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Dimensionality reduction

(1− ε)
∥∥xi − xj

∥∥
2 ≤

∥∥Ψ(xi)−Ψ(xj)
∥∥

2 ≤ (1 + ε)
∥∥xi − xj

∥∥
2

I
(n

2

)
distances are ε preserved

I Target dimension k smaller than original dimension d
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What are they good for?

We will see that:
I The target dimension k can be significantly smaller than d .
I Ψ can be chosen independently of xi .

This makes random projection very useful in:
I Approximate-nearest-neighbor algorithms
I Linear Embedding / Dimensionality reduction
I Rank k approximation
I `1 and `2 regression
I Compressed sensing
I Learning

...
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Simple image search example

Simple task: search through your library of 10, 000 images for
near duplicates (on your PC).

Problem: your images are 5 Mega-pixels each. Your library
occupies 22 Gigabytes of disk space and does not fit in
memory.

Possible solution: Project each image to a lower dimension
(say 500). Then, search for close neighbors in the embedded
points.

This can be done in memory on a moderately strong computer.
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Random projections

A distribution D over k × d matrices Ψ s.t.

∀x∈Sd−1 Pr
Ψ∼D

[|‖Ψx‖2 − 1| > ε] ≤ 1/n2

All
(n

2

)
pairwise distances are preserved w.p. at least 1/2.

Edo Liberty Accelerated Dense Random Projections



Johnson Lindenstrauss Lemma

Lemma (Johnson Lindenstrauss (1984))
Let D denote the uniform distribution over all k × d projections

∀ x ∈ Sd−1 Pr
Ψ∼D

[|‖Ψx‖2 − 1| > ε] ≤ c1e−c2ε2k

This gives Pr ≤ 1/n2 for k = Θ(log(n)/ε2).

Definition
Such distributions are said to exhibit the JL property.
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Johnson Lindenstrauss proof sketch

The distribution D is rotation invariant, thus:

Pr
Ψ∼D

[|‖Ψx‖2 − 1| > ε] = Pr
x∼U(Sd−1)

[|‖Ikx‖2 − 1| > ε]

Informally: projecting any fixed vector on a random subspace is
equivalent to projecting a random vector on a fixed subspace.

The rest follows directly from the isoperimetric inequality on the
sphere.
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Gaussian i.i.d. distribution

Lemma (Frankl Meahara (1987))
Let D denote an i.i.d. Gaussian distribution for each entry of Ψ.
Then, D exhibits the JL property.

Proof.
Due to the rotational invariance of D

Pr
Ψ∼D

[|‖Ψx‖2 − 1| > ε] = Pr
Ψ∼D

[|‖Ψe1‖2 − 1| > ε] .

Also, ‖Ψe1‖2 =
∥∥Ψ(1)

∥∥
2 which is distributed as χ2 with k

degrees of freedom.
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±1 and Sub-Gaussian i.i.d. distributions

Lemma (Achlioptas (2003))
Let D denote an i.i.d. ±1 distribution for each entry of Ψ. Then,
D exhibits the JL property.

Proof.

‖Ψx‖2
2 =

k∑

i=1

〈Ψ(i), x〉2 =
k∑

i=1

y2
i

The random variables yi are i.i.d. and sub-Gaussian (Due to
Hoeffding).

The proof above is due to Matousek (2006).
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The need for speed

All of the above distributions are such that:
I Ψ requires O(kd) space to store.
I Mapping x 7→ Ψx requires O(kd) operations.

Example: projecting a 5 Megapixel image to dimension 500:
I Ψ takes up roughly 10 Gigabytes of memory.
I It takes roughly 5 hours to compute x 7→ Ψx .

(very optimistic estimate for a 2Ghz CPU)
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Sparse i.i.d. distributions

Assume that D is such that Ψ(i , j) is non-zero w.p. q.

Can D exhibit the JL property and q = o(1)?

We must have that

Pr
Ψ∼D

[|‖Ψe1‖2 − 1| > ε] = Pr
Ψ∼D

[∣∣∣
∥∥∥Ψ(1)

∥∥∥
2
− 1

∣∣∣ > ε
]
≤ 1/n2

Thus, Ψ(1) must rely on Ω(log(n)) random bits.

This cannot be achieved!

Edo Liberty Accelerated Dense Random Projections



Sparse i.i.d. distributions

Lemma (Matousek (2006) Ailon Chazelle (2006))
Let x ∈ Sd−1 be such that ‖x‖∞ ≤ η. Let D be such that:

Ψ(i , j) =





1/
√

q w .p. q/2
−1/

√
q w .p. q/2
0 w .p. 1− q.

for some q ∈ O(η2k),
D exhibits the JL property with respect to x.
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FJLT, random rotation

Lemma (Ailon, Chazelle (2006))
Let Φ be HD:

I H is a Hadamard transform
I D is a random ±1 diagonal matrix

∀x ∈ Sd−1 w.h.p. ‖Φx‖∞ ≤
√

k/d}
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FJLT, sparse projection

Lemma (Ailon, Chazelle (2006))
After the rotation, an expected number of O(k3) nonzeros in S
is sufficient for the JL property to hold.
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FJLT algorithm, random rotation + sparse projection

Lemma (Ailon, Chazelle (2006))
Let D be the above distribution. D exhibits the JL property.
Moreover, computing x 7→ SΦx requires O(d log(d) + k3)
operations in expectation.
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Statement of results

Previous algorithms’ application complexity:
Naı̈ve or Slower Faster than naı̈ve O(d log(k)) Optimal, O(d)

k in O(log d) JL, FJLT

k in ω(log d)
and o(poly(d))

JL FJLT

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT

k in O(d1/2−δ)
and k < d

JL, FJLT
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Statement of results

Our contributions either match or outperform pervious results.
Naı̈ve or Slower Faster than naı̈ve O(d log(k)) Optimal, O(d)

k in O(log d) JL, FJLT, FWI FJLTr JL + Mailman

k in ω(log d)
and o(poly(d))

JL FJLT, FWI FJLTr

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI

k in O(d1/2−δ)
and k < d

JL, FJLT, FJLTr JL concatenation

I Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes. SODA 08, best papers invitation
to TALG, Discrete and Computational Geometry 08. with Nir Ailon.

I Dense Fast Random Projections and Lean Walsh Transforms. RANDOM 08. with Nir Ailon and Amit singer.
I The Mailman algorithm: a note on matrix vector multiplication. IPL 08. with Steven Zucker.
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One dimensional Random walks

Consider the random walk distance:

Y = |
d∑

i=1

v(i)s(i)|

I v(i) ∈ R are scaler step sizes.
I s(i) are ±1 w.p 1/2 each.

We have from Hoeffding’s inequality that:

Pr [Y − E [Y ] ≥ t ] ≤ e−t2/2‖v‖2
2 .

This can be slightly modified to obtain:

Pr [Y − ‖v‖2 ≥ ε] ≤ c1e−c2ε2/‖v‖2
2
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High dimensional Random walks

Now consider the walk:

Y =

∥∥∥∥∥
d∑

i=1

M(i)s(i)

∥∥∥∥∥
2

I M(i) ∈ Rk are vector valued steps.
I s(i) are still ±1 w.p 1/2 each.

Lemma

Pr
[|Y − ‖M‖Fro| ≥ ε

] ≤ c1e−c2ε2/‖M‖2
2

I M is a matrix whose i’th column is M(i).
I ‖M‖Fro and ‖M‖2 stand for the Frobenius and spectral

norms of M.
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Measure concentration on the hypercube

Lemma (Ledoux Talagrand (1991))
Let f : [0, 1]d → R be a convex function.
Let D be a probability product space over [0, 1]d .

Pr
s∼D

[|f (s)− µ| > t ] ≤ 4e−t2/8‖f‖2
Lip .

Here µ is a median on f and ‖f‖Lip is its Lipschitz constant.
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High dimensional Random walks

Setting f (s) ←
∥∥∥∑d

i=1 M(i)s(i)
∥∥∥

2
= ‖Ms‖2:

I f (s) is convex, by convexity of the 2-norm.
I ‖f‖Lip = ‖M‖2, by definition.
I |µ− ‖M‖Fro| = O(‖M‖2) (requires derivation).

Substituting into the hypercube concentration result we get

Pr
[|Y − ‖M‖Fro| ≥ ε

] ≤ c1e−c2ε2/‖M‖2
2

as required.
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From random walks to random projections

Consider the distribution Ψ = AD:
I A is a fixed k × d matrix.
I D is a diagonal matrix, D(i , i) = s(i) (Rademacher).

We have that:

‖ADx‖2 =

∥∥∥∥∥
d∑

i=1

A(i)D(i , i)x(i)

∥∥∥∥∥
2

=

∥∥∥∥∥
d∑

i=1

A(i)x(i)s(i)

∥∥∥∥∥
2

= ‖Ms‖2

where M(i) = A(i)x(i).
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From random walks to random projections

The random walk concentration result,

Pr
[|‖Ms‖2 − ‖M‖Fro| ≥ ε

] ≤ c1e−c2ε2/‖M‖2
2 ,

gives the JL property

Pr [|‖ADx‖2 − 1| ≥ ε] ≤ c1e−c2ε2k

If
I ‖M‖Fro = 1 true if A is column normalized.
I ‖M‖2 = O(k−1/2).
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Two stage projection process

Definition
‖x‖A ≡ ‖M‖2, where M(i) = A(i)x(i).

Definition
χ(A) ≡ {x ∈ Sd−1 | ‖x‖A = O(k−1/2)}.

If ‖Φx‖A = O(k−1/2) w.h.p., then ADΦ exhibits the JL property.
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Four-wise independent projection matrix

Lemma
For a four-wise independent matrix, B:

‖x‖4 = O(d−1/4) → x ∈ χ(B)

Lemma
If k = O(d1/2), there exists a k × d four-wise independent
matrix B such that computing z 7→ Bz requires O(d log(k))
operations.
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Four-wise independent projection matrix

Lemma
If k = O(d1/2−δ), there exists a random rotation Φ such that
‖Φx‖4 = O(d−1/4) w.p. at least 1−O(e−k ).

Lemma
Computing x 7→ Φx requires O(d log(d)) operations.

Thus BDΦ exhibits the JL property.
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Improvement over the FJLT algorithm

I FJLT running time: O(d log(d) + k3).
I FWI running time: O(d log(d)) for k ∈ O(d1/2−δ).

Naı̈ve or Slower Faster than naı̈ve O(d log(k)) Optimal, O(d)

k in O(log d) JL, FJLT, FWI

k in ω(log d)
and o(poly(d))

JL FJLT, FWI

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT FWI

k in O(d1/2−δ)
and k < d

JL, FJLT
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The mailman algorithm

The running time lower bound for random projections is O(d).
Can this be achieved?

Claim
Any k × d, ±1 matrix, Ψ, can be applied to any vector x ∈ Rd in
O(kd/log(d)) operation.

If k = O(log(d)), then a random i.i.d. ±1 projection can be
applied to vectors in optimal O(d) time.

Edo Liberty Accelerated Dense Random Projections



The mailman algorithm

For simplicity, assume Ψ is k × d and d = 2k .

We have that Ψ = UP if:
I U contains each possible column {+1,−1}k .
I P(i , j) = δ(U(i), A(j))

Computing x 7→ Px requires O(d) operations since P contains
only d non-zeros.
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The mailman algorithm

Applying U also requires only O(d) operations.

U2 =
(

1 −1
)
, Ud =

(
1, . . . , 1 −1, . . . ,−1

Ud/2 Ud/2

)

Udz =

(
1, . . . , 1 −1, . . . ,−1

Ud/2 Ud/2

)(
z1
z2

)
=

( ∑d/2
i=1 z1(i)− z2(i)
Ud/2(z1 + z2)

)

This gives the following recursion:

T (d) = T (d/2) + O(d) ⇒ T (d) = O(d)

Remark
If k ≥ log(d), Ψ can be sectioned into dk/ log(d)e submatrices
of size at most log(d)× d.
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Mailman application speed

Running time for multiplying a log(d)× d random ±1 matrix to
a double precision vector.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Naive
LAPACK
Mailman

Figure: The experiments were run Xeon Quad core 2.33GHz machine
running Linux Ubuntu with 8G of RAM and a Bus speed of 1333MHz.
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Linear time projection

Using the Mailman algorithm gives the first O(d) algorithm.

Naı̈ve or Slower Faster than naı̈ve O(d log(k)) Optimal, O(d)

k in O(log d) JL, FJLT, FWI JL + Mailman

k in ω(log d)
and o(poly(d))

JL FJLT, FWI

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT FWI

k in O(d1/2−δ)
and k < d

JL, FJLT
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Linear time projection

Can we achieve an O(d) running time in general?

Proving the contrary will give a super-linear running time lower
bound on performing Fourier transforms...

Look for a k × d matrix, A, which:
I is applicable in O(d) operations
I exhibits the largest possible set χ(A).
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Linear time projection

projection matrix
Application
complexity

A is a good random
projection for x if:

Any matrix ‖x‖A = O(k−1/2)

four-wise
independent

O(d log k) ‖x‖4 = O(d−1/4)

Lean Walsh O(d) ‖x‖∞ = O(k−1/2d−δ)

Identity copies O(d) ‖x‖∞ = O((k log k)−1/2)

Table: Lean-Walsh matrices are dense ±1 tensor product matrices.
Identity-copies, is a horizontal concatenation of log(k) identity
matrices.
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Open questions

Can O(d log(d)) running time be achieved for k ∈ ω(d1/2−δ)?
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Open questions

Naı̈ve or Slower Faster than naı̈ve O(d log(k)) Optimal, O(d)

k in O(log d) JL, FJLT, FWI FJLTr JL + Mailman

k in ω(log d)
and o(poly(d))

JL FJLT, FWI FJLTr ?

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI ?

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI ?

k in O(d1/2−δ)
and k < d

JL, FJLT, FJLTr JL concatenation ? ?
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Fin
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Projection norm concentration

0 100 200 300 400 500 600 700 800 900 1000
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m=1, d=5000, k=500

Random−projection
Random−Gaussian
Plus−minus−one
Sub−Hadamard
Lean−Walsh
Identity−copies

0 100 200 300 400 500 600 700 800 900 1000
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

m=2, d=5000, k=500

Random−projection
Random−Gaussian
Plus−minus−one
Sub−Hadamard
Lean−Walsh
Identity−copies

Figure: Accuracy of projection for six projection methods as a function
of m, the number of non-zeros of value 1/

√
m in the input vectors.

When m = 1 (left) all deterministic matrices exhibit zero distortion
since their column norms are equal to 1. When m = 2 (right) all
constructions might exhibit a distortion equal to their coherence.

Edo Liberty Accelerated Dense Random Projections



Projection norm concentration
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0.8
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0.9

0.95

1

1.05

1.1

1.15

m=10, d=5000, k=500

Random−projection
Random−Gaussian
Plus−minus−one
Sub−Hadamard
Lean−Walsh
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Figure: Small values of m give rise to better average behavior by
deterministic matrices, but worse worst-case behavior. This stems
from the fact that their average coherence is smaller but their
maximum coherence is larger.
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Projection norm concentration
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Figure: When m grows the behavior of deterministic matrices and
dense random ones becomes indistinguishable, with the exception of
Identity-copies.
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Projection norm concentration

0 100 200 300 400 500 600 700 800 900 1000
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Figure: Large values of m allow all methods including Identity-copies
to be used equally reliably.
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Projection running time
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Figure: Running time of applying Sub-Hadamard, Lean-Walsh and
Identity-copies k × d matrices. k ranges from 1 to 103 and d = 105

(left) d = 5 · 106 (right).
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