
Fast Dimension Reduction Using Rademacher Series on Dual BCH

Codes

Nir Ailon∗ Edo Liberty†

Abstract

The Fast Johnson-Lindenstrauss Transform (FJLT)
was recently discovered by Ailon and Chazelle as a
novel technique for performing fast dimension reduc-
tion with small distortion from `d

2 to `k
2 in time

O(max{d log d, k3}). For k in [Ω(log d), O(d1/2)] this
beats time O(dk) achieved by naive multiplication by
random dense matrices, an approach followed by several
authors as a variant of the seminal result by Johnson
and Lindenstrauss (JL) from the mid 80’s. In this work
we show how to significantly improve the running time
to O(d log k) for k = O(d1/2−δ), for any arbitrary small
fixed δ. This beats the better of FJLT and JL. Our anal-
ysis uses a powerful measure concentration bound due
to Talagrand applied to Rademacher series in Banach
spaces (sums of vectors in Banach spaces with random
signs). The set of vectors used is a real embedding of
dual BCH code vectors over GF (2). We also discuss the
number of random bits used and reduction to `1 space.

The connection between geometry and discrete cod-
ing theory discussed here is interesting in its own right
and may be useful in other algorithmic applications as
well.

1 Introduction

Applying random matrices is by now a well known
technique for reducing dimensionality of vectors in
Euclidean space while preserving certain properties
(most notably distance information). Beginning with
the classic work of Johnson and Lindenstrauss [1], who
used projections onto random subspaces, other variants
of the technique using different distributions are known
[2, 3, 4, 5] and have been used in many algorithms
[6, 7, 8, 9, 10, 11, 12]. In all variants of this idea, a fixed
unit length vector x ∈ Rd is mapped onto Rk (k < d)
via a random linear mapping Φ from a carefully chosen

∗Institute for Advanced Study, Princeton NJ (supported
by the National Science Foundation under agreement
No. DMS-0111298P) and Google Research, New-York NY
(nailon@google.com)

†Yale University, New Haven CT (edo.liberty@yale.edu)
Supported by AFOSR, and NGA.

distribution. A measure concentration principle is used
to show that the distribution of the norm estimator error
|‖Φx‖2−1| in a small neighborhood of 0 is dominated by
a Gaussian of standard deviation O(k−1/2), uniformly
for all x and independent of d. The distribution of Φ
need not even be rotationally invariant. When used in
an algorithm, k is often chosen as O(ε−2 log n) so that
a union bound ensures that the error is smaller than
a fixed ε simultaneously for all n vectors in some fixed
input set. Noga Alon proved [13] that this choice of k is
essentially optimal and cannot be significantly reduced.

It makes sense to abstract the definition of a distri-
bution of mappings that can be used for dimension re-
duction in the above sense. We will say that such a map-
ping has the Johnson-Lindenstrauss property (JLP),
named after the authors of the first such construction
(we make an exact definition of this property in Sec-
tion 2). In view of Ailon and Chazelle’s FJLT result [2],
it is natural to ask about the computational complexity
of applying a mapping drawn from a JLP distribution
on a vector. The resources considered here are time
and randomness. Ailon et al showed that reduction
from d dimensions to k dimensions can be performed
in time O(max{d log d}, k3), beating the näıve O(kd)
time implementation of JL for k in ω(log d) and o(d1/2).
Similar bounds were found in [2] for reducing onto `1
(Manhattan) space, but with quadratic (not cubic) de-
pendence on k. From recent work by Matousek [5] it
can be shown, by replacing gaussian distributions with
±1’s, that Ailon and Chazelle’s algorithm for the Eu-
clidean case requires O(max{d, k3}) random bits in the
Euclidean case.

1.1 Our Results This work contains several contri-
butions. We summarize them for the Euclidean case in
Table 1.1 for convenience. The first (in Section 7) is
a simple trick that can be used to reduce the running
time of FJLT [2] to O(max{d log k}, k3), hence mak-
ing it better than the näıve algorithm for small k (first
row in the table). In typical applications, the running
time translates to O(d log log n), where n is the number
of points we simultaneously want to reduce (assuming
n = 2O(d1/3)).

Fast −−−−−− → Slow

k in o(log d) This work JL FJLT

k in ω(log d)
and o(poly(d)) This work FJLT JL

k in Ω(poly(d))
and

o((d log(d)1/3)

This work,
FJLT

JL

k in
ω((d log d)1/3)
and O(d1/2−δ)

This work FJLT JL

Table 1.1: Schematic comparison of asymptotic running
time of this work, Ailon and Chazelle’s work [2] (FJLT)
and a näıve implementation of Johnson-Lindenstrauss
(JL), or variants thereof.

The main contribution (Sections 5-6) is improving
the case of ”large k” (bottom row in the Table 1.1).
We use tools from the theory of probability and norm
interpolation in Banach spaces (Section 3) as well as
the theory of error correcting codes (Section 4) to
construct a distribution on matrices satisfying JLP
that can be applied in time O(d log d) (note that, in
this case, log d = O(log k)). Our construction takes
advantage of ideas from different classical theories.
These ideas provide a new algorithmic application of
error correcting codes, an extremely useful tool in
theoretical computer science with applications in both
complexity and algorithms (a good overview can be
found in [14]; some other recent examples in [15, 16]).

A note on ”large k”: As stated above, k is typically
O(ε−2 log n), where ε is a desired distortion bound
and n is the number of vectors we seek to reduce.
Although log n is typically small (logarithmic in input
size), in various applications, especially in scientific
computation, ε−2 may be large. This case is therefore
important to study.

It is illustrative to point out an apparent weakness
in [2] that was a starting point of our work. The main
tool used there was to multiply the input vector x by
a random sign change matrix followed by a Fourier
transform, resulting in a vector y. It is claimed that
‖y‖∞ is small (in other words, the ”information” is
spread out evenly among the coordinates). By a
convexity argument the ”worst case” y (assuming only

the `∞ bound) is a uniformly supported vector in which
the absolute value of the coordinates in its (small)
support are all equal. Intuitively, such a vector is
extremely unlikely. In this work we consider other
norms.

It is likely that the techniques we develop here can
be used in conjunction with very recent research on
explicit embeddings of `2 in `1 [17, 18, 19] as well as
research on fast approximate linear algebraic scientific
computation [11, 20, 21, 22, 23, 24, 25]

2 Preliminaries

We use `d
p to denote d dimensional real space equipped

with the norm ‖x‖ = ‖x‖p =
(∑d

i=1 |xi|p
)1/p

, where
1 ≤ p < ∞ and ‖x‖∞ = max{|xi|}. The dual norm
index q is defined by the solution to 1/q + 1/p = 1. We
remind the reader that ‖x‖p = sup y∈`d

q
‖y‖=1

xT y . For a real

k× d matrix A, the matrix norm ‖A‖p1→p is defined as
the operator norm of A : `d

p1
→ `k

p or:

‖A‖p1→p = sup
x∈`d

p1
‖x‖=1

‖Ax‖p = sup
y∈`k

q
‖y‖=1

sup
x∈`d

p1
‖x‖=1

yT Ax .

In what follows we use d to denote the original
dimension and k < d the target (reduced) dimension.
The input vector will be x = (x1, . . . , xd)T ∈ `d

2.
Since we only consider linear reductions we will assume
without loss of generality that ‖x‖2 = 1.

Definition 2.1. A distribution D(d, k) on k × d real
matrices (k ≤ d) has the Johnson-Lindenstrauss prop-
erty (JLP) with respect to a norm index p, if for any
unit vector x ∈ `d

2 and 0 ≤ ε < 1/2,

(2.1) Pr
A∼Dd,k

[| ‖Ax‖p − 1 | > ε] ≤ c1e
−c2kε2

for some global c1, c2 > 0.

(A similar definition was given in [11].) In this work,
we study the cases p = 1 (Manhattan JLP) and p = 2
(Euclidean JLP). We make a few technical remarks
about Definition 2.1:

• For most dimension reduction applications k =
Ω(ε−2), so the constant c1 can be ”swallowed” by
c2, but we prefer to keep it here to avoid writing
O(e−Ω(kε2)) and for generality.

• The definition is robust with respect to bias of
O(k−1/2). More precisely, if we prove Pr[µ − ε ≤
‖Ax‖p ≤ µ+ε] ≥ 1−c1e

−c2kε2
for some µ satisfying

|µ − 1| = O(k−1/2), then this would imply (2.1),
with possibly different constants. We will use this
observation in what follows.

Recall that a Walsh-Hadamard matrix Hd is a d×d
orthogonal matrix with Hd(i, j) = 2−d/2(−1)〈i,j〉 for all
i, j ∈ [0, d − 1], where 〈i, j〉 is dot product (over F2) of
i, j viewed as (log d)-bit vectors. The matrix encodes
the Fourier transform over the binary hypercube. It is
well known that x 7→ Hdx ∈ `d

2 can be computed in
time O(d log d) for any x ∈ `d

2, and that the mapping is
isomorphic.

Definition 2.2. A matrix A ∈ Rm×d is a code matrix
if every row of A is equal to some row of Hd multiplied
by

√
d/m.

The normalization is chosen so that columns have
Euclidean norm 1.

2.1 Statement of our Theorems The main contri-
bution is in Theorem 2.2 below.

Theorem 2.1. For any code matrix A of size k× d for
k < d, the mapping x 7→ Ax can be computed in time
O(d log k).

Clearly this theorem is interesting only for log k =
o(log d), because otherwise the Walsh-Hadamard trans-
form followed by projection onto a subset of the co-
ordinates can do this in time O(d log d), by definition
of a code matrix. As a simple corollary, the run-
ning time of the algorithms in [2] can be reduced to
O(max{d log k, k3}), because effectively what they do is
multiply the input x (after a random sign change) by a
code matrix of size O(k3)× d and then manipulate the
outcome in time O(k3). This gives the left column of
Table 1.1. We omit the details of this result and refer
the reader to [2, 5].

Theorem 2.2. Let δ > 0 be some arbitrarily small
constant. For any d, k satisfying k ≤ d1/2−δ there exists
an algorithm constructing a random matrix A of size
k × d satisfying JLP, such that the time to compute
x 7→ Ax for any x ∈ Rd is O(d log k). The construction
uses O(d) random bits and applies to both the Euclidean
and the Manhattan cases.

We will prove a slightly weaker running time of
O(d log d) below, and provide a sketch for reducting it to
O(d log k), where the full details of the improvement are
deferred to Section 8. This improvement is interesting
for small k, and provides a unified solution for all
k ≤ d1/2−δ, though the small k case can also be taken
care of using Theorem 2.1 above in conjunction with
FJLT [2]. The main contribution of theorem 2.1, of
course, is in getting rid of the term k3 in the running
time of FJLT.

3 Tools from Banach Spaces

The following is known as an interpolation theorem in
the theory of Banach spaces. For a proof, refer to [26].

Theorem 3.1. [Riesz-Thorin] Let A be an m×d real
matrix, and assume ‖A‖p1→r1 ≤ C1 and ‖A‖p2→r2 ≤ C2

for some norm indices p1, r1, p2, r2. Let λ be a real
number in the interval [0, 1], and let p, r be such that
1/p = λ(1/p1)+ (1−λ)(1/p2) and 1/r = λ(1/r1)+ (1−
λ)(1/r2). Then ‖A‖p→r ≤ Cλ

1 C1−λ
2 .

Theorem 3.2. [Hausdorff-Young] For norm index
1 ≤ p ≤ 2, ‖H‖p→q ≤ d−1/p+1/2, where q is the dual
norm index of p.

(This theorem is usually stated with respect to the
Fourier operator for functions on the real line or on the
circle, and is a simple application of Riesz-Thorin by
noticing that ‖H‖2→2 = 1 and ‖H‖1→∞ = d−1/2.)

Let M be a real m × d matrix, and let z ∈ Rd

be a random vector with each zi distributed uniformly
and independently over {±1}. The random vector
Mz ∈ `m

p is known as a Rademacher random variable. A
nice exposition of concentration bounds for Rademacher
variables is provided in Chapter 4.7 of [27] for more
general Banach spaces. For our purposes, it suffices
to review the result for finite dimensional `p space.
Consider the norm Z = ‖Mz‖p (we say that ”Z
is the norm of a Rademacher random variable in `d

p

corresponding to M”). We associate two numbers with
Z,

• The deviation σ, defined as ‖M‖2→p, and

• The median µ of Z.

Theorem 3.3. For any t ≥ 0, Pr[|Z − µ| > t] ≤
4e−t2/(8σ2) .

The theorem is a simple consequence of a powerful
theorem of Talagrand (Chapter 1, [27]) on measure
concentration of functions on {−1, +1}d extendable to
convex functions on `d

2 with bounded Lipschitz norm.

4 Tools from Error Correcting Codes

Let A be a code matrix, as defined above. The columns
of A can be viewed as vectors over F2 under the usual
transformation ((+) → 0, (−) → 1). Clearly, the set
of vectors thus obtained are closed under addition, and
hence constitute a linear subspace of Fm

2 . Conversely,
any linear subspace V of Fm

2 of dimension ν can be
encoded as an m × 2ν code matrix (by choosing some
ordered basis of V). We will borrow well known
constructions of subspaces from coding theory, hence
the terminology. Incidentally, note that Hd encodes

the Hadamard code, equivalent to a dual BCH code of
designed distance 3.

Definition 4.1. A code matrix A of size m × d is a-
wise independent if for each 1 ≤ i1 < i2 < . . . <
ia ≤ m and (b1, b2, . . . , ba) ∈ {+1,−1}a, the num-
ber of columns A(j) for which (A(j)

i1
, A

(j)
i2

, . . . , A
(j)
ia

) =
m−1/2(b1, b2, . . . , ba) is exactly d/2a.

Lemma 4.1. There exists a 4-wise independent code
matrix of size k× fBCH(k) , where fBCH(k) = Θ(k2).

The family of matrices is known as binary dual BCH
codes of designed distance 5. Details of the construction
can be found in [28].

5 Reducing to Euclidean Space for k ≤ d1/2−δ

Assume δ > 0 is some arbitrarily small constant. Let B
be a k × d matrix with Euclidean unit length columns,
and D a random {±1} diagonal matrix. Let Y =
‖BDx‖2. Our goal is to get a concentration bound of
Y around 1. Notice that E[Y 2] = 1. In order to use
Theorem 3.3, we let M denote the k × d matrix with
its i’th column M (i) being xiB

(i), where B(i) denotes
the i’th column of B. Clearly Y is the norm of a
Rademacher random variable in `k

2 corresponding to M .
We estimate the deviation σ and median µ, as defined
in Section 3.

σ = ‖M‖2→2 = sup
y∈`k

2
‖y‖=1

‖yT M‖2

= sup

(
d∑

i=1

x2
i (y

T B(i))2
)1/2

≤ ‖x‖4 sup

(
d∑

i=1

(yT B(i))4
)1/4

= ‖x‖4‖BT ‖2→4 .

(5.2)

(The inequality is Cauchy-Schwartz.) To estimate the
median, µ, we compute

E[(Y − µ)2] =
∫ ∞

0

Pr[(Y − µ)2] > s]ds

≤
∫ ∞

0

4e−s/(8σ2)ds = 32σ2 .

The inequality is an application of Theorem 3.3. Recall
that E[Y 2] = 1. Also, E[Y] = E[

√
Y 2] ≤

√
E[Y 2] = 1

(by Jensen). Hence E[(Y − µ)2] = E[Y 2] − 2µE[Y] +
µ2 ≥ 1−2µ+µ2 = (1−µ)2. Combining, |1−µ| ≤ √

32σ.
We conclude,

Corollary 5.1. For any t ≥ 0,

Pr[|Y − 1| > t] ≤ c3 exp{−c4t
2/(‖x‖24‖BT ‖22→4)} ,

for some global c3, c4 > 0.

In order for the distribution of BD to satisfy JLP,
we need to have σ = O(k−1/2). This requires controlling
both ‖BT ‖2→4 and ‖x‖4. We first show how to design
a matrix B that is both efficiently computable and has
a small norm. The latter quantity is adversarial and
cannot be directly contolled, but we are allowed to
manipulate x by applying a (random) orthogonal matrix
Φ without losing any information.

5.1 Bounding ‖BT ‖2→4 Using BCH Codes

Lemma 5.1. Assume B is a k × d 4-wise independent
code matrix. Then ‖BT ‖2→4 ≤ (3d)1/4k−1/2.

Proof. For y ∈ `k
2 , ‖y‖ = 1,

‖yT B‖44 = dEj∈[d][(yT B(j))4]

= dk−2
k∑

i1,i2,i3,i4=1

Ebi1 ,bi2 ,bi3 ,bi4
[yi1yi2yi3yi4bi1bi2bi3bi4]

= dk−2(3‖y‖42 − 2‖y‖44) ≤ 3dk−2 ,

(5.3)

where bi1 through bik
are independent random {+1,−1}

variables. We now use the BCH codes. Let Bk denote
the k×fBCH(k) matrix from the Lemma 4.1 (we assume
here that k = 2a−1 for some integer a; This is harmless
because otherwise we can reduce onto some k′ = 2a − 1
such that k/2 ≤ k′ ≤ k and pad the output with k − k′

zeros). In order to construct a matrix B of size k × d
for k ≤ d1/2−δ, we first make sure that d is divisible
by fBCH(k) (by at most multiplying d by a constant
factor and padding with zeros), and then define B to
be d/fBCH(k) copies of Bk side by side. Clearly B
remains 4-wise independent. Note that B may no longer
be a code matrix, but x 7→ Bx is computable in time
O(d log k) by performing d/fBCH(k) Walsh transforms
on blocks of size fBCH(k).

5.2 Controlling ‖x‖4 for k < d1/2−δ We define a
randomized orthogonal transformation Φ that is com-
putable in O(d log d) time and succeeds with probabil-
ity 1 − O(e−k) for all k < d1/2−δ. Success means that
‖Φx‖4 = O(d−1/4). (Note: Both big-O’s hide factors
depending on δ). Note that this construction gives a
running time of O(d log d). We discuss later how to do
this for arbitrarily small k with running time O(d log k).

The basic building block is the product HD′, where
H = Hd is the Walsh-Hadamard matrix and D′ is a

diagonal matrix with random i.i.d. uniform {±1} on
the diagonal. Note that this random transformation
was the main ingredient in [2]. Let H(i) denote the i’th
column of H.

We are interested in the random variable X =
‖HD′x‖4. We define M as the d×d matrix with the i’th
column M (i) being xiH

(i), we let p = 4 (q = 4/3), and
notice that X is the norm of the Rademacher random
variable in `d

4 corresponding to M (using the notation
of Section 3). We compute the deviation σ,

σ = ‖M‖2→4 = ‖MT ‖4/3→2

= sup
y∈`k

4/3
‖y‖4/3=1

(∑

i

x2
i (y

T H(i))2
)1/2

≤
(∑

x4
i

)1/4

sup

(∑

i

(yT H(i))4
)1/4

= ‖x‖4‖HT ‖ 4
3→4 .

(5.4)

(Note that HT = H.) By the Hausdorff-Young theorem,
‖H‖ 4

3→4 ≤ d−1/4. Hence, σ ≤ ‖x‖4d−1/4. We now get
by Theorem 3.3 that for all t ≥ 0,

(5.5) Pr[|‖HD′x‖4 − µ| > t] ≤ 4e−t2/(8‖x‖24d−1/2) ,

where µ is a median of X.

Claim 5.1. µ = O(d−1/4) .

Proof. To see the claim, notice that for each separate
coordinate, E[(HD′x)4i] = O(d−2) and then use linear-
ity of expectation to get E[‖HD′x‖44] = O(d−1). By
Jensen’s inequality, E[‖HD′x‖b

4] ≤ E[‖HD′x‖44]b/4 =
O(d−b/4) for b = 1, 3. Now

E[(‖HD′x‖4 − µ)4] =
∫ ∞

0

Pr[(‖HD′x‖4 − µ)4 > s]ds

≤
∫ ∞

0

4e−s1/2/(8‖x‖24d−1/2)ds

= O(d−1) .

This implies by multiplying the LHS out that
−γ1d

−3/4µ − γ2d
−1/4µ3 + µ4 ≤ γ3d

−1, where γi > 0
are global constants for i = 1, 2, 3. The statement of
the claim immediately follows.

Let c9 be such that µ4 ≤ c9d
−1/4. We weaken

inequality (5.5) using the last claim to obtain the
following convenient form:

(5.6) Pr[‖HD′x‖4 > c9d
−1/4 + t] ≤ 4e−t2/(8‖x‖24d−1/2) .

In order to get a desired failure probability of
O(e−k) set t = c8k

1/2‖x‖4d−1/4. For k < d1/2−δ this

gives t < c8d
−δ/2‖x‖4. In other words, with probability

1−O(e−k) we get

‖HD′x‖4 ≤ c9d
−1/4 + c8d

−δ/2‖x‖4 .

Now compose this r times: Take independent random
diagonal {±1} matrices D′ = D(1), D(2), . . . , D(r) and
define Φ(r)

d = HD(r)HD(r−1) · · ·HD(1). Using a union
bound on the conditional failure probabilities, we easily
get:

Lemma 5.2. [`4 reduction for k < d1/2−δ] With
probability 1−O(e−k)

(5.7) ‖Φ(r)x‖4 = O(d−1/4)

for r = d1/2δe.
Note that the constant hiding in the bound (5.7) is
exponential in 1/δ.

Combining the above, the random transformation
A = BDΦ(r) has Euclidean JLP for k < d1/2−δ, and can
be applied to a vector in time O(d log d). This proves
the Euclidean case of Theorem 2.2.

5.3 Reducing the Running Time to O(d log k)
We now explain how to reduce the running time to
O(d log k), using the new tools developed here. This
provides a unified solution to the problem of designing
efficient Johnson-Lindenstrauss projections for all k up
to d1/2−δ. Recall that in the construction of B we placed
d/fBCH(k) copies of the same code matrix Bk of size
k×fBCH(k) side by side. It turns out that we can apply
this ”decomposition” of coordinates to Φ(r). Indeed,
let Ij ⊆ [d] denote the j’th block of β = fBCH(k)kδ

consecutive coordinates (assume that β is an integer
that divides d). For a vector y ∈ `d

p, let yIj ∈ `β
p denote

the projection of y onto the set of coordinates Ij . Now,
instead of using Φ(r) = Φ(r)

d as above, we use a block-
diagonal d×d matrix comprised of d/β β×β blocks each
drawn from the same distribution as Φ(r)

β . Clearly the
running time of the block-diagonal matrix is O(d log k),
by applying the Walsh transform independently on each
block (recall that β = fBCH(k)kδ = O(k2+δ)).

In order to see why this still works, one needs to
repeat the above proofs using a family of norms ‖·‖(p1,p2)

indexed by two norm indices p1, p2 and defined as

‖x‖(p1,p2) =
(∑d/β

j=1 ‖xIj‖p2
p1

)1/p2

. We defer the proofs
to Section 8 below.

6 Reducing to Manhattan Space for k < d1/2−δ

We sketch this simpler case. As we did for the Euclidean
case, we start by studying the random variable W ∈ `k

1

defined as W = ‖k1/2BDx‖1 for B as described in

Section 5 and D a random ±1-diagonal matrix. In order
to characterize the concentration of W (the norm of a
Rademacher r.v. in `k

1) we compute the deviation σ,
and estimate a median µ. As before, we set M to be
the k× d matrix with the i’th column being k1/2B(i)xi.

σ = sup
y∈`k∞
‖y‖=1

‖yT M‖2 = sup

(
k

d∑

i=1

x2
i (y

T B(i))2
)1/2

≤ sup k1/2‖x‖4‖yT B(i)‖4 = k1/2‖x‖4‖BT ‖∞→4

(6.8)

Using the tools developed in the Euclidean case, we
can reduce ‖x‖4 to O(d−1/4) with probability 1−O(e−k)
using Φr(d), in time O(d log d) (in fact, O(d log k) using
the improvement from Section 8). Also we already know
from Section 5.1 that ‖BT ‖2→4 = O(d1/4k−1/2) if B is
comprised of k×fBCH(k) dual BCH codes (of designed
distance 5) matrices side by side (assume fBCH(k)
divides d). Since ‖y‖∞ ≥ k−1/2‖y‖2 for any y ∈ `k,
we conclude that ‖BT ‖∞→4 = O(d1/4). Combining, we
get σ = O(k1/2). We now estimate the median µ of W .

In order to calculate µ we first calculate E(W) =
kE[|P |] where P is any single coordinate of k1/2BDx.
We follow (almost exactly) a proof by Matousek in [5]
where he uses a quantitative version of the Central Limit
Theorem by König, Schütt, and Tomczak [29].

Lemma 6.1. [König-Schütt-Tomczak] Let z1 . . . zd

be independent symmetric random variables with∑d
i=1 E[z2

i] = 1, let F (t) = Pr[
∑d

i=1 zi < t], and let
ϕ(t) = 1

2π

∫ t

−∞ e−x2/2dx. Then

|F (t)− ϕ(t)| ≤ C

1 + |t|3
d∑

i=1

E[|zi|3]

for all t ∈ R and some constant C.

Clearly we can write P =
∑d

i=1 zi where zi = D′
ixi and

each D′
i is a random ±1. Note that

∑d
i=1 E[|zi|3] =

‖x‖33. Let β be the constant
∫∞
−∞ |t|dϕ(t) (the expecta-

tion of the absolute value of a Gaussian).

|E[|P |]− β| =
∣∣∣∣
∫ ∞

−∞
|t|dF (t)−

∫ ∞

−∞
|t|dϕ(t)

∣∣∣∣

≤
∫ ∞

−∞
|F (t)− ϕ(t)| dt

≤ ‖x‖33
∫ ∞

−∞

C

1 + |t|3 dt .

We claim that ‖x‖33 = O(k−1). To see this, recall that
‖x‖2 = 1, ‖x‖4 = O(d−1/4). Equivalently, ‖xT ‖2→2 = 1

and ‖xT ‖4/3→2 = O(d−1/4). By applying Riesz-Thorin,
we get that ‖x‖3 = ‖xT ‖3/2→2 = O(d−1/6), hence
‖x‖33 = O(d−1/2). Since k = O(d1/2) the claim is
proved.

By linearity of expectation we get E(W) = kβ(1±
O(k−1)). We now bound the distance of the median
from the expected value.

|E(W)− µ| ≤ E[|W − µ|]
=

∫ ∞

0

Pr[|W − µ| > t]dt

≤
∫ ∞

0

4e−t2/(8σ2)dt = O(k1/2)

(we used our estimate σ = O(k1/2) above.) We conclude
that µ = kβ(1+O(k−1/2)). This clearly shows that (up
to normalization) the random transformation BDΦ(r)

(where r = d1/δe) has the JL property with respect to
embedding into Manhattan space. The running time is
O(d log d).

7 Trimmed Walsh-Hadamard transform

We prove Theorem 2.1. For simplicity, let H = Hd.
It is well known that computing the Walsh-Hadamard
transform Hx requires O(d log d) operations. It turns
out that it is possible to compute PHx with O(d log k)
operation, as long as the matrix P contains at most
k nonzeros. This will imply Theorem 2.1, because
code matrices of size k × d are a product of PHd,
where P contains k rows with exactly one nonzero in
each row. To see this we remind the reader that the
Walsh-Hadamard matrix (up to normalization) can be
recursively described as

H1 =
(

1 1
1 −1

)
, Hq =

(
Hq/2 Hq/2

Hq/2 −Hq/2

)

We define x1 and x2 to be the first and second
halves of x. Similarly, we define P1 and P2 as the left
and right halves of P respectively.

PHqx =
(

P1 P2

) (
Hq/2 Hq/2

Hq/2 −Hq/2

)(
x1

x2

)

=P1Hq/2(x1 + x2) + P2Hq/2(x1 − x2)
(7.9)

P1 and P2 contain k1 and k2 nonzeros respectively,
k1 + k2 = k, giving the recurrence relation T (d, k) =
T (d/2, k1) + T (d/2, k2) + d for the running time. The
base cases are T (d, 0) = 0 and T (d, 1) = d. We use

induction to show that T (d, k) ≤ 2d log(k + 1).

T (d, k) = T (d/2, k1) + T (d/2, k2) + d

≤ d log(2(k1 + 1)(k2 + 1))
≤ d log((k1 + k2 + 1)2)

for k1 + k2 = k ≥ 1
≤ 2d log(k + 1)

The last sequence of inequalities together with the
base cases clearly also give an algorithm and prove
Theorem 2.1.

Since in [2] both Hadamard and Fourier trans-
forms were considered we shortly describe also a simple
trimmed Fourier transform. In order to compute k co-
efficients from a d dimensional Fourier transform on a
vector x, we divide x into L blocks of size d/L and begin
with the first step of the Cooley Tukey algorithm which
performs d/L FFT’s of size L between the blocks (and
multiplies them by twiddle factors). In the second step,
instead of computing FFT’s inside each block, each co-
efficient is computed directly, by summation, inside it’s
block. These two steps require (d/L)·L log(L) and kd/L
operations respectively. By choosing k/ log(k) ≤ L ≤ k
we achieve a running time of O(d log(k)).

8 Reducing the running time to O(d log k) for
small k

Recall the construction in Section 5: δ > 0 is an
arbitrarily small constant, we assume that k ≤ d1/2−δ,
that kδ is an integer and that β = fBCH(k)kδ divides d
(all these requirements can be easily satisfied by slightly
reducing δ and at most doubling d). The matrix B is of
size k × d, and was defined as follows:

B = (Bk Bk · · ·Bk) ,

where Bk is the k × fBCH(k) code matrix from
Lemma 4.1. Let B̂ denote kδ copies of Bk, side by side.
So B̂ is of size k× β and B consists of d/β copies of B̂.
As in Section 5 we start our construction by studying
the distribution of the `2 estimator Y = ‖BDx‖2, where
D is our usual random ±1 diagonal matrix. Going back
to (5.2) (recall that M is the matrix whose i’th column

M (i) is xiB
(i)), we recompute the deviation σ:

σ = ‖M‖2→2 = sup
y∈`k

2
‖y‖=1

‖yT M‖2

= sup

(
d∑

i=1

x2
i (y

T B(i))2
)1/2

= sup




d/β∑

j=1

∑

i∈Ij

x2
i (y

T B(i))2




1/2

,

where Ij is the j’th block of β consecutive integers
between 1 and d. Applying Cauchy-Schwartz, we get

σ ≤ sup
y∈`k

2
‖y‖=1




d/β∑

j=1

‖xIj
‖24‖yT B̂‖24




1/2

=
(
sup ‖yT B̂‖4

)
‖x‖(4,2) = ‖B̂T ‖2→4‖x‖(4,2) ,

(8.10)

where ‖ · ‖(p1,p2) is defined by

‖x‖(p1,p2) =




d/β∑

j=1

‖xIj‖p2
p1




1/p2

and xIj ∈ `β
p1

is the projection of x onto the set of
coordinates Ij . Our goal, as in Section 5, is to get
σ = O(k−1/2). By the properties of dual BCH code
matrices (Lemma 5.1), we readily have that ‖B̂T ‖2→4 =
O((fBCH(k)kδ)1/4k−1/2) which is O(kδ/4) by our con-
struction. We now need to somehow ”ensure” that
‖x‖(4,2) = O(k−1/2−δ/4) in order to complete the con-
struction.

As before, we cannot directly control x (and its
norms), but we can multiply it by random orthogonal
matrices without losing `2 information. Let H ′ be a
block diagonal d × d matrix with d/β blocks of the
Walsh-Hadamard matrix Hβ :

H ′ =




Hβ

Hβ

. . .
Hβ


 .

Let D′ be a random diagonal d × d matrix over ±1.
The random matrix H ′D′ is orthogonal. We study the
random variable X ′ = ‖H ′D′x‖(4,2). Let M ′ be the
matrix with the i’th column M ′(i) defined as xiH

′(i).
We notice that X ′ is the norm of the Rademacher
random variable in `d

(4,2) corresponding to M .

Remark: The results on Rademacher random vari-
ables, presented in Section 3, apply also to ”nonstan-
dard” norms such as ‖ · ‖(p1,p2). The dual of ‖ · ‖(p1,p2)

is ‖ · ‖(q1,q2), where q1, q2 are the usual dual norm in-
dices of p1, p2, respectively. It is an exercise to check
that ‖x‖(p1,p2) = sup‖y‖(q1,q2)=1 xT y. We compute the
deviation σ′ and a median µ′ of X ′ (as we did in (5.4)):

σ′ = ‖M‖2→(4,2) = ‖MT ‖(4/3,2)→2

= sup
y∈`k

(4/3,2)
‖y‖=1

(∑

i

x2
i (y

T H(i))2
)1/2

= sup




d/β∑

j=1

∑

i∈Ij

x2
i (y

T H ′(i))2




1/2

≤ sup




d/β∑

j=1

‖xIj
‖24‖yT

Ij
Hβ‖24




1/2

≤ sup




d/β∑

j=1

‖xIj‖24‖yIj‖24/3‖HT
β ‖24/3→4




1/2

= ‖Hβ‖4/3→4 sup




d/β∑

j=1

‖xIj‖24‖yIj‖24/3




1/2

,

where the first inequality is Cauchy-Schwartz. By
the inequality (

∑
j Aj)1/2 ≤ ∑

j A
1/2
j holding for all

nonnegative A1, A2, . . . , we get

σ′ ≤ ‖Hβ‖4/3→4 sup
y∈`k

(4/3,2)
‖y‖=1

d/β∑

j=1

‖xIj‖4‖yIj‖4/3

≤ ‖Hβ‖4/3→4‖x‖(4,2) .

(The rightmost inequality is from the fact that∑d/β
j=1 ‖yIj‖24/3 = 1 and the definition of ‖x‖(4,2).) By

Hausdorff-Young, ‖Hβ‖4/3→4 ≤ β−1/4 = O(k−1/2−δ/4),
hence σ′ = O(k−1/2−δ/4‖x‖(4,2)). Any median µ′ of
X ′ is O(k−1/2−δ/4) (details omitted). Applying Theo-
rem 3.3, we get that for all t ≥ 0,

Pr[X ′ > µ′ + t] ≤ 4e−t2/(8σ′2)

≤ ĉ1 exp{−ĉ2t
2k1+δ/2/‖x‖2(4,2)} ,

for some global ĉ1, ĉ2 > 0. Setting t = Θ(‖x‖(4,2)k
−δ/4),

we get that

Pr[‖H ′D′x‖(4,2) > µ′ + t] = O(e−k) .

Similarly to the arguments leading to Lemma 5.2, and
with possible readjustment of the parameter δ, we get
using a union bound

Lemma 8.1. [`(4,2) reduction for k < d1/2−δ] Let
H ′, D′ be as above, and let Φ′ = H ′D′. Define Φ′(r)

to be a composition of r i.i.d. matrices, each drawn
from the same distribution as Φ′. Then With probability
1−O(e−k)

‖Φ′(r)x‖(4,2) = O(k−1/2−δ/4)

for r = d1/2δe.
Combining the above, the random transformation

A = BDΦ′(r) has the JL Euclidean property for k <
d1/2−δ, and can be applied to a vector in time O(d log k),
as required. Indeed, multiplying by Φ′ is done by doing
a Walsh transform on d/β blocks of size β each, resulting
in time O(d log k). Clearly the number of random bits
used in choosing A is O(d).

9 Future work

• Lower bounds. A lower bound on the running time
of applying a random matrix with a JL property on
a vector would be extremely interesting. Any non-
trivial (superlinear) bound for the case k = dΩ(1)

will imply a lower bound on the time to compute
the Fourier transform, because the bottleneck of
our constructions is a Fourier transform.

• Going beyond k = d1/2−δ. As part of our work
in progress, we are trying to push the result to
higher values of the target dimension k (the goal
is a running time of O(d log d)). We conjecture
that this is possible for k = d1−δ, and have partial
results in this direction.

10 Acknowledgements

We thank Bernard Chazelle and Mark W. Tygert for
helpful discussions or dimension reduction, and Tali
Kaufman for sharing her expertise in error correcting
codes.

References

[1] W. B. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. Contemporary
Mathematics, 26:189–206, 1984.

[2] Nir Ailon and Bernard Chazelle. Approximate nearest
neighbors and the fast Johnson-Lindenstrauss trans-
form. In Proceedings of the 38st Annual Symposium
on the Theory of Compututing (STOC), pages 557–563,
Seattle, WA, 2006.

[3] P. Frankl and H. Maehara. The Johnson-Lindenstrauss
lemma and the sphericity of some graphs. Journal of
Combinatorial Theory Series A, 44:355–362, 1987.

[4] Piotr Indyk and Rajeev Motwani. Approximate near-
est neighbors: Towards removing the curse of dimen-
sionality. In Proceedings of the 30th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 604–
613, 1998.

[5] J. Matousek. On variants of the Johnson-
Lindenstrauss lemma. Private communication, 2006.

[6] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani.
Efficient search for approximate nearest neighbor in
high dimensional spaces. SIAM Journal on Computing,
30(2):457–474, 2000.

[7] N. Littlestone. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 1988.

[8] Rosa I. Arriaga and Santosh Vempala. An algorithmic
theory of learning: Robust concepts and random pro-
jection. In FOCS ’99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, page
616, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[9] Piotr Indyk. On approximate nearest neighbors in non-
Euclidean spaces. In Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 148–155, 1998.

[10] Santosh Vempala. The Random Projection Method.
DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science. 2004.

[11] Tamás Sarlós. Improved approximation algorithms for
large matrices via random projections. In Proceedings
of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), Berkeley, CA, 2006.

[12] Sariel Har-Peled. A replacement for Voronoi diagrams
of near linear size. In Proceedings of the 42nd Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 94–103, Las Vegas, Nevada, USA, 2001.

[13] Noga Alon. Problems and results in extremal
combinatorics–I. Discrete Mathematics, 273(1-3):31–
53, 2003.

[14] Madhu Sudan. Essential coding theory (class notes).
[15] Subhash Khot. Hardness of approximating thee short-

est vector problem in lattices. In Proceedings of
the 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2004.

[16] Nir Ailon and Bernard Chazelle. Lower bounds for
linear degeneracy testing. J. ACM, 52(2):157–171,
2005.

[17] A. A. Razborov. Expander codes and somewhat
Euclidean sections in `n

1 . ECCC, 2007.
[18] P. Indyk. Uncertainty principles, extractors, and

explicit embeddings of l2 into l1. In Proceedings of
the 39th Annual ACM Symposium on the Theory of
Computing, 2007.

[19] S. Artstein-Avidan and V. Milman. Logarithmic re-
duction of the level of randomness in some probabilistic
geometric constructions. SIAM Journal on Computing,
1(34):67–88, 2004.

[20] Alan M. Frieze, Ravi Kannan, and Santosh Vempala.
Fast monte-carlo algorithms for finding low-rank ap-

proximations. In IEEE Symposium on Foundations of
Computer Science, pages 370–378, 1998.

[21] Petros Drineas and Ravi Kannan. Fast monte-carlo
algorithms for approximate matrix multiplication. In
IEEE Symposium on Foundations of Computer Sci-
ence, pages 452–459, 2001.

[22] P. Drineas, R. Kannan, and M. Mahoney. Fast monte
carlo algorithms for matrices ii: Computing a low-rank
approximation to a matrix, 2004.

[23] P. Drineas, R. Kannan, and M. Mahoney. Fast monte
carlo algorithms for matrices iii: Computing a com-
pressed approximate matrix decomposition, 2004.

[24] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and
Mark Tygert. A fast randomized algorithm for the
approximation of matrices. Yale Computer Science
Technical Reports, YALE/DCS/TR1380, 2007.

[25] P. Drineas, M. w. Mahoney, S. Muthukrishnan,
and T. Sarlos. Faster least squares approximation.
http://arxiv.org/abs/0710.1435, 2007.

[26] J. Bergh and J. Lofstrom. Interpolation Spaces.
Springer-Verlag, 1976.

[27] M. Ledoux and M. Talagrand. Probability in Banach
Spaces: Isoperimetry and Processes. Springer-Verlag,
1991.

[28] F.J. MacWilliams and N.J.A. Sloane. The Theory of
Error Correcting Codes. North-Holland, 1983.

[29] Carsten Schütt Hermann König and Nicole Tomczak
Jaegermann. Projection constants of symmetric spaces
and variants of khintchine’s inequality. J. Reine
Angew. Math, 511:1–42, 1999.

