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Abstract. Random projection methods give distributions over k × d
matrices such that if a matrix Ψ (chosen according to the distribution) is
applied to a vector x ∈ Rd the norm of the resulting vector, Ψx ∈ Rk, is
up to distortion ε equal to the norm of x w.p. at least 1−δ. The Johnson
Lindenstrauss lemma shows that such distributions exist over dense ma-
trices for k (the target dimension) in O(log(1/δ)/ε2). Ailon and Chazelle
and later Matousek showed that there exist entry-wise i.i.d. distributions
over sparse matrices Ψ which give the same guaranties for vectors whose
`∞ is bounded away from their `2 norm. This allows to accelerate the
mapping x 7→ Ψx. We claim that setting Ψ as any column normalized
deterministic dense matrix composed with random ±1 diagonal matrix
also exhibits this property for vectors whose `p (for any p > 2) is bounded
away from their `2 norm. We also describe a specific tensor product ma-
trix which we term lean Walsh. It is applicable to any vector in Rd in
O(d) operations and requires a weaker `∞ bound on x then the best cur-
rent result, under comparable running times, using sparse matrices due
to Matousek.

Key words: Random Projections, Lean Walsh Transforms, Johnson
Lindenstrauss, Dimension reduction

1 Introduction

The application of various random matrices has become a common method for
accelerating algorithms both in theory and in practice. These procedures are
commonly referred to as random projections. The critical property of a k × d
random projection matrix, Ψ , is that for any vector x the mapping x 7→ Ψx is
such that (1− ε)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + ε)‖x‖2 with probability at least 1− δ for
specified constants 0 < ε < 1/2 and 0 < δ < 1. The name random projections
was coined after the first construction by Johnson and Lindenstrauss in [1] who
showed that such mappings exist for k ∈ O(log(1/δ)/ε2). Since Johnson and
Lindenstrauss other distributions for random projection matrices have been dis-
covered [2–6]. Their properties make random projections a key player in rank-k
? Yale University, Department of Computer Science, Supported by NGA and AFOSR.

?? Google Research
? ? ? Yale University, Department of Mathematics, Program in Applied Mathematics.

0 Edo Liberty and Amit Singer thank the Institute for Pure and Applied Mathemat-
ics (IPAM) and its director Mark Green for their warm hospitality during the fall
semester of 2007.



2 Dense Fast Random Projections and Lean Walsh Transforms

approximation algorithms [7–13], other algorithms in numerical linear algebra
[14–16], compressed sensing [17–19], and various other applications, e.g, [20, 21].

As a remark, random projections are usually used as an approximate isomet-
ric mapping from Rd to Rk for n vectors x1, . . . , xn. By preserving the length
of all

(
n
2

)
distance vectors x = xi − xj the entire metric is preserved. Taking

δ = 1
2

(
n
2

)−1 yields this w.p. at least 1/2 due to the union bound. The resulting
target dimension is k = O(log(n)/ε2).

Considering the usefulness of random projections it is natural to ask the
following question: what should be the structure of a random projection matrix,
Ψ , such that mapping x 7→ Ψx would require the least amount of computational
resources? A näıve construction of a k × d unstructured matrix Ψ would result
in an O(kd) application cost.

In [22], Ailon and Chazelle propose the first asymptotically Fast Johnson Lin-
denstrauss Transform (FJLT). They give a two stage projection process. First,
all input vectors are rotated, using a Fourier transform, such that their `∞ norm
is bounded by O(

√
k/d). Then, a sparse random matrix containing only O(k3)

nonzeros1 is used to project them into Rk. Thus, reducing the running time of
dimensionality reduction from O(kd) to O(d log(d)+k3). Matousek in [6] general-
ized the sparse projection process and showed that if the `∞ norm of all the input
vectors is bounded from above by η, they can be projected by a sparse matrix,
Ψ , whose entries are nonzero with probability max(ckη2, 1) for some constant
c. The number of nonzeros in Ψ is therefore O(k2dη2), with high probability.
The concentration analysis is done for i.i.d. entries drawn from distributions
satisfying mild assumptions.

Recently, Ailon and Liberty [23] improved the running time to O(d log(k)) for
k ≤ d1/2−ζ for any arbitrarily small ζ. They replaced the sparse i.i.d. projection
matrix, Ψ , with a deterministic dense code matrix, A, composed with a random
±1 diagonal matrix2, Ds. They showed that a careful choice of A results in
ADs being a good random projection for the set of vectors such that ‖x‖4 ∈
O(d−1/4). Here, we analyze this result for general k × d deterministic matrices.
Our concentration result is very much in the spirit of [23]. We claim that any
column normalized matrix A can be identified with a set χ ⊂ Rd such that for
x chosen from χ, ADs constitutes a random projection w.h.p. The set χ can be
thought of as the ”good” set for ADs. We study a natural tradeoff between the
possible computational efficiency of applying A and the size of χ: the smaller χ
is, the faster A can be applied3. We examine the connection between A and χ
in Section 2. The set χ should be thought of as a prior assumption on our data,
which may come, for example, from a statistical model generating the data.

We propose in Section 3 a new type of fast applicable matrices and in Sec-
tion 4 explore their corresponding χ. These matrices are constructed using tensor

1 Each entry is drawn from a distribution which is gaussian with probability propor-
tional to k2/d, and so, for any constant probability, arbitrarily close to 1, the number
of nonzeros is smaller than ck3 for some constant c.

2 The random isometric preprocessing is also different than that of the FJLT algorithm
3 This, however, might require a time costly preprocessing application of Φ.
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The rectangular
k × d matrix A

Application
time

x ∈ χ if

Johnson,
Lindenstrauss [1]

Random k dimensional
subspace O(kd) x ∈ Rd

Various Authors
[2, 4–6]

Dense i.i.d. entries
Gaussian or ±1 O(kd) x ∈ Rd

Ailon, Chazelle [22] Sparse Gaussian
distributed entries O(k3)

‖x‖∞
‖x‖2 = O((d/k)−1/2)

Matousek [6]
Sparse sub-Gaussian
symmetric i.i.d. entries O(k2dη2)

‖x‖∞
‖x‖2 ≤ η

General rule
(This work)

Any deterministic
matrix A

‖x‖A
‖x‖2 = O(k−1/2)

Ailon, Liberty [23] Four-wise independent
O(d log k)

‖x‖4
‖x‖2 = O(d−1/4)

This work Lean Walsh Transform O(d)
‖x‖∞
‖x‖2 = O(k−1/2d−ζ)

Table 1. Types of k × d matrices and the subsets χ of Rd for which they constitute a
random projection. The meaning of the norm ‖ · ‖A is given in Definition 2. The top
two rows give random dense matrices, below are random i.i.d. sparse matrices, and the
last three are deterministic matrices composed with random ±1 diagonals.

products and can be applied to any vector in Rd in linear time, i.e., in O(d).
Due to the similarity in their construction to Walsh-Hadamard matrices and
their rectangular shape we term them lean Walsh Matrices4. Lean Walsh matri-
ces are of size d̃ × d where d̃ = dα for some 0 < α < 1. In order to reduce the
dimension to k ≤ d̃, k = O(log(1/δ)/ε2)), we can compose the lean Walsh ma-
trix, A, with a known Johnson Lindenstrauss matrix construction R. Applying R
in O(d) requires some relation between d, k and α as explained in subsection 4.1.

2 Norm concentration and χ(A, ε, δ)

We compose an arbitrary deterministic d̃×d matrix A with a random sign diag-
onal matrix Ds and study the behavior of such matrices as random projections.
In order for ADs to exhibit the property of a random projection it is enough for
it to approximately preserve the length of any single unit vector x ∈ Rd with
high probability:

Pr [| ‖ADsx‖2 − 1 | ≥ ε)] < δ (1)

4 The terms lean Walsh Transform or simply lean Walsh are also used interchangeably.



4 Dense Fast Random Projections and Lean Walsh Transforms

Here Ds is a diagonal matrix such that Ds(i, i) are random signs (i.i.d. ±1 w.p.
1/2 each), 0 < δ < 1 is a constant acceptable failure probability, and the constant
0 < ε < 1/2 is the prescribed precision.

Note that we can replace the term ADsx with ADxs where Dx is a diagonal
matrix holding on the diagonal the values of x, i.e. Dx(i, i) = x(i) and similarly
s(i) = Ds(i, i). Denoting M = ADx, we view the term ‖Ms‖2 as a scalar function
over the hypercube {1,−1}d, from which the variable s is uniformly chosen. This
function is convex over [−1, 1]d and Lipschitz bounded. Talagrand [24] proves a
strong concentration result for such functions. We give a slightly restated form
of his result for our case.

Lemma 1 (Talagrand [24]). Given a matrix M and a random vector s (s(i)
are i.i.d. ±1 w.p. 1/2) define the random variable Y = ‖Ms‖2. Denote by µ a
median of Y , and by σ = ‖M‖2→2 the spectral norm of M . Then

Pr [ |Y − µ| > t] ≤ 4e−t2/8σ2
(2)

Definition 1. ‖M‖p→q denoted the norm of M as an operator from `p to `q,
i.e., ‖M‖p→q = supx, ‖x‖p=1 ‖Mx‖q. The ordinary spectral norm of M is thus
‖M‖2→2.

Lemma 1 asserts that ‖ADxs‖ is distributed like a (sub) Gaussian around its
median, with standard deviation 2σ.

First, in order to have E[Y 2] = 1 it is necessary and sufficient for the columns
of A to be normalized to 1 (or normalized in expectancy). To estimate a median,
µ, we substitute t2 → t′ and compute:

E[(Y − µ)2] =
∫ ∞

0

Pr[(Y − µ)2] > t′]dt′

≤
∫ ∞

0

4e−t′/(8σ2)dt′ = 32σ2

Furthermore, (E[Y ])2 ≤ E[Y 2] = 1, and so E[(Y −µ)2] = E[Y 2]−2µE[Y ]+µ2 ≥
1− 2µ + µ2 = (1− µ)2. Combining, |1− µ| ≤ √

32σ. We set ε = t + |1− µ|:

Pr[|Y − 1| > ε] ≤ 4e−ε2/32σ2
, for ε > 2|1− µ| (3)

If we set k = 33 log(1/δ)/ε2 (for log(1/δ) larger than a sufficient constant) and
set σ ≤ k−1/2, (1) follows from (3). Moreover µ depends on ε such that the
condition ε > 2|1 − µ| is met for any constant ε (given log(1/δ) > 4). This can
be seen by |1−µ| ≤ √

32σ < ε/
√

log(1/δ). We see that σ = ‖ADx‖2→2 ≤ k−1/2

is sufficient for the projection to succeed w.h.p. This naturally defines χ.

Definition 2. For a given matrix A ∈ Rk×d we define the vector pseudonorm
of x ∈ Rd with respect to A as ‖x‖A ≡ ‖ADx‖2→2 where Dx is a diagonal
matrix such that Dx(i, i) = x(i). Remark: If no column of A has norm zero
‖ · ‖A induces a proper norm on Rd.
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Definition 3. We define χ(A, ε, δ) as the intersection of the Euclidian unit
sphere and a ball of radius k−1/2 in the norm ‖ · ‖A

χ(A, ε, δ) =
{

x ∈ Sd−1 | ‖x‖A ≤ k−1/2
}

(4)

for k = 33 log(1/δ)/ε2.

Lemma 2. For any column normalized matrix, A, and an i.i.d. random ±1
diagonal matrix, Ds, the following holds:

∀x ∈ χ(A, ε, δ) Pr [ |‖ADsx‖2 − 1| ≥ ε] ≤ δ (5)

Proof. For any x ∈ χ, by Definition 3, ‖x‖A = ‖ADx‖2→2 = σ ≤ k−1/2. The
lemma follows from substituting the value of σ into Equation (3).

It is convenient to think about χ as the ”good” set of vectors for which ADs

is length preserving with high probability. En route to explore χ(A, ε, δ) for lean
Walsh matrices we first turn to formally defining them.

3 Lean Walsh transforms

The lean Walsh Transform, similar to the Walsh Transform, is a recursive tensor
product matrix. It is initialized by a constant seed matrix, A1, and constructed
recursively by using Kronecker products A`′ = A1 ⊗A`′−1. The main difference
is that the lean Walsh seeds have fewer rows than columns. We formally define
them as follows:

Definition 4. A1 is a lean Walsh seed (or simply ’seed’) if: i) A1 is a rect-
angular matrix A1 ∈ Cr×c, such that r < c; ii) A1 is absolute valued 1/

√
r

entry-wise, i.e., |A1(i, j)| = r−1/2; iii) the rows of A1 are orthogonal.

Definition 5. A` is a lean Walsh transform, of order `, if for all `′ ≤ ` we have
A` = A1 ⊗ A`′−1, where ⊗ stands for the Kronecker product and A1 is a seed
according to Definition 4.

The following are examples of seed matrices:

A′1 = 1√
3




1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 A′′1 = 1√

2

(
1 1 1
1 e2πi/3 e4πi/3

)
(6)

These examples are a part of a large family of possible seeds. This family includes,
amongst other constructions, sub-Hadamard matrices (like A′1) or sub-Fourier
matrices (like A′′1). A simple construction is given for possible larger seeds.

Fact 1 Let F be the c×c Discrete Fourier matrix such that F (i, j) = e2π
√−1ij/c.

Define A1 to be the matrix consisting of the first r = c− 1 rows of F normalized
by 1/

√
r. A1 is a lean Walsh seed.
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We use elementary properties of Kronecker products to characterize A` in
terms of the number of rows, r, and the number of columns, c, of its seed. The
following facts hold true for A`:

Fact 2 i) The size of A` is dα×d, where α = log(r)/ log(c) < 1 is the skewness
of A1;5 ii) for all i and j, A`(i, j) ∈ ±d̃−1/2 which means that A` is column
normalized; and iii) the rows of A` are orthogonal.

Fact 3 The time complexity of applying A` to any vector z ∈ Rd is O(d).

Proof. Let z = [z1; . . . ; zc] where zi are blocks of length d/c of the vector z.
Using the recursive decomposition for A` we compute A`z by first summing over
the different zi according to the values of A1 and applying to each sum the
matrix A`−1. Denoting by T (d) the time to apply A` to z ∈ Rd we get that
T (d) = rT (d/c) + rd. A simple calculation yields T (d) ≤ dcr/(c − r) and thus
T (d) = O(d) for a constant sized seed.

For clarity, we demonstrate Fact 3 for A′1 (Equation (6)):

A′`z = A′`




z1

z2

z3

z4


 =

1√
3




A′`−1(z1 + z2 − z3 − z4)
A′`−1(z1 − z2 + z3 − z4)
A′`−1(z1 − z2 − z3 + z4)


 (7)

Remark 1. For the purpose of compressed sensing, an important parameter of
the projection matrix is its Coherence. The Coherence of a column normalized
matrix is simply the maximal inner product between two different columns. The
Coherence of a lean Walsh matrix is equal to the coherence of its seed and the
seed coherence can be reduced by increasing its size. For example, the seeds
described in Fact 1, of size r by c = r + 1, exhibit coherence of 1/r.

In what follows we characterize χ(A, ε, δ) for a general lean Walsh transform
by the parameters of its seed. The abbreviated notation, A, stands for A` of the
right size to be applied to x, i.e., ` = log(d)/ log(c). Moreover, we freely use α
to denote the skewness log(r)/ log(c) of the seed at hand.

4 An `p bound on ‖ · ‖A

After describing the lean Walsh transforms we turn our attention to exploring
their ”good” sets χ .We remind the reader that ‖x‖A ≤ k−1/2 implies x ∈ χ:

‖x‖2A = ‖ADx‖22→2 = max
y,‖y‖2=1

‖yT ADx‖22 (8)

5 The size of A` is r`× c`. Since the running time is linear, we can always pad vectors
to be of length c` without effecting the asymptotic running time. From this point on
we assume w.l.o.g d = c` for some integer `
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= max
y,‖y‖2=1

d∑

i=1

x2(i)(yT A(i))2 (9)

≤
(

d∑

i=1

x2p(i)

)1/p (
max

y,‖y‖2=1

d∑

i=1

(yT A(i))2q

)1/q

(10)

= ‖x‖22p‖AT ‖22→2q (11)

The transition from the second to the third line follows from Hölder’s inequality
for dual norms p and q, satisfying 1/p + 1/q = 1. We now compute ‖AT ‖2→2q.

Theorem 1. [Riesz-Thorin] For an arbitrary matrix B, assume ‖B‖p1→r1 ≤
C1 and ‖B‖p2→r2 ≤ C2 for some norm indices p1, r1, p2, r2 such that p1 ≤ r1

and p2 ≤ r2. Let λ be a real number in the interval [0, 1], and let p, r be such
that 1/p = λ(1/p1) + (1 − λ)(1/p2) and 1/r = λ(1/r1) + (1 − λ)(1/r2). Then
‖B‖p→r ≤ Cλ

1 C1−λ
2 .

In order to use the theorem, let us compute ‖AT ‖2→2 and ‖AT ‖2→∞. From
‖AT ‖2→2 = ‖A‖2→2 and the orthogonality of the rows of A we get that ‖AT ‖2→2 =√

d/d̃ = d(1−α)/2. From the normalization of the columns of A we get that
‖AT ‖2→∞ = 1. Using the theorem for λ = 1/q, for any q ≥ 1, we obtain
‖AT ‖2→2q ≤ d(1−α)/2q. It is worth noting that ‖AT ‖2→2q might actually be
significantly lower than the given bound. For a specific seed, A1, one should
calculate ‖AT

1 ‖2→2q and use ‖AT
` ‖2→2q = ‖AT

1 ‖`

2→2q to achieve a possibly lower
value for ‖AT ‖2→2q.

Lemma 3. For a lean Walsh transform, A, we have that for any p > 1 the
following holds:

{x ∈ Sd−1 | ‖x‖2p ≤ k−1/2d−
1−α

2 (1− 1
p )} ⊂ χ(A, ε, δ) (12)

where k = O(log(1/δ)/ε2) and α is the skewness of A, α = log(r)/ log(c) (r is
the number of rows, and c is the number of columns in the seed of A).

Proof. We combine the above and use the duality of p and q:

‖x‖A ≤ ‖x‖2p‖AT ‖2→2q (13)

≤ ‖x‖2pd
1−α
2q (14)

≤ ‖x‖2pd
1−α

2 (1− 1
p ) (15)

The desired property, ‖x‖A ≤ k−1/2, is achieved if ‖x‖2p ≤ k−1/2d−
1−α

2 (1− 1
p ) for

any p > 1.

Remark 2. Consider a different family of matrices containing d/d̃ copies of a
d̃ × d̃ identity matrices concatenated horizontally. Their spectral norm is the
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same as that of lean Walsh matrices and they are clearly row orthogonal and
column normalized. Considering p → ∞ they require the same `∞ constraint
on x as lean Walsh matrices do. However, their norm as operators from `2 to
`2q ,for q larger than 1 (p < ∞), is large and fixed, whereas that of lean Walsh
matrices is still arbitrarily small and controlled by the size of the their seed.

4.1 Controlling α and choosing R

We see that increasing the skewness of the seed of A, α, is beneficial from the
theoretical stand point since it weakens the constraint on ‖x‖2p. However, the
application oriented reader should keep in mind that this requires the use of
a larger seed, which subsequently increases the constant hiding in the big O
notation of the running time.

Consider the seed constructions described in Fact 1 for which r = c−1. Their
skewness α = log(r)/ log(c) approaches 1 as their size increases. Namely, for any
positive constant ζ there exists a constant size seed such that 1− 2ζ ≤ α ≤ 1.

Lemma 4. For any positive constant ζ > 0 there exists a lean Walsh matrix,
A, such that:

{x ∈ Sd−1 | ‖x‖∞ ≤ k−1/2d−ζ} ⊂ χ(A, ε, δ) (16)

Proof. Generate A from a seed such that its skewness α = log(r)/ log(c) ≥ 1−2ζ
and substitute p = ∞ into the statement of Lemma 3.

The skewness α also determines the minimal dimension d (relative to k) for
which the projection can be completed in O(d) operations. The reason being that
the vectors z = ADsx must be mapped from dimension d̃ (d̃ = dα) to dimension k
in O(d) operations. This can be done using Ailon and Liberty’s construction [23]
serving as the random projection matrix R. R is a k× d̃ Johnson Lindenstrauss
projection matrix which can be applied in d̃ log(k) operations if d̃ = dα ≥ k2+ζ′′

for arbitrary small ζ ′′. For the same choice of a seed as in Lemma 4, the condition
becomes d ≥ k2+ζ′′+2ζ which can be achieved by d ≥ k2+ζ′ for arbitrary small
ζ ′ depending on ζ and ζ ′′. Therefore for such values of d the matrix R exists and
requires O(dα log(k)) = O(d) operations to apply.

5 Comparison to sparse projections

Sparse random ±1 projection matrices were analyzed by Matousek in [6]. For
completeness we restate his result. Theorem 4.1 in [6] (slightly rephrased to fit
our notation) claims the following:

Theorem 2 (Matousek 2006 [6]). let ε ∈ (0, 1/2) and η ∈ [1/
√

d, 1] be con-
stant parameters. Set q = C0η

2 log(1/δ) for a sufficiently large constant C0. Let
S be a random variable such that

S =





+ 1√
qk

with probability q/2
− 1√

qk
with probability q/2

0 with probability 1− q .

(17)



Dense Fast Random Projections and Lean Walsh Transforms 9

Let k be C1 log(1/δ)/ε2 for a sufficiently large C1. Draw the matrix elements of
Ψ i.i.d. from S. Then:

Pr[|‖Ψx‖22 − 1| > ε] ≤ δ (18)

For any x ∈ Sd−1 such that ‖x‖∞ ≤ η.

With constant probability, the number of nonzeros in Ψ is O(kdq) = O(k2dη2)
(since ε is a constant log(1/δ) = O(k)). In the terminology of this paper we
say that for a sparse Ψ containing O(k2dη2) nonzeros on average (as above)
{x ∈ Sd−1 | ‖x‖∞ ≤ η} ⊂ χ(A, ε, δ).

A lower bound on the running time of general dimensionality reduction is
at least Ω(d). Our analysis shows that the problem of satisfying the condition
Φx ∈ χ (via a Euclidean isometry Φ) is at least as hard. Indeed, a design of any
such fast transformation, applicable in time T (d), would imply a similar upper
bound for general dimensionality reduction. We claim that lean Walsh matrices
admit a strictly larger χ than that of sparse matrices which could be applied
in the same asymptotic complexity. For q = k−1 a sparse matrix Ψ as above
contains O(d) nonzeros, w.h.p., and thus can be applied in that amount of time.
Due to Theorem 2 this value of q requires ‖x‖∞ ≤ O(k−1) for the length of x to
be preserved w.h.p. For d polynomial in k, this is a stronger constraint on the
`∞ norm of x than ‖x‖∞ ≤ O(k−1/2d−ζ) which is obtained by our analysis for
lean Walsh transforms.

6 Conclusion and work in progress

We have shown that any k×d (column normalized) matrix, A, can be composed
with a random diagonal matrix to constitute a random projection matrix for
some part of the Euclidean space, χ. Moreover, we have given sufficient condi-
tions, on x ∈ Rd, for belonging to χ depending on different `2 → `p operator
norms of AT and `p norms of x. We have also seen that lean Walsh matrices ex-
hibit both a ”large” χ and a linear time computation scheme which outperforms
sparse projective matrices. These properties make them good building blocks for
the purpose of random projections.

However, as explained in the introduction, in order for the projection to be
complete, one must design a linear time preprocessing matrix Φ which maps all
vectors in Rd into χ (w.h.p.). Achieving such distributions for Φ would be ex-
tremely interesting from both the theoretical and practical stand point. Possible
choices for Φ may include random permutations, various wavelet/wavelet-like
transforms, or any other sparse orthogonal transformation.

In this framework χ was characterized by a bound over `p (p > 2) norms
of x ∈ χ. Understanding distributions over `2 isometries which reduce other `p

norms with high probability and efficiency is an interesting problem in its own
right. However, partial results hint that for lean Walsh transforms if Φ is taken
to be a random permutation (which is an `p isometry for any p) then the `∞
requirement reduces to ‖x‖∞ ≤ k−1/2. Showing this however requires a different
technique.
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