
Improved Approximation Algorithms for
Bipartite Correlation Clustering

Nir Ailon?1, Noa Avigdor-Elgrabli1, Edo Liberty2, and Anke van Zuylen3

1 Technion, Haifa, Israel [nailon|noaelg]@cs.technion.ac.il
2 Yahoo! Research, Haifa, Israel edo.liberty@ymail.com

3 Max-Planck Institut für Informatik, Saarbrücken, Germany anke@mpi-inf.mpg.de

Abstract. In this work we study the problem of Bipartite Correlation
Clustering (BCC), a natural bipartite counterpart of the well studied
Correlation Clustering (CC) problem. Given a bipartite graph, the ob-
jective of BCC is to generate a set of vertex-disjoint bi-cliques (clus-
ters) which minimizes the symmetric difference to it. The best known
approximation algorithm for BCC due to Amit (2004) guarantees an
11-approximation ratio.4

In this paper we present two algorithms. The first is an improved 4-
approximation algorithm. However, like the previous approximation al-
gorithm, it requires solving a large convex problem which becomes pro-
hibitive even for modestly sized tasks.

The second algorithm, and our main contribution, is a simple randomized
combinatorial algorithm. It also achieves an expected 4-approximation
factor, it is trivial to implement and highly scalable. The analysis ex-
tends a method developed by Ailon, Charikar and Newman in 2008,
where a randomized pivoting algorithm was analyzed for obtaining a 3-
approximation algorithm for CC. For analyzing our algorithm for BCC,
considerably more sophisticated arguments are required in order to take
advantage of the bipartite structure.

Whether it is possible to achieve (or beat) the 4-approximation factor
using a scalable and deterministic algorithm remains an open problem.

1 Introduction

The analysis of large bipartite graphs is becoming of increased practical impor-
tance. Recommendation systems, for example, take as input a large dataset of
bipartite relations between users and objects (e.g. movies, goods) and analyze
its structure for the purpose of predicting future relations [2]. Other examples
may include images vs. user generated tags and search engine queries vs. search
results. Bipartite clustering is also studied in the context of gene expression data
analysis (see e.g. [3][4][5] and references therein). In spite of the extreme practical

? Supported in part by the Yahoo! Faculty Research and Engagement Program
4 A previously claimed 4-approximation algorithm [1] is erroneous, as we show in

Appendix A.

importance of bipartite clustering, far less is known about it than standard (non-
bipartite) clustering. Many notions of clustering bipartite data exist. Some aim
at finding the best cluster, according to some definition of ‘best’. Others require
that the entire data (graph) be represented as clusters. Moreover, data points
(nodes) may either be required to belong to only one cluster or allowed to be-
long to different overlapping clusters. Here the goal is to obtain non-overlapping
(vertex disjoint) clusters covering the entire input vertex set. Hence, one may
think of our problem as bipartite graph partitioning.

In Bipartite Correlation Clustering (BCC) we are given a bipartite graph as
input, and output a set of disjoint clusters covering the graph nodes. Clusters
may contain nodes from either side of the graph, but they may possibly contain
nodes from only one side. We think of a cluster as a bi-clique connecting all
the elements from its left and right counterparts. An output clustering is hence
a union of bi-cliques covering the input node set. The cost of the solution is
the symmetric difference between the input and output edge sets. Equivalently,
any pair of vertices, one on the left and one of the right, will incur a unit cost
if either (1) they are connected by an input edge but the output clustering
separates them into distinct clusters, or (2) they are not connected by an input
edge but the output clustering assigns them to the same cluster. The objective
is to minimize this cost. This problem formulation is the bipartite counterpart of
the more well known Correlation Clustering (CC), introduced by Bansal, Blum
and Chawla [6], where the objective is to cover the node set of a (non-bipartite)
graph with disjoint cliques (clusters) minimizing the symmetric difference with
the given edge set. One advantage of this objective is in alleviating the need
to specify the number of output clusters, as often needed in clustering settings
such as k-means or k-median. Another advantage lies in the objective function,
which naturally corresponds to some models about noise in the data. Examples
of applications include [7], where a reduction from consensus clustering to our
problem is introduced, and [8] for an application of a related problem to large
scale document-term relation analysis.

Bansal et. al [6] gave a c ≈ 104 factor for approximating CC running in time
O(n2) where n is the number of nodes in the graph. Later, Demaine, Emanuel,
Fiat and Immorlica [9] gave a O(log(n)) approximation algorithm for an in-
complete version of CC, relying on solving an LP and rounding its solution by
employing a region growing procedure. By incomplete we mean that only a subset
of the node pairs participate in the symmetric difference cost calculation.5 BCC
is, in fact, a special case of incomplete CC, in which the non-participating node
pairs lie on the same side of the graph. Charikar, Guruswami and Wirth [10] pro-
vide a 4-approximation algorithm for CC, and another O(log n)-approximation
algorithm for the incomplete case. Later, Ailon, Charikar and Newman [11] pro-
vided a 2.5-approximation algorithm for CC based on rounding an LP. They
also provide a simpler 3-approximation algorithm, QuickCluster, which runs in

5 In some of the literature, CC refers to the much harder incomplete version, and “CC
in complete graphs” is used for the version we have described here.

time linear in the number of edges of the graph. In [12] it was argued that
QuickCluster runs in expected time O(n+ cost(OPT)).

Van Zuylen and Williamson [13] provided de-randomization for the algo-
rithms presented in [11] with no compromise in the approximation guarantees.
Giotis and Guruswami [14] gave a PTAS for the CC case in which the number of
clusters is constant. Later, (using other techniques) Karpinski and Schudy [15]
improved the runtime.

Amit [3] was the first to address BCC directly. She proved its NP-hardness
and gave a constant 11-approximation algorithm based on rounding a linear
programming in the spirit of Charikar et. al’s [10] algorithm for CC.

It is worth noting that in [1] a 4-approximation algorithm for BCC was pre-
sented and analyzed. The presented algorithm is incorrect (we give a counter
example in the paper) but their attempt to use arguments from [11] is an excel-
lent one. We will show how to achieve the claimed guarantee with an extension
of the method in [11].

1.1 Our Results

We first describe a deterministic 4-approximation algorithm for BCC (Section 2).
It starts by solving a Linear Program in order to convert the problem to a non
bipartite instance (CC) and then uses the pivoting algorithm [13] to construct
a clustering. The algorithm is similar to the one in [11] where nodes from the
graph are chosen randomly as ‘pivots’ or ‘centers’ and clusters are generated
from their neighbor sets. Arguments from [13] derandomize this choice and give
us a deterministic 4-approximation algorithm. This algorithm, unfortunately,
becomes impractical for large graphs. The LP solved in the first step needs to
enforce the transitivity of the clustering property for all sets of three nodes and
thus contains Ω(n3) constraints.

Our main contribution is an extremely simple combinatorial algorithm called
PivotBiCluster which achieves the same approximation guarantee. The algo-
rithm is straightforward to implement and terminates in O(|E|) operations (the
number of edges in the graph). We omit the simple proof of the running time
since it is immediate given the algorithm’s description, see Section 3.2. A dis-
advantage of PivotBiCluster is the fact that it is randomized and achieves the
approximation guarantee only in expectation. However, a standard Markov in-
equality argument shows that taking the best solution obtained from indepen-
dent repetitions of the algorithm achieves an approximation guarantee of 4 + ε
for any constant ε > 0.

While the algorithm itself is simple, its proof is rather involved and requires
a significant extension of previously developed techniques. To explain the main
intuition behind our approach, we recall the method of Ailon et. al [11]. The
algorithm for CC presented there (the unweighted case) is as follows: choose a
random vertex, form a cluster including it and its neighbors, remove the cluster
from the graph, and repeat until the graph is empty. This random-greedy algo-
rithm returns a solution with cost at most 3 times that of the optimal solution,
in expectation. The key to the analysis is the observation that each part of the

cost of the algorithm’s solution can be naturally related to a certain minimal
contradicting structure, for CC, an induced subgraph of 3 vertices and exactly
2 edges. Notice that in any such structure, at least one vertex pair must be
violated. A vertex pair being violated means it contributes to the symmetric
difference between the graph and the clustering. In other words, the vertex pairs
that a clustering violates must hit the set of minimal contradicting structures.
A corresponding hitting set LP lower bounding the optimal solution was defined
to capture this simple observation. The analysis of the random-greedy solution
constructs a dual feasible solution to this LP, using probabilities arising in the
algorithm’s probability space.

It is tempting here to consider the corresponding minimal contradicting struc-
ture for BCC, namely a set of 4 vertices, 2 on each side, with exactly 3 edges
between them. Unfortunately, this idea turned out to be evasive. A proposed so-
lution attempting this [1] has a counter example which we describe and analyze
in Appendix A and is hence incorrect. Our attempts to follow this path have
also failed. In our analysis we resorted to contradicting structures of unbounded
size. Such a structure consists of two vertices `1, `2 of the left side and two sets
of vertices N1, N2 on the right hand side such that Ni is contained in the neigh-
borhood of `i for i = 1, 2, N1 ∩ N2 6= ∅ and N1 6= N2. We define a hitting LP
as we did earlier, this time of possibly exponential size, and analyze its dual in
tandem with a carefully constructed random-greedy algorithm, PivotBiCluster.
At each round PivotBiCluster chooses a random pivot vertex on the left, con-
structs a cluster with its right hand side neighbors, and for each other vertex
on the left randomly decides whether to join the new cluster or not. The new
cluster is removed and the process is repeated until the graph is exhausted. The
main challenge is to find joining probabilities of left nodes to new clusters which
can be matched to a feasible solution to the dual LP.

1.2 Paper Structure

We first present a deterministic LP rounding based algorithm in Section 2. Our
main algorithm in given in Section 3. We start with notations and definitions
in Section 3.1, followed by the algorithm’s description and our main theorem
in Section 3.2. The algorithm’s analysis is logically partitioned between Sections
3.3, 3.4, and 3.5. Finally, we propose future research and conjectures in Section 4.

2 A deterministic LP rounding algorithm

We start with a deterministic algorithm with a 4-approximation guarantee by
directly rounding an optimal solution to a linear programming relaxation LPdet

of BCC. Let the input graph be G = (L,R,E) where L and R are the sets of left
and right nodes and E be a subset of L×R. For notational purposes, we define
the following constants given our input graph: for each edge (i, j) ∈ E we define
w+

ij = 1, w−ij = 0 and for each non-edge (i, j) 6∈ E we define w+
ij = 0, w−ij = 1. Our

integer program has an indicator variable y+
ij which equals 1 iff i and j are placed

in the same cluster. The variable is defined for each pair of vertices, and not only
for pairs (`, r) with ` ∈ L, r ∈ R. Hence, in a certain sense, this approach forgets
about bipartiteness. For ease of notation we define y−ij = 1− y+

ij . The objective

function becomes
∑

(i,j)(w
+
ijy
−
ij + w−ijy

+
ij). The clustering consistency constraint

is given as y−ij + y−jk + y+
ik ≥ 1 for all (ordered) sets of three vertices i, j, k ∈ V ,

where V = L ∪R. The relaxed LP is given by:

LPdet = min
∑
(i,j)

(w+
ijy
−
ij + w−ijy

+
ij)

s.t ∀i, j, k ∈ V : y−ij + y−jk + y+
ik ≥ 1, y+

ij + y−ij = 1, y+
ij , y

−
ij ∈ [0, 1].

Given an optimal solution to LPdet, we partition the pairs of distinct vertices
into two sets E+ and E−, where e ∈ E+ if y+

e ≥ 1
2 and e ∈ E− otherwise. Since

each distinct pair is in either E+ or E−, we have an instance of CC which can
then be clustered using the algorithm of Van Zuylen and Williamson [13]. The
algorithm is a derandomization of Ailon et al’s [11] randomized QuickCluster
for CC. QuickCluster recursively constructs a clustering simply by iteratively
choosing a pivot vertex i at random, forming a cluster C that contains i and all
vertices j such that (i, j) ∈ E+, removing them from the graph and repeating.
Van Zuylen and Williamson [13] replace the random choice of pivot by a deter-
ministic one, and show conditions under which the resulting algorithm output
is a constant factor approximation with respect to the LP objective function.
To describe their choice of pivot, we need the notion of a “bad triplet” [11].
We will call a triplet (i, j, k) a bad triplet if exactly two of the pairs among
{(i, j), (j, k), (k, i)} are edges in E+. Consider the pairs of vertices on which the
output of QuickCluster disagrees with E+ and E−, i.e., pairs (i, j) ∈ E− that
are in the same cluster, and pairs (i, j) ∈ E+ that are not in the same cluster in
the output clustering. It is not hard to see that in both cases, there was some call
to QuickCluster in which (i, j, k) formed a bad triplet with the pivot vertex k.
The pivot chosen by Van Zuylen and Williamson [13] is the pivot that minimizes
the ratio of the weight of the edges that are in a bad triplet with the pivot and
their LP contribution.

Given an optimal solution y to LPdet we let cij = w+
ijy
−
ij +w−ijy

+
ij . Recall that

E+, E− are also defined by the optimal solution. We are now ready to present
the deterministic LP rounding algorithm:

Theorem 1. [From Van Zuylen et al. [13]] Algorithm QuickCluster (V,E+, E−)
from [11] returns a solution with cost at most 4 times the cost of the optimal
solution to LPdet if in each iteration a pivot vertex is chosen that minimizes :

F (k) =
(∑

(i,j)∈E+:(i,j,k)∈B w
+
ij +

∑
(i,j)∈E−:(i,j,k)∈B w

−
ij

)
/
∑

(i,j,k)∈B cij ,

where B is the set of bad triplets on vertices that haven’t been removed from the
graph in previous steps.

The proof of Theorem 1 is deferred to Appendix B.

3 The Combinatorial 4-Approximation Algorithm

3.1 Notation

Before describing the framework we give some general facts and notations. Let
the input graph again be G = (L,R,E) where L and R are the sets of left and
right nodes and E be a subset of L × R. Each element (`, r) ∈ L × R will be
referred to as a pair.

A solution to our combinatorial problem is a clustering C1, C2, . . . , Cm of the
set L ∪ R. We identify such a clustering with a bipartite graph B = (L,R,EB)
for which (`, r) ∈ EB if and only if ` ∈ L and r ∈ R are in the same cluster
Ci for some i. Note that given B, we are unable to identify clusters contained
exclusively in L (or R), but this will not affect the cost. We therefore take the
harmless decision that nodes in single-side clusters are always singletons.

We will say that a pair e = (`, r) is violated if e ∈ (E \ EB) ∪ (EB \ E).
For convenience, let xG,B be the indicator function for the violated pair set,
i.e., xG,B(e) = 1 if e is violated and 0 otherwise. We will also simply use x(e)
when it is obvious to which graph G and clustering B it refers. The cost of
a clustering solution is defined to be costG(B) =

∑
e∈L×R xG,B(e). Similarly,

we will use cost(B) =
∑

e∈L×R x(e) when G is clear from the context, Let
N(`) = {r|(`, r) ∈ E} be the set of all right nodes adjacent to `.

It will be convenient for what follows to define a tuple. We define a tuple T
to be (`T1 , `

T
2 , R

T
1 , R

T
1,2, R

T
2) where `T1 , `

T
2 ∈ L, `T1 6= `T2 , RT

1 ⊆ N(`T1) \ N(`T2),

RT
2 ⊆ N(`T2) \N(`T1) and RT

1,2 ⊆ N(`T2) ∩N(`T1). In what follows, we may omit

the superscript of T . Given a tuple T = (`T1 , `
T
2 , R

T
1 , R

T
1,2, R

T
2), we define the

conjugate tuple T̄ = (`T̄1 , `
T̄
2 , R

T̄
1 , R

T̄
1,2, R

T̄
2) = (`T2 , `

T
1 , R

T
2 , R

T
1,2, R

T
1). Note that

¯̄T = T .

3.2 Algorithm Description

We now describe PivotBiCluster. The algorithm runs in rounds. In every round
it creates one cluster and possibly many singletons, all of which are removed
from the graph before continuing to the next iteration. Abusing notation, by
N(`) we mean, in the algorithm description, all the neighbors of ` ∈ L which
have not yet been removed from the graph.

Every such cycle performs two phases. In the first phase, PivotBiCluster
picks a node on the left side uniformly at random, `1, and forms a new cluster
C = {`1}∪N(`1). This will be referred to as the `1-phase and `1 will be referred to
as the left center of the cluster. In the second phase, denoted as the `2-sub-phase
corresponding to the `1-phase, the algorithm iterates over all other remaining
left nodes, `2, and decides either to (1) append them to C, (2) turn them into
singletons, or (3) do nothing. We now explain how to make this decision. let
R1 = N(`1) \ N(`2), R2 = N(`2) \ N(`1) and R1,2 = N(`1) ∩ N(`2). With

probability min{ |R1,2|
|R2| , 1} do one of two things: (1) If |R1,2| ≥ |R1| append `2 to

C, and otherwise (2) (if |R1,2| < |R1|), turn `2 into a singleton. In the remaining

probability, (3) do nothing for `2, leaving it in the graph for future iterations.
Examples for cases the algorithm encounters for different ratios of R1, R1,2, and
R2 are given in Figure 3.2.

joins w.p. 1 becomes a singleton w.p. 1 joins w.p. 2/3 becomes a singleton w.p. 1/2

Fig. 1. Four example cases in which `2 either joins the cluster created by `1 or becomes
a singleton. In the two right most examples, with the remaining probability nothing is
decided about `2.

Theorem 2. Algorithm PivotBiCluster returns a solution with expected cost at
most 4 times that of the optimal solution.

3.3 Algorithm Analysis

We start by describing bad events. This will help us relate the expected cost of
the algorithm to a sum of event probabilities and expected consequent costs.

Definition 1. We say that a bad event, XT , happens to the tuple
T = (`T1 , `

T
2 , R

T
1 , R

T
1,2, R

T
2) if during the execution of PivotBiCluster, `T1 was

chosen to be a left center while `T2 was still in the graph, and at that moment,
RT

1 = N(`T1) \ N(`T2), RT
1,2 = N(`T1) ∩ N(`T2), and RT

2 = N(`T2) \ N(`T1). (We
refer by N(·) here to the neighborhood function in a particular moment of the
algorithm execution.)

If a bad event XT happens to tuple T , we color the following pairs with color
T : (1) {(`T2 , r) : r ∈ RT

1 ∪ RT
1,2}, (2) {(`T2 , r) : r ∈ RT

2 }. We color the latter

pairs only if we decide to associate `T2 to `T1 ’s cluster, or if we decide to make `T2
a singleton during the `2-sub-phase corresponding to the `1-phase. Notice that
these pairs are the remaining pairs (in the beginning of event XT) from `T2 that
after the `T2 -sub-phase will be removed from the graph. We also denote by Xe,T

the event that the edge e is colored with color T .

Lemma 1. During the execution of PivotBiCluster each pair (`, r) ∈ L × R is
colored at most once, and each violated pair is colored exactly once.

Proof. For the first part, we show that pairs are colored at most once. A pair
(`, r) can only be colored during an `2-sub-phases with respect to some `1-phase,

if ` = `2. Clearly, this will only happen in one `1-phase, as every time a pair is
labeled either `2 or r are removed from the graph. Indeed, either r ∈ R1 ∪ R1,2

in which case r is removed, or r ∈ R2, but then ` is removed since it either
joins the cluster created by `1 or becomes a singleton. For the second part, note
that during each `1-phase the only pairs removed from the graph not colored are
between left centers, `1, and right nodes in the graph at that time. All of these
pairs are clearly not violated. ut

We denote by qT the probability that event XT occurs and by cost(T) the
number of violated pairs that are colored by XT . From Lemma 1, we get:

Corollary 1. Letting random variable COST denote cost(PivotBiCluster):

E[COST] = E

[∑
e∈L×R

x(e)

]
= E

[∑
T

cost(T)

]
=
∑
T

qT · E[cost(T)|XT] .

3.4 Contradicting Structures

We now identify bad structures in the graph for which every output must incur
some cost, and use them to construct an LP relaxation for our problem. In the
case of BCC the minimal such structures are “bad squares”: A set of four nodes,
two on each side, between which there are only three edges. We make the trivial
observation that any clustering B must make at least one mistake on any such
bad square, s (we think of s as the set of 4 pairs connecting its two left nodes
and two right nodes). Any clustering solution’s violating pair set must hit these
squares. Let S denote the set of all bad squares in the input graph G.

It will not be enough for our purposes to concentrate on squares in our anal-
ysis. Indeed, at an `2-sub-phase, decisions are made based on the intersection
pattern of the current neighborhoods of `2 and `1 - a possibly unbounded struc-
ture. The tuples now come in handy.

Consider tuple T = (`T1 , `
T
2 , R

T
1 , R

T
1,2, R

T
2) for which |RT

1,2| > 0 and |RT
2 | > 0.

Notice that for every selection of r2 ∈ RT
2 , and r1,2 ∈ RT

1,2 the tuple contains the
bad square induced by {`1, r2, `2, r1,2}. Note that there may also be bad squares
{`2, r1, `1, r1,2} for every r1 ∈ RT

1 and r1,2 ∈ RT
1,2 but these will be associated to

the conjugate tuple T̄ = (`T2 , `
T
1 , R

T
2 , R

T
1,2, R

T
1).

For each tuple we can write a corresponding linear constraint for the vector
{x(e) : e ∈ L × R}, indicating, as we explained above, the pairs the algorithm
violates. A tuple constraint is the sum of the constraints of all bad squares it is
associated with, where a constraint for square s is simply defined as

∑
e∈s x(e) ≥

1. The purpose of this constraint is to encode that we must violate at least one
pair in a bad square. Since each tuple corresponds to |RT

2 | · |RT
1,2| bad squares,

we get the following constraint:

∀ T :
∑

r2∈RT
2 ,r1,2∈RT

1,2

(
x`T1 ,r2

+ x`T1 ,r1,2
+ x`T2 ,r2

+ x`T2 ,r1,2

)
=

∑
r2∈RT

2

|RT
1,2| · (x`T1 ,r2

+ x`T2 ,r2
) +

∑
r1,2∈RT

1,2

|RT
2 | · (x`T1 ,r1,2

+ x`T2 ,r1,2
) ≥ |RT

2 | · |RT
1,2|

The following linear program hence provides a lower bound for the optimal
solution: LP = min

∑
e∈L×R x(e)

s.t. ∀T 1

|RT
2 |

∑
r2∈RT

2

(x`T1 ,r2
+ x`T2 ,r2

) +
1

|RT
1,2|

∑
r1,2∈RT

1,2

(x`T1 ,r1,2
+ x`T2 ,r1,2

) ≥ 1

The dual program is as follows: DP = max
∑

T β(T)

s.t. ∀ (`, r) ∈ E :∑
T : `T2 =`,r∈RT

2

β(T)

|RT
2 |

+
∑

T : `T1 =`, r∈RT
1,2

β(T)

|RT
1,2|

+
∑

T : `T2 =`, r∈RT
1,2

β(T)

|RT
1,2|
≤ 1 (1)

and ∀ (`, r) 6∈ E :
∑

T : `T1 =`, r∈RT
2

1

|RT
2 |
β(T) ≤ 1 (2)

3.5 Obtaining the Competitive Analysis

We now relate the expected cost of the algorithm on each tuple to a feasible
solution to DP . We remind the reader that qT denotes the probability of event
XT corresponding to tuple T .

Lemma 2. The solution β(T) = αT · qT ·min{|RT
1,2|, |RT

2 |} is a feasible solution

to DP , when αT = min

{
1,

|RT
1,2|

min{|RT
1,2|,|RT

1 |}+min{|RT
1,2|,|RT

2 |}

}
.

Proof. First, notice that given a pair e = (`, r) ∈ E each tuple T can appear in
at most one of the sums in the LHS of the DP constraints (1) (as RT

1 , R
T
1,2, R

T
2

are disjoint). We distinguish between two cases.

1. Consider T appearing in the first sum of the LHS of (1), meaning that
`T2 = ` and r ∈ RT

2 . e is colored with color T if `T2 joined the cluster of `T1
or if `2 was turned into a singleton. Both cases happen, conditioned on XT ,

with probability Pr[Xe,T |XT] = min

{
|RT

1,2|
|RT

2 |
, 1

}
. Thus, we can bound the

contribution of T to the sum as follows:

1

|RT
2 |
β(T) =

1

|RT
2 |
αT · qT ·min{|RT

1,2|, |RT
2 |} ≤ qT ·min

{
|RT

1,2|
|RT

2 |
, 1

}
= Pr[XT] Pr[Xe,T |XT] = Pr[Xe,T].

(The inequality is simply because αT ≤ 1.)
2. T contributes to the second or third sum in the LHS of (1). By definition of

the conjugate T̄ , the following holds:∑
T s.t `T1 =`, r∈RT

1,2

β(T)

|RT
1,2|

+
∑

T s.t `T2 =`, r∈RT
1,2

β(T)

|RT
1,2|

=
∑

T s.t `T1 =`, r∈RT
1,2

(
β(T) + β(T̄)

)
|RT

1,2|
.

It is therefore sufficient to bound the contribution of each T to the RHS
of the latter equality. We henceforth focus on tuples T for which ` = `T1
and r ∈ RT

1,2. Consider a moment in the algorithm execution in which both

`T1 and `T2 were still present in the graph, RT
1 = N(`T1) \ N(`T2), RT

1,2 =

N(`T1) ∩N(`T2), RT
2 = N(`T2) \N(`T1) and one of `T1 , `

T
2 was chosen to be a

left center.6 Either one of `T1 and `T2 had the same probability to be chosen.
In other words, Pr[XT |XT ∪XT̄] = Pr[XT̄ |XT ∪XT̄], and hence, qT = qT̄ .
Further, notice that e = (`, r) is never colored with color T , and if event XT̄

happens then e is colored with color T̄ with probability 1. Therefore:

1

|RT
1,2|

(
β(T) + β(T̄)

)
=

1

|RT
1,2|
· qT ·min

{
1,

|RT
1,2|

min{|RT
1,2|, |RT

1 |}+ min{|RT
1,2|, |RT

2 |}

}
·(

min{|RT
1,2|, |RT

2 |}+ min{|RT̄
1,2|, |RT̄

2 |}
)

≤ qT = qT̄ = Pr[XT̄] = Pr[Xe,T̄] + Pr[Xe,T].

Summing this all together, for every edge e ∈ E:∑
T s.t `T2 =`,r∈RT

2

β(T)

|RT
2 |

+
∑

T s.t `T1 =`, r∈RT
1,2

β(T)

|RT
1,2|

+
∑

T s.t `T2 =`, r∈RT
1,2

β(T)

|RT
1,2|
≤
∑
T

Pr[Xe,T].

By the first part of Lemma 1 we know that
∑

T Pr[Xe,T] is exactly the
probability of the edge e to be colored (the sum is over probabilities of disjoint
events), therefore it is at most 1, as required to satisfy (1).

Now consider a pair e = (`, r) 6∈ E. A tuple T contributes to (2) if `T1 = `
and r ∈ RT

2 . Since, as before, qT = qT̄ and since Pr[Xe,T̄ |XT̄] = 1 (this follows
from the first coloring rule described in the beginning of Section 3.3) we obtain
the following:∑

T s.t `T1 =`, r∈RT
2

1

|RT
2 |
β(T) =

∑
T s.t `T1 =`, r∈RT

2

1

|RT
2 |
· αT · qT ·min{|RT

1,2|, |RT
2 |}

≤
∑

T s.t `T1 =`, r∈RT
2

qT =
∑

T̄ s.t `T̄2 =`, r∈RT̄
1

qT̄ =
∑

T̄ s.t `T̄2 =`, r∈RT̄
1

Pr[XT̄]

=
∑

T̄ s.t `T̄2 =`, r∈RT̄
1

Pr[Xe,T̄] =
∑
T

Pr[Xe,T].

From the same reason as before, this is at most 1, as required for (2). ut

After presenting the feasible solution to our dual program, we have left to
prove that the expected cost of PivotBiCluster is at most 4 times the DP value
of this solution. For this we need the following:

6 Recall that N(·) depends on the “current” state of the graph at that moment, after
removing previously created clusters.

Lemma 3. For any tuple T ,
qT · E[cost(T)|XT] + qT̄ · E[cost(T̄)|XT̄] ≤ 4 ·

(
β(T) + β(T̄)

)
.

Proof. We consider three cases, according to the structure of T .
Case 1. |RT

1 | ≤ |RT
1,2| and |RT

2 | ≤ |RT
1,2| (equivalently |RT̄

1 | ≤ |RT̄
1,2| and |RT̄

2 | ≤

|RT̄
1,2|): For this case, αT = αT̄ = min

{
1,

|RT
1,2|

|RT
1 |+|RT

2 |

}
, and we get that

β(T) + β(T̄) = αT · qT ·
(
min{|RT

1,2|, |RT
2 |}+ min{|RT

1,2|, |RT
1 |}
)

= qT ·min{(|RT
2 |+ |RT

1 |), |RT
1,2|} ≥

1

2
· qT · (|RT

2 |+ |RT
1 |).

Since |RT
1 | ≤ |RT

1,2|, if event XT happens PivotBiCluster adds `T2 to `T1 ’s cluster

with probability min

{
|RT

1,2|
|RT

2 |
, 1

}
= 1. Therefore the pairs colored with color T

that PivotBiCluster violates are all the edges from `T2 to RT
2 and all the non-

edges from `T2 to RT
1 , namely, |RT

2 | + |RT
1 | edges. The same happens in the

event XT̄ as the conditions on |RT̄
1 |, |RT̄

1,2|, and |RT̄
2 | are the same, and since

|RT̄
2 |+ |RT̄

1 | = |RT
1 |+ |RT

2 |. Thus,

qT ·
(
E[cost(T |XT)] + E[cost(T̄ |XT̄)]

)
= qT

(
2
(
|RT

2 |+ |RT
1 |
))
≤ 4·

(
β(T) + β(T̄)

)
.

Case 2. |RT
1 | < |RT

1,2| < |RT
2 | (equivalently |RT̄

1 | > |RT̄
1,2| > |RT̄

2 |)7: We defer
this case to Appendix C due to lack of space.
Case 3. |RT

1,2| < |RT
1 | and |RT

1,2| < |RT
2 | (equivalently, |RT̄

1,2| < |RT̄
2 | and |RT̄

1,2| <
|RT̄

1 |): We defer this case to Appendix D due to lack of space.
ut

By Corollary 1: E[cost(PivotBiCluster)] =
∑

T Pr[XT] · E[cost(T)|XT]

=
1

2

∑
T

(
Pr[XT] · E[cost(T)|XT] + Pr[XT̄] · E[cost(T̄)|XT̄]

)
.

By Lemma 3 the above RHS is at most 2 ·
∑

T (β(T) + β(T̄)) = 4 ·
∑

T β(T). We
conclude that E[cost(PivotBiCluster)] ≤ 4 ·

∑
T β(T) ≤ 4 · OPT . This proves

our main Theorem 2.

4 Future Work

The main open problem is that of improving the factor 4 approximation ratio.
We believe that it should be possible by using both symmetry and bipartiteness
simultaneously. Indeed, our LP rounding algorithm in Section 2 is symmetric
with respect to the left and right sides of the graph. However, in a sense, it
“forgets” about bipartiteness altogether. On the other hand, our combinatorial
algorithm in Section 3 uses bipartiteness in a very strong way but is asymmetric
which is counterintuitive.
7 From symmetry reasons (between T and T̄) here we also deal with the case |RT

2 | <
|RT

1,2| < |RT
1 |.

References

1. Jiong Guo, Falk Hüffner, Christian Komusiewicz, and Yong Zhang. Improved
algorithms for bicluster editing. In TAMC’08: Proceedings of the 5th international
conference on Theory and applications of models of computation, pages 445–456,
Berlin, Heidelberg, 2008. Springer-Verlag.

2. Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and
Yannis Manolopoulos. Nearest-biclusters collaborative filtering, 2006.

3. Noga Amit. The bicluster graph editing problem, 2004.
4. Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological

data analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 1:24–
45, January 2004.

5. Yizong Cheng and George M. Church. Biclustering of expression data. In Proceed-
ings of the Eighth International Conference on Intelligent Systems for Molecular
Biology, pages 93–103. AAAI Press, 2000.

6. Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine
Learning, 56:89–113, 2004.

7. Xiaoli Zhang Fern and Carla E. Brodley. Solving cluster ensemble problems by
bipartite graph partitioning. In Proceedings of the twenty-first international con-
ference on Machine learning, ICML ’04, page 36, New York, NY, USA, 2004. ACM.

8. Hongyuan Zha, Xiaofeng He, Chris Ding, Horst Simon, and Ming Gu. Bipartite
graph partitioning and data clustering. In Proceedings of the tenth international
conference on Information and knowledge management, CIKM ’01, pages 25–32,
New York, NY, USA, 2001. ACM.

9. Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation
clustering in general weighted graphs. Theoretical Computer Science, 2006.

10. Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with
qualitative information. J. Comput. Syst. Sci., 71(3):360–383, 2005.

11. Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent infor-
mation: Ranking and clustering. J. ACM, 55(5):1–27, 2008.

12. Nir Ailon and Edo Liberty. Correlation clustering revisited: The “true” cost of
error minimization problems. In ICALP ’09: Proceedings of the 36th International
Colloquium on Automata, Languages and Programming, pages 24–36, Berlin, Hei-
delberg, 2009. Springer-Verlag.

13. Anke van Zuylen and David P. Williamson. Deterministic pivoting algorithms
for constrained ranking and clustering problems. Math. Oper. Res., 34(3):594–620,
2009. Preliminary version appeared in SODA’07 (with Rajneesh Hegde and Kamal
Jain).

14. Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed
number of clusters. In Proceedings of the seventeenth annual ACM-SIAM sym-
posium on Discrete Algorithms(SODA), pages 1167–1176, New York, NY, USA,
2006. ACM.

15. Marek Karpinski and Warren Schudy. Linear time approximation schemes for the
gale-berlekamp game and related minimization problems. CoRR, abs/0811.3244,
2008.

A A Counter Example for a Previously Claimed Result

In [1] the authors claim to design and analyze a 4-approximation algorithm for
BCC. Its analysis is based on bad squares (and not unbounded structures, as

done in our analysis). Their algorithm is as follows: First, choose a pivot node
uniformly at randomly from the left side, and cluster it with all its neighbors.
Then, for each node on the left, if it has a neighbor in the newly created clus-
ter, append it with probability 1/2. An exception is reserved for nodes whose
neighbor list is identical that of the pivot, in which case these nodes join with
probability 1. Remove the clustered nodes and repeat until no nodes are left in
the graph.

Unfortunately, there is an example demonstrating that the algorithm has an
unbounded approximation ratio. Consider a bipartite graph on 2n nodes, `1,...,n
on the left and r1,...,n on the right. Let each node `i on the left be connected to
all other nodes on the right except for ri. The optimal clustering of this graph
connects all `i and ri nodes and thus has cost OPT = n. In the above algorithm,
however, the first cluster created will include all but one of the nodes on the right
and roughly half the left ones. This already incurs a cost of Ω(n2) which is a
factor n worse than the best possible.

B Proof of Theorem 1

Proof. Theorem 3.1 in [13] shows that, if the following two conditions hold at
the start of the algorithm:

(i) (i) w−ij ≤ 4cij for all (i, j) ∈ E+, and w+
ij ≤ 4cij for all (i, j) ∈ E−, and

(ii) (ii) w+
ij +w+

jk +w−ki ≤ 4(cij + cjk + cki) for every (i, j, k) ∈ B, where (k, i) is

the unique edge in E− ∩ {(i, j), (j, k), (k, i)},

then QuickCluster finds a clustering such that the sum of w+
ij for pairs i, j in

different clusters plus the sum of w−ij for pairs in the same cluster is at most

4
∑

(i,j) cij =
∑

(i,j)

(
w+

ijy
−
(ij) + w−ijy

+
ij

)
.

Since w+
ij = 1 only if (i, j) ∈ E, and w−ij = 1 only if (i, j) ∈ (L × R) \ E,

QuickCluster, in fact, finds a clustering with a number of violated pairs which
is at most four times the objective of LPdet. It thus remains to verify that the
two conditions (i) and (ii) hold.

It is easy to see that the first condition holds, since if (i, j) ∈ E+ (resp. E−)
then y+

ij ≥ 1
2 (resp. y−ij ≥ 1

2), and hence cij ≥ 1
2w
−
ij (resp. cij ≥ 1

2w
+
ij).

For any bad triplet (i, j, k) ∈ B for which all vertices are in L or R, the
lefthand side of the second condition is zero and hence the condition holds.
Otherwise, we have that either i, j are on the same side of the original bipartite
graph, or i, k are on the same side.

In the first case, w+
ij +w+

jk +w−ki = w+
jk +w−ki. Note that this is at most two,

hence it suffices to show that cij + cjk + cki ≥ 1
2 . Note that if w+

jk = 0, then

cjk = w−jky
+
jk ≥

1
2 , since w−jk = 1 and, because (j, k) ∈ E+, y+

jk ≥
1
2 . Similarly, if

w−ki = 0, we have cki ≥ 1
2 . Finally, if w+

jk = w−ki = 1, then cij+cjk+cki = y−jk+y+
ki.

By the constraints of the linear program, this is at least 1− y−jk = y+
jk, which in

turn is at least 1
2 because (j, k) ∈ E+.

If i, k are on the same side of the original bipartite graph, the argument is
similar: We have that w+

ij + w+
jk + w−ki = w+

ij + w+
jk. Again, if one of w+

ij , w
+
jk is

zero, then either cij ≥ 1
2 or cjk ≥ 1

2 . If they are both one, then cij + cjk + cki =

y−ij+y−jk ≥ 1−y+
ik = y−ik, and this is at least 1

2 because (i, k) ∈ E−. This concludes
the proof. ut

C Case 2 in Proof of Lemma 3

Here αT = αT̄ = min

{
1,

|RT
1,2|

|RT
1 |+|RT

1,2|

}
, therefore,

β(T) + β(T̄) = αT · qT ·
(
min{|RT

1,2|, |RT
2 |}+ min{|RT

1,2|, |RT
1 |}
)

= qT ·min{|RT
1,2|+ |RT

1 |, |RT
1,2|} = qT · |RT

1,2|.

As |RT
1 | ≤ |RT

1,2|, if event XT happens PivotBiCluster adds `T2 to `T1 ’s cluster

with probability min

{
|RT

1,2|
|RT

2 |
, 1

}
=
|RT

1,2|
|RT

2 |
. Therefore with probability

|RT
1,2|
|RT

2 |
the

pairs colored by color T that PivotBiCluster violate are all the edges from `T2

to RT
2 and all the non-edges from `T2 to RT

1 , and with probability
(

1− |R1,2|
|R2|

)
PivotBiCluster violates all the edges from `T2 to RT

1,2. Thus,

E[cost(T)|XT] =
|RT

1,2|
|RT

2 |
(
|RT

2 |+ |RT
1 |
)

+

(
1−
|RT

1,2|
|RT

2 |

)
|RT

1,2|

= 2 · |RT
1,2|+

|RT
1,2| · |RT

1 | − |RT
1,2|2

|RT
2 |

≤ 2 · |RT
1,2|.

If the event XT̄ happens, as |RT̄
1 | > |RT̄

1,2| and min

{
RT̄

1,2

RT̄
2

, 1

}
= 1, PivotBiCluster

chooses to isolate `T̄2 (= `T1) almost surely and the number of pairs colored with
color T̄ that are consequently violated is |RT̄

2 |+ |RT̄
1,2| = |RT

1 |+ |RT
1,2| . Thus,

qT ·
(
E[cost(T)|XT]) + E[cost(T̄)|XT̄)]

)
≤ qT · (2|RT

1,2|+ |RT
1 |+ |RT

1,2|)
< 4 · qT · |RT

1,2| = 4 ·
(
β(T) + β(T̄)

)
.

D Case 3 in Proof of Lemma 3

Here, αT = αT̄ = 1
2 , thus,

β(T) + β(T̄) =
1

2
· qT ·

(
min{|RT

1,2|, |RT
2 |}+ min{|RT

1,2|, |RT
1 |}
)

= qT · |RT
1,2| .

Conditioned on event XT , as |RT
1 | > |RT

1,2|, PivotBiCluster chooses to isolate

`2 with probability min

{
|RT

1,2|
|RT

2 |
, 1

}
=
|RT

1,2|
|RT

2 |
. Therefore with probability

|RT
1,2|
|RT

2 |

PivotBiCluster colors |RT
2 | + |RT

1,2| pairs with color T (and violated them all).

With probability

(
1− |R

T
1,2|
|RT

2 |

)
, PivotBiCluster colors |RT

1,2| pairs with color T

(and violated them all). We conclude that

E[cost(T)|Xt] =
|RT

1,2|
|RT

2 |
(|RT

2 |+ |RT
1,2|) +

(
1−
|RT

1,2|
|RT

2 |

)
|RT

1,2| = 2|RT
1,2| .

Similarly, for event XT̄ , as |RT̄
1 | > |RT̄

1,2| and min

{
|RT̄

1,2|
|RT̄

2 |
, 1

}
=
|RT

1,2|
|RT

1 |
, Pivot-

BiCluster isolates `1 with probability
|RT

1,2|
|RT

1 |
therefore colors |RT̄

2 | + |RT̄
1,2| pairs

with color T̄ (and violated them all). With probability (1− |R
T
1,2|
|RT

1 |
) PivotBiCluster

colors |RT̄
1,2| pairs with color T̄ (and violates them all). Thus,

E[cost(T̄)|XT̄] =
|RT

1,2|
|RT

1 |
(|RT

1 |+ |RT
1,2|) +

(
1−
|RT

1,2|
|RT

1 |

)
|RT

1,2| = 2|RT
1,2| .

Hence, qT ·
(
E[cost(T)|Xt] + E[cost(T̄)|XT̄]

)
= 4 · qT · |RT

1,2| = 4 · (β(T) + β(T̄)).
ut

