of data points based on a binary function, h,
which tells us, for each pair, whether they are similar or not. The objective is
to find the clustering x that minimizes f(x, h), the number of disagreements
between h and x. The problem is agnostic in the sense that the clustering of the
data is not taken into account or even assumed to exist. This gives rise to an
APX-hard optimization problem which is studied in their paper and in conse-
quent work [9, 3, 10, 12, 11, 15, 2, 14, 13, 17]. In this paper we assume a setting in
which there is an (unknown) correct way to cluster the data, τ . Such a scenario
arises, for example, in duplicate detection and elimination in large data (also
known as the record linkage). In this setting we argue that one should try to
minimize f(x, τ), the number of disagreements between the output clustering
and the ground truth clustering.



A related problem that has been studied in the literature [16] is planted clus-
tering. In this model, the observation h is given by random noise applied to the
ground truth clustering τ . Solving the traditional Correlation Clustering prob-
lem on h, thus obtained, gives precisely a maximum likelihood configuration for
τ . It is not clear, however, why this random noise model should be at all realis-
tic. If for instance h is obtained as an output of a machine learned hypothesis,
then it is very reasonable to assume that the error will be highly structured
and correlated. Also, it is often the case that h is obtained as a robust ver-
sion (using e.g. spectral techniques [16] or dot product techniques [7]3) of some
raw input. In these cases, it is clear that any independence assumption that
we may have had on the raw input would be lost in the process of obtaining
h. Our approach is adversarial, and the practitioner may use it given h that is
obtained using any preprocessing, even if heavy dependencies are introduced.
The advantage of our work is that the practitioner need not worry about tran-
sitivity issues when preprocessing the data, and that unlike other techniques for
obtaining a final (transitive) clustering (e.g. k-means over h obtained as a low
dimensional Euclidean approximation of raw data using spectral techniques), we
provide provable approximation guarantees.

In our case, the ground truth clustering τ is not only unknown but can also be
arbitrarily different from the similarity function h. Since the algorithm can only
access h, we can expect the output x to respect the ground truth only insofar as
the input h does. We thus try to minimize C such that f(x, τ) ≤ Cf(h, τ) where
f measures the distance between the different objects. In other words, the more
h disagrees with the ground truth τ (larger f(h, τ)) the weaker the requirements
from the output x.

Traditional optimization gives the following indirect solution to our problem:
Find x which approximately minimizes f(x, h) so f(x, h) ≤ C∗f(h, τ) for some
C∗ ≥ 1 and for all possible clusterings τ . By the triangle inequality f(τ, x) ≤
f(τ, h)+ f(h, x) ≤ (C∗+1)f(τ, h). Hence an approximation factor of C∗ for the
traditional corresponding combinatorial optimization problem gives an upper
bound of C = C∗ + 1 for our problem. Since C∗ > 1 (Correlation Clustering is
APX-hard) this approach would yield C > 2. A similar argument can be made
for randomized combinatorial optimization and an expected approximation ratio.
This immediately raises the interesting question of whether we can go below 2
and shortcut the traditional optimization detour (often an obstruction under
complexity theoretical assumptions).

Our main result, Section 3, is a morphing process which proves the existence
of a good relaxed solution to our problem, which we name CorrelationCluster-
ingX. More precisely, one can continuously change the values of the input h into
a “soft” clustering xdif which is [0, 1] valued and a metric (satisfies all trian-
gle inequalities). More importantly, we show that f(xdif , τ) ≤ 4/3f(h, τ). The
relaxation xdif is obtained as the limit at infinity of a solution to a piecewise
linear differential equation. This algorithm, which we also refer to as a morphing
process, is interesting in its own right and may be useful for other problems on

3 In [7], a Gaussian random noise model is assumed.



metric spaces. The intuitive idea behind the differential equation is a physical
system in which edges “exert forces” on each other proportional to the size of
triangle inequality violations. The main technical lemma shows that all triangle
inequality violations decay exponentially in time. This fast decay allows us to
bound the loss with respect to the ground truth from above.

In Section 4 we show how to randomly convert the relaxed solution xdif into
an integer solution x to CorrelationClusteringX such that f(x, τ) ≤ 3/2f(xdif , τ).
Applying the rounding algorithm to xdif gives a C ≤ 2 approximation algorithm.
As a side effect, our algorithm allows computing an invariant C ′ = C ′(h) ≤ 4/3
which serves as a witness for getting a solution to CorrelationClusteringX with
C = 3C ′/2. In particular, if C ′ < 4/3 then we get C < 2.

Our work is related to recent work by Ailon and Mehryar [6] on Machine
Learning reductions for ranking. Balcan et al. [8] also consider clustering prob-
lems in which a ground truth is assumed to exist. However, there are two main
differences. First, they consider objective functions in which the cost is computed
pointwise (here we consider pairwise costs). A second and more fundamental
difference is that they make strong assumptions about the (input observation,
ground truth) pair. Their assumptions, in some sense, exactly state that an ap-
proximation to the traditional optimization problem is “good” for the problem
in which errors are computed against the truth. In our case, we make no as-
sumptions about the input or the ground truth. Further investigation of the
connection between the two results is an interesting research direction.

We dedicate Section 2 to formally defining our notation and stating our
results. Some proofs were omitted due to space limitations and can be found
in [4]. The interested reader is also referred to the last reference for further
discussion.

2 Definitions and Statement of Results

We are given a set V of n elements to cluster together with a symmetric dis-
tance function h serving as clustering information. We use the convention that
h(u, v) = h(v, u) = 1 if u, v are believed to belong to separate clusters, and 0
otherwise.4

Let K denote the set of [0, 1]-valued symmetric functions on V × V (with
a null diagonal). Let I ⊆ K denote the subset of {0, 1} valued functions in K.
Let ∆ ⊆ K denote the set of functions k ∈ K satisfying the triangle inequality
k(u, v) ≤ k(v, w) + k(w, u) for all u, v, w ∈ V . Let C denote I ∩∆. Clearly c ∈ C
is an encoding of a clustering of V , with c(u, v) = 1 if u, v are separated and
c(u, v) = 0 if they are co-clustered.

Our input h lives in I but not in ∆, hence the function h encodes possibly
inconsistent {0, 1} clustering information. Indeed, it may tell us that h(u, v) =
h(v, w) = 0 but h(u,w) = 1, hence violating transitivity. For a number a ∈ [0, 1]
4 In other literature, h is a similarity measures, with higher values corresponding to

higher belief in co-clustering. We find our convention easier to work with because a
clustering is equivalently a pseudometric over the values {0,1}.



let a denote 1−a. Define the Correlation Clustering cost function [9] f : K×K →
R+ as f(k1, k2) =

∑
u<v(k1(u, v)k2(u, v) + k1(u, v)k2(u, v)) . For integer valued

k1, k2 this is the Hamming distance.
The problem of CorrelationClusteringX is given in the following:

Definition 1. Given h ∈ I and C ≥ 1 output x ∈ C such that for all τ ∈
C, f(τ, x) ≤ Cf(τ, h) (assuming such an x exists). In the randomized set-
ting, the goal is to output a sample x from a distribution D on C, such that
Ex∼D[f(τ, x)] ≤ Cf(τ, h) (assuming such D exists). An algorithm outputting x
in the deterministic case or drawing it from D in the randomized case is called
a C-approximation algorithm to CorrelationClusteringX.

Deterministic CorrelationClusteringX has a corresponding integer program over
the

(
n
2

)
variables of x ∈ C with an exponential number of constraints:

IP: minimize C s.t. f(x, τ) ≤ Cf(h, τ) for all τ ∈ C
x ∈ C, C ≥ 0

Note that in traditional correlation clustering, we would have used the constraint
f(x, h) ≤ Cf(h, τ) for all τ ∈ C instead. IP can be relaxed by allowing x ∈ ∆
and adding a constraint for each τ ∈ ∆.

LP: minimize C s.t. f(τ, x) ≤ Cf(τ, h) for all τ ∈ ∆

x ∈ ∆,C ≥ 1

Clearly, an equivalent program can be obtained by using only constraints
that correspond to vertices of ∆, of which there are exponentially many. Let
(xLP , CLP ) denote the minimizer of LP.

Observation 1 LP has a separation oracle and can therefore be solved optimally
in polynomial time.

To see Observation 1, note that given a candidate solution (x,C) it is possible
to find τ ∈ ∆ satisfying f(τ, x) > Cf(τ, h) (if one exists) using another sim-
ple standard linear program with τ ∈ ∆ as variable. Note that unlike in the
usual case of combinatorial optimization LP relaxations, it is not immediate to
compare between the values of IP and LP, because the relaxation is obtained
by both adding constraints and removing others. The reason we enlarged the
collection of constraints {f(τ, x) ≤ Cf(τ, h)}τ in LP is to give rise to an efficient
separation oracle.

Our first result states that the optimal solution to LP is a (deterministic)
fractional solution xLP for CorrelationClusteringX with approximation factor
CLP of at most 4/3 (in the sense that f(xLP , τ) ≤ CLP f(h, τ) for all τ ∈ ∆).
The proof of the theorem is constructive. It is shown that the limit at infinity of
a solution to a certain differential equation is a feasible solution to LP.

Theorem 1. For any h ∈ I, the value of LP is at most 4/3.



In the proof of Theorem 1 we will point to one particular solution (xdif , Cdif )
which is a limit at infinity of a solution to a piecewise linear differential equation.
Finding this limit may be done exactly, but we omit the details because together
with Observation 1, general purpose convex optimization may be used instead.

Our next theorems refer to the QuickCluster algorithm which is defined in
Section 4. QuickCluster takes as input h ∈ K and outputs x ∈ C. Let QC(h)
denote the distribution over outputs x ∈ C of QuickCluster for input h.

Theorem 2. For any ĥ ∈ ∆ and τ ∈ C we have Ex∼QC(ĥ)[f(x, τ)] ≤ 3
2f(ĥ, τ).

Combining Theorems 1 and Theorem 2 we get a randomized solution with
C = 3

2CLP ≤ 2 for CorrelationClusteringX. If CLP < 4/3, we get a witness for
achieving C strictly less than 2.

Theorem 3. For any h ∈ I and τ ∈ C we have Ex∼QC(h)[f(τ, x)] ≤ 2f(τ, h).

The following theorems are proved in [4].
The running time of QuickCluster is analyzed for two representation de-

pendent regimes. In the pairwise-queries model, only pairwise queries to h are
allowed, i.e, evaluating h(u, v) for a pair {u, v}. In the neighborhood-queries
regime, the algorithm is allowed neighborhood queries, returning for a query u
its neighborhood N(u) = {u} ∪ {v ∈ V | h(u, v) = 0} as a linked list. We obtain
the following bounds.

Theorem 4. In the pairwise-queries model, any constant factor randomized ap-
proximation algorithm for CorrelationClusteringX performs Ω(n2) queries to h
in expectation for some input h.

Trivially, QuickCluster performers O(n2) queries to h for any input h and thus
performs optimally for the inputs h in Theorem 4.

Theorem 5. In the neighborhood-queries model, the expected running time of
QuickCluster is O(n + minτ∈C f(τ, h)).

The following is a lower bound on what a deterministic algorithm can do. For
this hard case there is a strict gap between the randomized and deterministic
cases.

Theorem 6. There exists an input h for which any deterministic algorithm for
CorrelationClusteringX incurs an approximation factor of at least 2 for some
ground truth τ ∈ C. For the same input, a randomized algorithm can obtain a
factor of at most 4/3.

3 Morphing h Into a metric: A Differential Program

In this section we prove Theorem 1. The idea is to “morph” h ∈ K, which is
not necessarily a metric, into a pseudometric. The solution xdif ∈ ∆ is obtained
by theoretically running a differential equation to infinity. More precisely, we



define a differential morphing process such that ht(u, v) is the changed value of
h(u, v) at time t and h0(u, v) = h(u, v) for all u and v. The solution is given by
xdif = limt→∞ ht.

We look at a triangle created by the triplet {u, v, w}. For ease of notation
we set a = h(u, v), b = h(v, w), and c = h(w, u). First, we define the gap guvw

of the triangle {u, v, w} away from satisfying the triangle inequality as:

guvw = max{0, a− (b + c), b− (c + a), c− (a + b)} (1)

We define the force that triangle {u, v, w} exerts on a as follows:

F (a; b, c) =

{
−guvw if a > b + c

guvw otherwise.
(2)

The morphing process is such that the contribution of the triangle {u, v, w} to
the change in a, d a

dt , is the force F (a; b, c). Intuitively, the force serves to reduce
the gap. If a, b, and c satisfy the triangle inequality then no force is applied. If
a > b + c then d a

dt is negative and a is reduced. If b > c + a or c > a + b then d a
dt

is positive a is increased. Averaging over all triangles containing u and v gives
our differential equation in Figure 1. With the starting boundary condition

dht(u,v)
dt

=
∑

w∈V \{u,v} F (ht(u, v); ht(v, w), ht(w, u)).

Fig. 1. The morphed input ht is given by the solution to the above differential equation
at time t. The initial starting point is the input h0 = h. The solution xdif is given by
xdif = limt→∞ ht

h0(u, v) = h(u, v) ∀u, v ∈ V . Similar to our previous notation, let a(t), b(t) and
c(t) denote ht(u, v), ht(v, w) and ht(w, u) throughout.

The following is the main technical lemma of the proof. It asserts that the
external forces applied to a triangle {u, v, w} by other triangles only contribute
to reducing the gap guvw. It implies both the exponential decay of all positive
gaps and the stability of null gap.

Lemma 1. Let guvw(t) denote the gap of ht on the triplet {u, v, w} at time t,
as defined in (1). Then dguvw(t)

dt ≤ −3guvw(t) for all t.

Note: Clearly the lemma implies that guvw(t) ≤ guvw(t0)e−3(t−t0) for any t0 ≤ t.
The lemma is easy to prove if |V | = 3. For larger V , the difficulty is in showing
that the interference between triangles is constructive.

Proof. It is enough to prove the lemma for the case {a(t) ≥ b(t)+ c(t)}∪{b(t) ≥
c(t) + a(t)} ∪ {c(t) ≥ a(t) + b(t)}. Indeed, in the open set {a(t) < b(t) + c(t)} ∩
{b(t) < c(t) + a(t)} ∩ {c(t) < a(t) + b(t)} the value of g is 0 identically. Assume
w.l.o.g. therefore that a(t) ≥ b(t) + c(t) (hence guvw(t) = a(t)− b(t)− c(t)).



d guvw(t)
dt

=
d (a(t)− b(t)− c(t))

dt
= F (a(t); b(t), c(t))− F (b(t); c(t), a(t))− F (c(t); a(t), b(t))

+
∑

s∈V \{u,v,w}
F (a(t); xs(t), ys(t))− F (b(t); zs(t), ys(t))− F (c(t); xs(t), zs(t))

where xs(t) = ht(u, s), ys(t) = ht(v, s), and zs(t) = ht(w, s). The first
term gives exactly F (a(t); b(t), c(t)) − F (b(t); c(t), a(t)) − F (c(t); a(t), b(t)) =
−3guvw. It suffices to prove that for any s ∈ V \ {u, v, w}, F (a(t); xs(t), ys(t))−
F (b(t); zs(t), ys(t))−F (c(t); xs(t), zs(t)) ≤ 0. This is proved by enumerating over
all possible configurations of the three triangles {u, v, s}, {v, w, s} and {w, u, s}
and is deferred to [4] appendix-A.

The following lemma tells us that if a(0), b(0), and c(0) violate the triangle
inequality then at each moment t > 0 they either violate the same inequality or
the violation is resolved.

Lemma 2. Let a(t), b(t), and c(t) denote ht(u, v), ht(v, w), and ht(w, u) re-
spectively. If a(0) ≥ b(0)+c(0) then for all t ≥ 0 either a(t) ≥ b(t)+c(t) or a(t),
b(t), and c(t) satisfy the triangle inequality.

Proof. First note that if for some time t0 the triplet {a(t0), b(t0), c(t0)} satisfies
the triangle inequality, then this will continue to hold for all t ≥ t0 in virtue of the
note following Lemma 1. Also note that a(t) > b(t) + c(t) and (b(t) > c(t) + a(t)
or c(t) > a(t)+ b(t)) cannot hold simultaneously. Let t′ be the infimum of t such
that a(t) ≤ b(t) + c(t), or ∞ if no such t exists. If t′ = ∞ then the lemma is
proved. Otherwise by continuity and the first note above, a(t′) = b(t′) + c(t′),
b(t′) ≤ a(t′) + c(t′) and c(t′) ≤ a(t′) + b(t′), hence a(t′), b(t′), and c(t′) satisfy
the triangle inequality and thus continue to do so for all t > t′, completing the
proof of the lemma.

Now fix a ground truth clustering τ ∈ ∆. Consider the cost f(τ, ht) as a func-
tion of t. Letting Lt(u, v) = ht(u, v)τ(u, v) + ht(u, v)τ(u, v), we get f(τ, ht) =∑

u<v Lt(u, v) = 1
n−2

∑
u<v<w Cuvw(t), where Cuvw(t) := Lt(u, v) + Lt(v, w) +

Lt(w, u). The derivative of the cost is d f(τ,ht)
dt = 1

n−2

∑
uvw Guvw(t)5, where

Guvw(t) := (1− 2τ(u, v))F (ht(u, v); ht(v, w), ht(w, u))
+(1− 2τ(v, w))F (ht(v, w); ht(w, u), ht(u, v))
+(1− 2τ(w, u))F (ht(w, u); ht(u, v), ht(v, w)).

The cost at time t is f(τ, ht) = 1
n−2

∑
uvw Cuvw(0) + 1

n−2

∑
uvw

∫ t

0
Guvw(s)ds.

We concentrate on the contribution of one triangle to this sum: Huvw(t) =
Cuvw(0) +

∫ t

0
Guvw(s)ds.

5 Note that Guvw is not the derivative of Cuvw, but the sum
∑

uvw Guvw is the deriva-
tive of

∑
uvw Cuvw.



Let us consider the possible values of the term Guvw(t). If the values ht(u, v),
ht(v, w), and ht(w, u) satisfy the triangle inequality then Guvw(t) = 0 since the
forces F are all zero. Assume then w.l.o.g. that ht(u, v) ≥ ht(v, w)+ht(w, u) and
so by the definition of F , Guvw(t) = [2(τ(u, v)− τ(v, w)− τ(w, u)) + 1]guvw(t).
Notice that Guvw(t) ≤ guvw(t) since τ ∈ ∆. Therefore Guvw(t) ≤ guvw(t) and
by Lemma 1 Guvw(t) ≤ guvw(0)e−3t.

Lemma 3. Set τ ∈ ∆. Given the above process, let xdif = limt→∞ ht. Then
f(xdif , τ) ≤ 4

3f(h, τ). Additionally, xdif ∈ ∆.

Proof. In what follows we use the facts that f(xdif , τ) = limt→∞ 1
n−2

∑
uvw Huvw(t)

and that
∫∞
0

Guvw(t)dt ≤ ∫∞
0

guvw(0)e−3tdt ≤ 1
3guvw(0).

f(xdif , τ) =
1

n− 2
lim

t→∞

∑
u<v<w

Huvw(t) =
1

n− 2

∑
u<v<w

Cuvw(0) +
∫ ∞

0

Guvw(t)

≤ 1
n− 2

∑
u<v<w

Cuvw(0) +
1
3
guvw(0) ≤ 1

n− 2

∑
u<v<w

4
3
Cuvw(0) ≤ 4

3
f(h, τ)

The last equation relies on the fact that Cuvw(0) ≥ guvw(0). Indeed, that
would imply Cuvw(0) + 1

3guvw(0) ≤ 4
3Cuvw(0). To see that, it suffices to check

that Cuvw(0) ≥ 0 and Cuvw(0) ≥ h(u, v) − h(v, w) − h(w, u) for any h(u, v),
h(v, w) and h(w, u) in [0, 1]. Notice that Cuvw(0)− [h(u, v)− h(v, w)− h(w, u)]
is a linear function in h defined on the convex set [0, 1]3 and thus attains its
maximal values at its extreme points, i.e. integer values of h. Enumerating these
cases and validating the statement is straightforward.

Lemma 3 immediately implies that (xdif = limt→∞ ht, Cdif = 4/3) is a
feasible solution to LP.

4 QuickCluster

We prove Theorem 2 and Theorem 3. The QuickCluster algorithm described here
is very similar to the one used in [3] but the new analysis provides a shortcut that
allows us to directly argue about the cost of the algorithm against an unknown
truth τ ∈ C which we hold fixed. To describe our algorithm we need to define
a piecewise linear tweaking function ψ : [0, 1] → [0, 1] as follows: ψ(a) = 0 for
a ≤ 1/6, ψ(a) = 1 for a ≥ 5/6, and in the middle section a ∈ [1/6, 5/6] ψ is
obtained by linear interpolation as ψ(a) = (6a−1)/4. Moreover, for convenience
we overload the definition of ψ such that ψ(u, v) ≡ ψ(h(u, v)). The algorithm
begins by setting all nodes u ∈ V as free. In each iteration one node is chosen
uniformly at random from all free nodes, say u, to serve as a cluster center.
Then, each node v 6= u is added to the cluster centered at u with probability
ψ(u, v) (and set as not-free). The algorithm terminates when there are no free
nodes left. Note that QuickCluster is defined for all h ∈ K and that for h ∈ I
QuickCluster is identical to the algorithm in [3]. Also, Ailon [1] used a similar
tweaking idea to improve rounding of a ranking LP in a traditional combinatorial
optimization setting.



4.1 The Expected Cost of QuickCluster

Let QC(h) be the distribution over outputs produced by QuickCluster for input
h. By definition of f and the fact that τ is fixed we have that Ex∼QC(h)[f(x, τ)] =∑

u<v Ex∼QC(h)[x(u, v)]τ(u, v) + Ex∼QC(h)[x(u, v)]τ(u, v). Since each x(u, v) is
a binary random variable its expectation is equal to the probability of it being
equal 1 which is equal to the probability of QuickCluster separating (cross-
clustering) u and v. This happens if either u or v are chosen as centers and
then not co-clustered (w.p. ψ(u, v)). This also happens if a third node w is
chosen as a center and and it co-clusters either u or v but not both. Similarly
Ex∼QC(h)[x(u, v)] is equal to the co-clustering probability of u and v which occurs
if either u or v are chosen as centers and joined or if a third node, w, co-clusters
both of them. Define puv as the probability that during the execution of the
algorithm v and u are both free and one of them is chosen as a center. Define
puvw as the probability that during the execution of QuickCluster, u, v and w
are all free and one of them is chosen as center. Also note that the relation of u
and v in the output of QuickCluster is determined exactly once. In what follows,(
V
b

)
denotes the collection of unordered b-tuples of the set V . When it is clear

from the context, the notation (u, v) means an unordered tuple {u, v} ∈ (
V
2

)
and

similarly (u, v, w) means an unordered tuple {u, v, w} ∈ (
V
3

)
.

Lemma 4. Fix τ ∈ C. Let Lψ :
(
V
2

) → R+, β :
(
V
3

) → R+ and B :
(
V
2

)×V → R+

be defined as

Lψ(u, v) := ψ(u, v)τ(u, v) + ψ(u, v)τ(u, v)

β(u, v;w) := ψ(w, u) ψ(w, v)τ(u, v) + ψ(w, u)ψ(w, v) τ(u, v) + ψ(w, u)ψ(w, v) τ(u, v)

B(u, v, w) :=
1
3
[β(u, v; w) + β(v, w; u) + β(w, u; v)] .

Then Ex∼QC(h)[f(τ, x)] =
∑

u<v puvLψ(u, v)+
∑

u<v<w puvwB(u, v, w), where
x ∈ C is a random clustering obtained as the output of QuickCluster.

Proof. Following the above discussion:

Ex∼QC(h)[x(u, v)] = puvψ(u, v) +
∑

w 6=u,v

1
3
puvw[ψ(w, u)ψ(w, v) + ψ(w, u)ψ(w, v)]

Ex∼QC(h)[x(u, v)] = puvψ(u, v) +
∑

w 6=u,v

1
3
puvw[ψ(w, u) ψ(w, v)] .



And so by linearity of expectation Ex∼QC(h)[τ(u, v)x(u, v) + τ(u, v)x(u, v)] =
puvLψ(u, v) +

∑
w 6=u,v

1
3puvwβ(u, v; w).

E[f(τ, x)] =
∑
u<v

puvLψ(u, v) +
∑
u<v

∑

w 6=u,v

1
3
puvwβ(u, v;w)

=
∑
u<v

puvLψ(u, v) +
∑

u<v<w

puvw
1
3
[β(u,w; v) + β(u, v; w) + β(v, w;u)]

=
∑
u<v

puvLψ(u, v) +
∑

u<v<w

puvwB(u, v; w) ,

as required.

4.2 QuickCluster Decomposition

In order to compute f(h, τ) we introduce a general decomposition for the sum∑
u<v Z(u, v) for any function Z :

(
V
2

) → R. Then, we apply our decomposition
to Z(u, v) = Lh(u, v) = h(u, v)τ(u, v) + h(u, v)τ(u, v).

Lemma 5. Let Z be any function Z :
(
V
2

) → R. Let C(u, v;w) := ψ(w, u) ψ(w, v)+
ψ(w, u)ψ(w, v)+ψ(w, u)ψ(w, v). Define the operator AZ : (

(
V
2

) → R) → (
(
V
3

) →
R) on Z as:

AZ(u, v, w) :=
1
3

[
C(u, v; w)Z(u, v) + C(v, w; u)Z(v, w) + C(w, u; v)Z(w, u)

]
.

(3)
Then one has:∑

u<v

Z(u, v) =
∑
u<v

puvZ(u, v) +
∑

u<v<w

puvwAZ(u, v, w) .

Proof. The term C(u, v; w) gives the probability that the node w determines the
relation between u and v given that u, v and w are free and w is chosen as center.
Since the relation between u and v is determined only once either indirectly (via
w) or directly (either u or v are centers) we have:

puv +
∑

w 6=u,v

1
3
puvwC(u, v; w) = 1. (4)

By (4), Z(u, v) = 1 · Z(u, v) =
[
puv +

∑
w 6=u,v

1
3puvwC(u, v; w)

]
Z(u, v). Hence,

∑
u<v

Z(u, v) =
∑
u<v

puvZ(u, v) +
∑
u<v

∑

w 6=u,v

1
3
puvwC(u, v;w)Z(u, v)

=
∑
u<v

puvZ(u, v) +
∑

u<v<w

1
3
puvwC(u, v; w)Z(u, v)

+
∑

u<w<v

1
3
puvwC(u, v; w)Z(u, v) +

∑
w<u<v

1
3
puvwC(u, v;w)Z(u, v)

=
∑
u<v

puvZ(u, v) +
∑

u<w<v

puvwAZ(u, v, w) .



Applying Lemma 5 to the cost function f(h, τ) we gain:

f(h, τ) =
∑
u<v

Lh(u, v) =
∑
u<v

puvLh(u, v) +
∑

u<w<v

puvwALh
(u, v, w) (5)

4.3 Bounded Ratio Argument

To bound the ratio f(x, τ)/f(h, τ) using Equation (5) and Lemma 4 it suffices
to bound Lψ(u, v)/Lh(u, v) for every pair {u, v} and B(u, v, w)/ALh

(u, v, w) for
every triplet {u, v, w}.

In the case where h ∈ ∆ we have that Lψ(u, v)/Lh(u, v) ≤ 6/5 and that
B(u, v, w)/ALh

(u, v, w) ≤ 3/2. Showing this entails breaking the polytope defin-
ing (h(u, v), h(v, w), h(w, u)) into 27 smaller polytopes in which each h(·, ·) is
constrained to lie in [0, 1/6], (1/6, 5/6], or (5/6, 1]. On each of these smaller
polytopes and for each one of 5 possibilities for τ on u, v, w, the functions Lh,
Lψ are linear, and B and ALh

are multinomials of total degree two and three
respectively.6 A computer aided proof was used to obtain the bound of 3/2 using
standard polynomial maximization techniques on each one of the polytopes. We
refer the reader to [5] for details. This proves Theorem 2.

When h ∈ I, enumerating over all possible choices of h and τ gives that
Lψ(u, v)/Lh(u, v) = 1 and B(u, v, w)/ALψ

(u, v, w) ≤ 2. This shows that per-
forming QuickCluster directly on h without solving the LP gives a C = 2 ap-
proximation ratio. This proves Theorem 3.

5 Short discussion

Our algorithm trivially also gives an expected factor of 2+1 = 3 approximation
to the traditional problem by triangle inequality of f . Note that the best known
approximation factor for Correlation Clustering is 2.5 [3], raising the question of
whether it is possible to obtain a 1.5 approximation for CorrelationClusteringX.

Finding a specific instance h for which our algorithm achieves the 2 approx-
imation bound for CorrelationClusteringX will show that our analysis is tight.
The worst input known to the authors is h corresponding to the balanced com-
plete bipartite graph (h(u, v) = 0 if {u, v} ∈ e) for which QuickCluster gives a
1.5 approximation factor (for τ which puts all of V into one cluster).

Acknowledgments: The authors would like to thanks Eyal Even-Dar, Mehryar
Mohri, and Elad Hazan for sharing their insights and expertise.
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