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Abstract

The problems of random projections and sparse recon-
struction have much in common and individually re-
ceived much attention. Surprisingly, until now they pro-
gressed in parallel and remained mostly separate. Here,
we employ new tools from probability in Banach spaces
that were successfully used in the context of sparse re-
construction to advance on an open problem in ran-
dom pojection. In particular, we generalize and use an
intricate result by Rudelson and Vershynin for sparse
reconstruction which uses Dudley’s theorem for bound-
ing Gaussian processes. Our main result states that
any set of N = exp(Õ(n)) real vectors in n dimensional
space can be linearly mapped to a space of dimension
k = O(logN polylog(n)), while (1) preserving the pair-
wise distances among the vectors to within any con-
stant distortion and (2) being able to apply the trans-
formation in time O(n log n) on each vector. This im-
proves on the best known N = exp(Õ(n1/2)) achieved
by Ailon and Liberty and N = exp(Õ(n1/3)) by Ailon
and Chazelle. The dependence in the distortion con-
stant however is believed to be suboptimal and subject
to further investigation. For constant distortion, this
settles the open question posed by these authors up to
a polylog(n) factor while considerably simplifying their
constructions.

1 Introduction

Designing computationally efficient transformations
that reduce dimensionality of data while approximately
preserving its metric information lies at the heart of
many problems. While in compressed sensing such tech-
niques are sought for sparse data in a real or complex
metric space (with respect to some basis), in random
projections, following the seminal work of Johnson and
Lindenstrauss, one seeks to reduce dimension of any set
of finite data.1 In both applications, random matrices of
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1The term ”random projections” describes Johnson and Lin-

denstrauss’s original construction. It became synonymous with
the process of approximate metric preserving dimension reduc-
tion using randomized linear mappings. However, these linear

a suitable size [1][2][3][4] result in optimal construction
[5] in the parameters n (the original dimension), k (the
target dimension), N (the number of input vectors) and
δ (the distortion). However, these constructions’ result-
ing running time complexity, measured as number of
operations needed in order to map a vector, is subopti-
mal. A major open question is that of designing such
matrix distributions that can be applied efficiently to
any vector, with optimal dependence in the parameters
n, k,N and δ. Applications for such transformations
were found e.g. in designing fast approximation algo-
rithms for solving large scale linear algebraic operations
(e.g. [6, 7]).

Although random projection and compressed sens-
ing have much in common, they have mostly progressed
in parallel. Here we combine recent work on bounds
for sparse reconstruction to improve bounds of Ailon
and Chazelle [8, 9] and Ailon and Liberty [10] on
fast random projections, also known as Fast Johnson-
Lindenstrauss transformations. The new bounds allow
obtaining the well known Fast Johnson-Lindenstrauss
Transform for finite sets of bounded cardinality N =
exp(Õ(n)) where n is the original dimension. The best
known so far was obtained by Ailon and Liberty for
sets of size up to N = exp{Õ(n1/2)}.2 The latter
improved on Ailon and Chazelle’s original bound of
N = exp{O(n1/3)}, which initiated the construction
of Fast Johnson-Lindenstrauss Transforms. We also
mention Dasgupta et al.’s work [11] on construction
of Johnson-Linenstrauss random matrices which can be
more efficiently applied to sparse vectors, with appli-
cations in the streaming model, and Ailon et al’s work
[12] on design of Johnson-Lindenstrauss matrices that
run in linear time under certain assumptions on various
norms of the input vectors. 3

mappings need not be (and indeed are usually not) projections in

the linear algebraic sense of the word.
2The notation Õ(·) suppresses arbitrarily small polynomial

coefficients and polylogarithmic factors.
3In previous work by Ailon and Chazelle [8, 9] and Ailon and

Liberty [10], a different notation was used. The number of vectors

was n, the original dimension was d and the distortion parameter
was ε. Here, we chose to follow the notation used by Rudelson
and Vershynin [13], since our construction and analysis closely



The transformation we derive here is a composition
of two random matrices: A random sign matrix and a
random selection of a suitable number k of rows from a
Fourier matrix, where k = O(δ−4(logN) polylog(n)),
and δ is the tolerated distortion level. The result,
for constant δ, is believed to be suboptimal within
the polylog(n) factor in the target dimension k. The
running time of performing the transformation on a
vector is dominated by the O(n log n) of the Fast
Fourier Transform, and is believed to be optimal. The
possibility of obtaining such a running time for fixed
distortion was left as an open problem in Ailon and
Chazelle and Ailon and Liberty’s work, and here we
resolve it up to a factor of polylog(n). The dependence
on the constant δ is also believed to be suboptimal, and
the “correct” dependence should be δ−2. The question
of improving this dependence is left as an open problem.

The use of a combination of random sign matrices
and various forms of subsampled Fourier matrices was
also used for random projections in the work of Ailon
and Chazelle [8] and later Ailon and Liberty [10], as well
as that of Matousek [14].4 Here we obtain improved
analysis using recent work by Rudelson and Vershynin
for sparse reconstruction [13].

1.1 Restricted Isometry An underlying idea com-
mon to both random projections and sparse reconstruc-
tion is the preservation of metric information under a
dimension reducing transformation. In sparse recon-
struction theory, this property is known as restricted
isometry [15][16]. A matrix Φ is a restricted isometry
with sparseness paramater r if for some δ > 0,
(1.1)
∀ r-sparse y ∈ Rn (1−δ)‖y‖22 ≤ ‖Φy‖22 ≤ (1+δ)‖y‖22 .

By r-sparse y we mean vectors in Rn with all but at
most r coordinates zero. It was shown in [15] that the
restricted isometry property is sufficient for the purpose
of perfect reconstruction of sparse vectors, compressed
sensing being one of the prominent applications.

In [13], Rudelson and Vershynin construct a dis-
tribution over k × n matrices Φ such that, with high
probability, Φ has the restricted isometry property with
sparseness parameter r and arbitrarily small δ > 0.5 In
their analysis, k = O(δ−2r log(n) · log2(r) log(r log n))
and Φ can be applied (to a given vector x) in running
time O(n log n). Assuming r polynomial in n, this takes
the simpler form of k = O(δ−2r log4 n).6 In fact, Φ is

follow their techniques.
4In fact, in [10] the combination of random signs and Fourier

is applied iteratively many times.
5Their analysis is done over the complex field, but we restrict

the discussion to the reals here.
6In their work, the dependence of k on δ is not analyzed

(up to a constant) nothing other than a random choice
of k rows from the (unnormalized) Hadamard matrix,
defined as Ψω,t = (−1)〈ω,t〉, where 〈·, ·〉 is the dot prod-
uct over the binary field, n is assumed to be a power of 2
and ω, t are thought of as log n dimensional vectors over
the binary field in an obvious way.7 As a corollary of the
result, one obtains a universal matrix for reconstructing
sparse signals, which can be applied to a vector in time
O(n log n). The conjecture is that the same distribution
with k = O(δ−2r log n) should work as well, but this is a
major open question beyond the scope of this work. For
an excellent survey explaining how restricted isometry
can be used for sparse reconstruction, and why design-
ing such matrices with good computational properties is
important we refer the readers to [17] and to references
therein.

Independently, Ailon and Chazelle [8] and Ailon and
Liberty [10] were interested in constructing a distribu-
tion of k × n matrices Φ such that for any set Y ⊆ Rn
of cardinality N , one gets

(1.2) ∀ y ∈ Y (1− δ)‖y‖22 ≤ ‖Φy‖22 ≤ (1 + δ)‖y‖22,

with constant probability. Additionally, the number
of steps required for applying Φ on any given x is
O(n log n). In their result k was taken as O(δ−2 logN),
which is also essentially the best possible [5]. Unfor-
tunately, both results break down when k = Ω(n1/2).8

Assuming the tolerance parameter δ fixed, this limita-
tion can be rephrased as follows: The techniques fail
when the number of vectors N is in exp{Ω(n1/2)}.

In both Ailon and Chazelle [8] and Ailon and
Liberty’s [10] results, as well as in previous work
[1][2][3][14][4] the bounds (1.2) are obtained by proving
strong tail bounds on the distribution of the estimator
‖Φy‖2, and then applying a simple union bound on the
finite collection Y . It is worth a moment’s thought to
realize that Ailon and Chazelle’s result as well as that
of Ailon and Liberty can be used for restricted isome-
try as well. Indeed, a simple epsilon-net argument for
the set of r-sparse vectors can turn that set into a fi-
nite set of exp{O(r log n)} vectors, on which a union
bound can be applied. However, the current limitation
of random projections mentioned above will limit r to

because δ is assumed to be fixed (for sparse signal reconstruction
purposes, this dependence is not important). It is not hard to

derive the quadratic dependence of k in δ−1 from their work.
7Rudelson and Vershynin use the complex Discrete Fourier

Transform matrix, but their analysis does not change when using
the Hadamard matrix.

8Ailon and Chazelle [8] and Ailon and Liberty [10] used d to
denote the data dimension, n its cardinality and ε the sought

distortion bound. Here we follow Rudelson and Vershynin’s
convention using n to denote the dimension and δ the distortion
bound. We now use N to denote the data cardinality.



be in nO(1/2−µ) (for arbitrarily small µ). Interestingly,
Rudelson and Vershynin’s result does not break down
for r polynomial in n. A careful inspection of their tech-
niques reveals that instead of union bounding on a finite
set of strongly concentrated random variables, they use
a result due to Dudley to bound extreme values of Gaus-
sian processes. Can this idea be used to improve [8] and
[10]? Intuitively there is no reason why a result which
is designed for preserving the metric of sparse vectors
should help with preserving the metric of any finite set
of vectors. It turns out, luckily, that such a reduction
can be done, though not in an immediate way.

1.2 Our Result A suitable generalization of Rudel-
son and Vershynin’s result (Section 2), combined with
Ailon and Chazelle [8] and Ailon and Liberty’s [10]
method of random sign matrix preconditioning achieves
our main result (Theorem 3.1) which can be formu-
lated as follows: Assume we have a set of N column
vectors in an n dimensional real space. Fix an er-
ror parameter δ and pick (1) a k × n matrix Φ, with
k = O(δ−4 log(N) log4 n), drawing each row uniformly
at random from the n × n Hadamard matrix, and (2)
an n × n diagonal matrix D with each diagonal ele-
ment drawn uniformly from the set {−1, 1}. Multiply-
ing any vector in our set by ΦD requires O(n log n) op-
erations, and with high (constant) probability uniformly
preserves the N vector norms by a relative error of δ.

1.3 Notation In what follows, we fix N to denote
the cardinality of a set Y of vectors in Rn, where n is
fixed. We also fix a distortion parameter δ ∈ (0, 1/2],
and define k to be an integer in Θ(δ−4(logN)(log4 n)).

Now let Φ be a random k × n matrix obtained as
follows: Pick k random rows, with repetition, from the
unnormalized n × n Hadamard matrix (the Euclidean
norm of each column in the resulting matrix Φ is

√
k).

Let Ω denote the probability space for the choice of Φ.
Let b denote a uniformly chosen vector in {−1, 1}n,

and let Γ denote the probability space on the choice of
b. For a vector y ∈ Rn, we denote by Dy the diagonal
n×n matrix with the coordinates of y on the diagonal.
For a real matrix, ‖·‖ denotes its spectral norm and (·)t
its transpose. For a set T ⊆ {1, . . . n}, we let IdT denote
the diagonal matrix with IdT (i, i) = 1 if i ∈ T , and 0
otherwise. For a vector y ∈ Rn, let supp(y) denote the
support of y, namely, its set of nonzero coordinates. For
a number p ≥ 1, let Bp ⊆ Rn denote the set of vectors
y ∈ Rn with ‖y‖p ≤ 1 and αBp as the set of vectors
y ∈ Rn for which ‖y‖p ≤ α.

2 Restricted isometry result generalization

We follow the main path of Rudelson et al. in [13] to
prove a more general formulation of their main theorem
which is more suitable for us here.

Theorem 2.1. [Derived from Rudelson and
Vershynin[13]] Let α > 0 be any real number.
Define Eα as

(2.3) Eα = EΩ

[
sup

y∈B2∩αB∞

∥∥∥∥D2
y −

1

k
DyΦtΦDy

∥∥∥∥] .

Then for some global C1 > 0,

(2.4) Eα ≤
C1 log3/2(n) log1/2(k)√

k
(Eα + α2)1/2 .

In particular, if (log3/2 n)(log1/2 k)√
k

= O(α), then

(2.5) Eα = O

(
α(log3/2 n)(log1/2 k)√

k

)
.

The proof we present is an adaptation of the proof
of Theorem 3.6 in [13] to a more general setting. In
fact, the latter theorem [13] can be obtained as an easy
consequence of theorem 2.1 by replacing supy∈B2∩αB∞

in (2.3) by supy∈ 1√
r
Yr

where Yr ⊆ Rn is defined as the

set of vectors with at most r coordinates equalling 1
and the remaining coordinates zero. Indeed, 1√

r
Yr ⊆

B2 ∩ r−1/2B∞. We can therefore conclude that for
α = 1√

r
, by definition,

EΩ

 sup
y∈ 1√

r
Yr

∥∥∥∥D2
y −

1

k
DyΦtΦDy

∥∥∥∥
 ≤ Eα .

If we also assume that k = Θ(r log4 n), then (2.5)
will hold, from which we conclude that

EΩ

 sup
y∈ 1√

r
Yr

∥∥∥∥D2
y −

1

k
DyΦtΦDy

∥∥∥∥
(2.6)

≤ O

(
(log3/2 n)(log1/2 k)√

rk

)
.

Now we notice that Dy = 1√
r

Idsupp y, where for a set of

indexes T the diagonal matrix IdT (as defined in [13])
has 1 in diagonal position i if and only if i ∈ T . Using
this observation and multiplying (2.6) by r we conclude
that

EΩ

[
sup
|T |≤r

∥∥∥∥IdT −
1

k
IdT ΦtΦ IdT

∥∥∥∥
]

≤ O

(√
r(log3/2 n)(log1/2 k)√

k

)
,



which is exactly the main result of Rudelson and Ver-
shynin in [13] for restricted isometry.

The proof of Theorem 2.1 below points out the
necessary changes to the proof of Theorem 3.6 in [13].
The difference between the theorems is that in our case,
the supremum in the definition of Eα is taken not only
over the set of sparse vectors, but over a richer set.
It turns out however that [13] uses sparsity in a very
limited way: In fact, the dominating effect of sparsity
there is obtained using the fact that the L1 norm of a
sparse vector is small, compared to its L2 norm. These
arguments appear at the very end of their proof. For the
sake of contributing to the self containment of the paper
we walk through the main milestones of the proof of
Theorem 3.6 in [13], and point out the changes necessary
for our purposes. The reader is nevertheless encouraged
to refer to the enlightening exposition in [13] first.

Proof. Clearly E[ 1
kDyΦtΦDy] = D2

y. We define new in-
dependent random i.i.d. variables {ε1, . . . , εn} obtaining
each the values {+1,−1} with equal probability. Let Π
denote the probability space for {ε1, . . . , εn}. It suf-
fices to prove (using a symmetrization argument, see
Lemma 6.3 in [18]) that

EΩ×Π

[
sup

y∈B2∩αB∞

∥∥∥∥∥1

k

k∑
i=1

εi(xiDy)t(xiDy)

∥∥∥∥∥
]

(2.7)

≤ 2C1(log3/2 n)(log1/2 k)√
k

(Eα + α2)1/2,

where xi is the (random) i’th row of Φ. To that end,
as claimed in [13] (Lemma 3.8), if we can show that for
any fixed choice of Φ,

EΠ

[
sup

y∈B2∩αB∞

∥∥∥∥∥
k∑
i=1

εi(xiDy)t(xiDy)

∥∥∥∥∥
]

(2.8)

≤ k1 sup
y∈B2∩αB∞

∥∥∥∥∥
k∑
i=1

(xiDy)t(xiDy)

∥∥∥∥∥
1/2

for some number k1, then by taking EΩ on both sides
and using Jensen’s inequality (to swap (·)1/2 on the RHS
with EΩ) and the triangle inequality, the conclusion
would be that

(2.9) Eα ≤
2k1√
k

(
Eα + ‖D2

y‖
)1/2

.

Since ‖D2
y‖ = ‖y‖2∞ ≤ α, we would get the stated

result. It thus suffices to prove (2.8) with k1 =

O((log3/2 n)(log1/2 k)). To do so, [13] continue by re-
placing the k binary random variables ε1, . . . , εk in (2.8)
with k Gaussian random variables g1, . . . , gk using a

comparison principle (inequality (4.8) in [18]), reducing
the problem to that of bounding the expected extreme
value of a Gaussian process. Using Dudley’s inequality
(Theorem 11.17 in [18]), as Rudelson and Vershynin do,
one concludes that (2.8) will hold with k1 taken as:

(2.10)

∫ ∞
0

log1/2N (B, ‖ · ‖X , u)du ,

where:

• For a norm ‖ · ‖?, a set S and number u, N (S, ‖ ·
‖?, u) denotes the minimal number of balls of radius
u in norm ‖ · ‖? centered in points of S needed to
cover the set S,

• B is defined as ∪y∈B2∩αB∞By, where By = {Dyz :
z ∈ B2}, and

• ‖x‖X = maxi≤k |〈xi, x〉|, where we remind the
reader that xi is the i′th row of Φ.

Rudelson and Vershynin derive bounds on
N (BRV , ‖ · ‖X , u) for small u and for large u sep-
arately, where in their case BRV was the set of r-sparse
vectors of Euclidean norm 1 (denoted by Dr,n

2 in [13]).
The sparsity of the vectors in the set BRV is used in
both derivations, as follows:

• For large u, a containment argument is used in [13],
asserting that BRV ⊆

√
rB1. Note that by Cauchy

Schwartz and the definition of B, B ⊆ B1, hence
we can also use an L1 bound on the elements of B
to bound N (B, ‖ · ‖X , u). Indeed, by definition of
N , N (B, ‖ · ‖X , u) ≤ N (B1, ‖ · ‖X , u). Using the
probabilistic method, the details of which can be
found in [13], the following bound can be obtained:

N (B1, ‖ · ‖X , u) ≤ (2n)O((log k)/u2) .

• For small u, we note again that with respect to the
norm ‖·‖X , the set has diameter at most 2. Indeed,
for any two points z1, z2 ∈ B,

‖z1 − z2‖X = max
i≤k
|〈xi, z1 − z2〉|

≤ max
i≤k
‖xi‖∞‖z1 − z2‖1 ≤ 2 ,

the last inequality from ‖Φ‖∞ = 1 together with
our above assertion that B ⊆ B1. A volumetric
argument [19] is used to then conclude that

N (B, ‖ · ‖X , u) ≤ (1 +O(1/u))n .



Following Rudelson and Vershyni’s final step in [13], we
derive a bound for the integral

∫∞
0
N 1/2(B, ‖ · ‖X , u)du

by balancing the two bounds at u = 1/
√
n as follows:∫ ∞

0

log1/2N (B, ‖ · ‖X , u)du(2.11)

≤
√
n

∫ 1/
√
n

0

√
log(1 +O(1/u))du(2.12)

+O(
√

(log k)(log n))

∫ ∞
1/
√
n

1

u
du(2.13)

= O(log n
√

(log n log k)) .(2.14)

The conclusion is that we can take k1 to be

O
(
(log n)(

√
log n)(log k)

)
= O

(
(log3/2 n)(log k)

)
, as

required.

3 Random Projections

Our main result claims that the same construction used
by Rudelson et al. also gives improved bounds for
random projections. In what follows, we fix r to be
dδ−2 logNe and α to be 1/

√
r. Additionally, we assume

that Φ is such that

(3.15) sup
y∈B2∩αB∞

∥∥∥∥D2
y −

1

k
DyΦtΦDy

∥∥∥∥ = O(α2) .

Indeed, Theorem 2.1 and the choice of our parameters
guarantee that this holds with probability at least 0.99
in Ω.

Theorem 3.1. Let Y ⊆ B2 denote a set of cardinality
N , and let Φ satisfy (3.15). With probability at least
0.98 (in Γ) we have the following uniform bound for all
y ∈ Y :

1−O(δ) ≤
∥∥∥∥ 1√

k
ΦDyb

∥∥∥∥ ≤ 1 +O(δ) .

We provide some intuition for the proof. We
split our input vectors Y into sums of two vectors,
one of which is r-sparse and the other with `∞ norm
bounded by 1/

√
r. We use Rudelson et al.’s original

result for the sparse part and our generalization of
it (Theorem 2.1), together with Talagrand’s measure
concentration theorem for the `∞-bounded part.

Proof. Let r and α be defined as in Section 2. For each
y ∈ Y we write y = ŷ + y̌, where ŷ is the restriction
of y to its r largest (in absolute value) coordinates and
y̌ is the restriction to its remaining coordinates. Note
that ‖y‖2 = ‖ŷ‖2 +‖y̌‖2 and that ŷ is r-sparse and that

‖y̌‖∞ ≤ α.∥∥∥∥ 1√
k

ΦDyb

∥∥∥∥2

=

∥∥∥∥ 1√
k

ΦDŷb

∥∥∥∥2

+

∥∥∥∥ 1√
k

ΦDy̌b

∥∥∥∥2

+
2

k
btDŷΦtΦDy̌b.

For the first term we have
∥∥∥ 1√

k
ΦDŷb

∥∥∥2

= ‖ŷ‖2 + O(δ).

This stems from the facts that ŷ is r-sparse and that
Φ exhibits the RIP property. This happens with
probability 0.99 over Ω, see discussion of Theorem 2.1.

In what follows we will use the bound on ‖y̌‖∞
to show that with high probability, for all y ∈ Y ,∥∥∥ 1√

k
ΦDy̌b

∥∥∥2

= ‖y̌‖2 + O(δ). A similar argument will

bound the cross product 2
k b
tDŷΦtΦDy̌b. Combining

the three gives the desired result that
∥∥∥ 1√

k
ΦDyb

∥∥∥2

=

‖y‖2 +O(δ).
We start by analyzing the measure concentration

properties of
∥∥∥ 1√

k
ΦDy̌b

∥∥∥2

. Let Xy̌ be the Rademacher

random variable defined by

Xy̌ =

∥∥∥∥ 1√
k

ΦDy̌b

∥∥∥∥ .

Let µy̌ denote a median of Xy̌. By Talagrand [18], we
have that for all t > 0,

Pr[Xy̌ > µy̌ + t] ≤ exp{−C2t
2/σ2

y̌}(3.16)

Pr[Xy̌ < µy̌ − t] ≤ exp{−C2t
2/σ2

y̌}(3.17)

for some global C2, where σy̌ =
∥∥∥ 1√

k
ΦDy̌

∥∥∥. By

the triangle inequality and Equation (3.15) we have
σ2
y̌ = ‖ 1

kDy̌ΦtΦDy̌ − D2
y̌ + D2

y̌‖ ≤ α2 + ‖D2
y̌‖. Clearly

‖Dy̌‖ = ‖y̌‖∞ ≤ α. Hence, σ2
y̌ = O(α2). From the

fact that E[X2
y̌ ] = ‖y̌‖2 and using Appendix A and

(3.16)-(3.17) we conclude that ‖y̌‖ − O(σy̌) ≤ µy̌ ≤
‖y̌‖+O(σy̌). Hence, again using (3.16)-(3.17) and union
bounding over the N vectors in Y , we conclude that
with probability 0.99, uniformly for all y ∈ Y :

‖y̌‖ −O(δ) ≤ 1√
k
‖ΦDy̌b‖ ≤ ‖y̌‖+O(δ) .

We now bound the cross term Z = 1
k b
tDŷΦtΦDy̌b

(y is now held fixed). By disjointness of supp(ŷ) and

supp(y̌), E[Z] = 0. Decompose b into b̌ + b̂, where

supp(b̌) = supp(y̌) and supp(b̂) = supp(ŷ). For any

fixed b̂, the function Z is linear (and hence convex) in

b̌. Also for all possible values b̂′ of b̂, E[Z|b̂ = b̂′] = 0.
Hence, again by Talagrand,

Pr[Z > µb̂′ + t] ≤ exp{−C2t
2/σ2

b̂′
}(3.18)

Pr[Z < µb̂′ − t] ≤ exp{−C2t
2/σ2

b̂′
}(3.19)



where µ′
b̂

is a median of (Z|b̂ = b̂′), and σb̂′ =

‖ 1
k (b̂′)tDŷΦtΦDy̌‖. Clearly,

σb̂′ ≤
∥∥∥∥ 1√

k
(b̂′)tDŷΦt

∥∥∥∥ · ∥∥∥∥ 1√
k

ΦDy̌

∥∥∥∥
= O(‖ŷ‖σy̌) = O(σy̌) = O(α) .

Again using Appendix A and E[Z|b̂ = b̂′] = 0 gives
that |µ′

b̂
| = O(α), and again we conclude using a union

bound that with probability at least 0.99, uniformly for
all y ∈ Y ,

∣∣ 1
k b
tDŷΦtΦDy̌b

∣∣ = O(δ).
Tying it all together, we conclude that with proba-

bility at least 0.98, uniformly for all y ∈ Y ,

1

k
‖ΦDyb‖2 =

1

k
‖ΦDy̌b‖2

+
1

k
‖ΦDŷb‖2 + 2btDyH ΦtΦDy̌b

= ‖y‖2 +O(δ) ,

as required.

4 A note on running time

In [11] and [20] the authors present random operators
which try to minimize the application time for sparse
vectors. This is an important line of research given the
increasing popularity of random projections for online
learning and regression tasks in which the input vec-
tors are usually not dense. We claim that a careful
implementation of the operation x → Φx can also cap-
italize slightly from sparseness of input vectors. Since
each entry in Φ can be computed in O(1) operations a
naive implementation would require O(rk) operations
for r-sparse vectors. This matches the running time of
applying a naive dense i.i.d. matrix. Note however,
that such naive constructions still require O(dk) stor-
age while Φ requires only O(d). Moreover, in [10] claim
that computing x → Φx requires O(d log k) operations
by iteratively adding as subtracting sections of the in-
put vector. If the a similar analysis is performed using
sparse vector operations, the running time reduces to
an expected O(d log(rk/d)).

5 Conclusions

The obvious problems left open are those of (1) im-
proving the dependence of k in δ (from δ−4 to δ−2)
and (2) removing the dependence of k in polylog(n).
Other directions of research include not only reducing
the computational efficiency of random dimension re-
duction, but also the amount of randomness needed for
the construction.
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A

Fact A.1. For any real valued random variable Z such
that for all t > 0

Pr[Z > µ+ t] ≤ exp{−ct2/σ2}(A.1)

Pr[Z < µ− t] ≤ exp{−ct2/σ2}

we have that
√
E(Z2) − O(σ) ≤ µ ≤

√
E(Z2) + O(σ),

where the big-O notation hides a dependence on the
value of c.

Proof. Define the variable Z ′ = (Z − µ)/σ.

E[Z ′] ≤ E[|Z ′|] ≤
∞∑
i=1

iPr(i− 1 ≤ |Z ′| ≤ i)

≤
∞∑
i=1

iPr(|Z ′| ≥ i− 1)

≤ 2

∞∑
i=1

i exp{−c(i− 1)2} = O(1) .

Clearly, the last argument implies E(Z) = µ + O(σ).
Similarly, we get E[Z ′2] = O(1). Thus, E[Z2] −
2µE[Z] + µ2 = O(σ2) and E[Z2] = (µ±O(σ))2.


