
Stratified Sampling meets Machine Learning

Kevin Lang
Yahoo Labs

langk@yahoo-inc.com

Edo Liberty
Yahoo Labs

edo@yahoo-inc.com

Konstantin Shmakov
Yahoo Labs

kshmakov@yahoo-
inc.com

ABSTRACT
This paper investigates the practice of non-uniformly sam-
pling records from a database. The goal is to evaluate future
aggregate queries as accurately as possible while maintain-
ing a fixed sampling budget.

We formalize this as a machine learning problem in the PAC
model. The model learned corresponds to sampling proba-
bilities of individual records and a training set is obtained
from previously issued queries to the database. We provide
an efficient and simple regularized Empirical Risk Minimiza-
tion (ERM) algorithm for this problem along with a theo-
retical generalization result for it.

Our experiments show that model accuracy improves with
more training data, that insufficient training data can cause
overfitting and that careful regularization is key. These give
important practical insights and strengthen the parallels to
other machine learning tasks. We report extensive results
for both synthetic and real datasets that significantly im-
prove over both uniform sampling and standard stratified
sampling.

1. INTRODUCTION
Given a database of n records 1, 2, . . . , n we define the result
y of an aggregate query q to be y =

∑
i qi. Here, qi is the

scalar result of evaluating query q on record i.1 For example,
consider a database containing user actions on a popular site
such as the Yahoo homepage. Here, each record corresponds
to a single user and contains his/her past actions on the site.
The value qi can be the number of times user i read a full
news story if they are New York based and qi = 0 otherwise.
The result y =

∑
i qi is the number of articles read by Ya-

hoo’s New York based users. In an internal system at Yahoo
(YAM+) such queries are performed in rapid succession by
advertisers when designing advertising campaigns.

1For notational brevity, the index i ranges over 1, 2, . . . , n
unless otherwise specified.

Answering such queries efficiently poses a challenge. On the
one hand, the number of users n is too large for an efficient
linear scan, i.e., evaluating y explicitly. This is both in terms
of running time and space (disk) usage. On the other hand,
the values qi could be results of applying arbitrarily complex
functions to records. This means no indexing, intermediate
pre-aggregation, or sketching based solutions could be ap-
plied.

Fortunately, executing queries on a random sample of records
can provide an approximate answer which often suffices. The
importance of sampling to database algorithms and the his-
tory of research in this area are both very significant. See
the work of Olken, Rotem and Hellerstein [1, 2, 3, 4] for mo-
tivations and efficient algorithms for database sampling. It
is well known (and easy to show) that a uniform sample of
records provides a provably good solution to this problem.

1.1 Uniform Sampling
Definition: The Horvitz-Thompson estimator for y is given
by ỹ =

∑
i∈S qi/pi where S ⊂ {1, 2, . . . , n} is the set of

sampled records and Pr(i ∈ S) = pi.

Definition: The numeric cardinality of a query is defined by
card(q) :=

∑
|qi|/max |qi|. For binary queries (qi ∈ {0, 1})

this coincides with the standard notion of cardinality.

If pi ≥ ζ > 0 the following statements hold true.

• The estimator ỹ is an unbiased estimator of y.

E[ỹ − y] = 0 .

• The standard deviation, σ, of ỹ − y is bounded.

σ[ỹ − y] ≤ y
√

1/(ζ · card(q)) .

• The probability of large deviation is small.

Pr[|ỹ − y| ≥ εy] ≤ e−O(ε2ζ·card(q)) .

The first and second facts follow from direct expectation and
variance computations. The third follows from ỹ − y being
a sum of independent, mean zero, random variables and the
application of Bernstein’s inequality to it.

Very selective queries or queries with extreme values could
exhibit card(q) = O(1). To obtain a reasonable variance

and success probability for such queries ζ must be large (a
constant) which prohibits any effective sampling. On the
other hand, well spread queries that select a large fraction of
the records and have moderate values have card(q) = O(n).
That allows for ζ to be inversely proportional to n which
means that a constant size sample suffices.

Acharya, Gibbons and Poosala [5] showed that uniform sam-
pling is the optimal strategy against adversarial queries.
Later it was shown by Liberty, Mitzenmacher, Thaler and
Ullman [6] that uniform sampling is also space optimal in
the information theoretic sense for any compression mecha-
nism (not limited to selecting records). That means that no
summary of a database can be more accurate than uniform
sampling in the worst case.

Nevertheless, in practice, queries and databases are not ad-
versarial. This gives some hope to the idea that a non-
uniform sample should produce better results for practically
encountered datasets and query distributions. Because high
cardinality queries already receive an adequate solution by
uniform sampling, the focus is on low cardinality or highly
selective queries. This exact scenario motivated several in-
vestigations into this problem.

1.2 Prior Art
Sampling populations non-uniformly is a standard technique
in statistics. Stratified Sampling is a practice of selecting
individual records with probability proportional to the vari-
ance of estimating statistics on their strata. An example is
known as Neyman allocation [7, 8] which selects records with
probability inversely proportional to the size of the stratum
they belong to.2 Strata in this context is a mutually exclu-
sive partitioning of the records which mirrors the structure
of future queries. This structure is overly restrictive for our
setting where the queries are completely unrestricted.

Acharya et al. [5] introduce congressional sampling. This is
a hybrid of uniform sampling and Neyman allocation. The
stratification is performed with respect to the relations in
the database. Later Chaudhuri, Das and Narasayya [9] con-
sidered the notion of a distribution over queries and assert
that the query log is a random sample from that distribu-
tion, an assumption we later make as well. They use stan-
dard stratified sampling on fundamental regions which are
sets of records with identical responses to the queries in the
query log. It is worth noting that Acharya et al. [5] use a
similar finest partitioning concept. In our setting, we assume
the queries in the query log are rich enough so that funda-
mental regions may degenerate to containing single records.
Nevertheless, if the formulation of Chaudhuri et al. [9] is
taken to its logical conclusion, their result resembles our
Empirical Risk Minimization (ERM) approach. Their so-
lution of the optimization problem however does not carry
over. Chaudhuri et al. [10] also use the query log to iden-
tify outlier records. Those are indexed separately and not
sampled. While their approach mainly focuses on query ex-
ecution speed, one can distill a sampling scheme from it.

The work of Joshi and Jermaine [11] is closely related to

2Neyman allocation is also known as Neyman optimal allo-
cation.

ours. They generate a large number of distributions by tak-
ing convex combinations of Neyman allocations of individual
strata of single queries. The chosen solution is the one that
minimized the observed variance on the query log. Their
algorithm reportedly performs well in experiments and is
close in spirit to the algorithm we propose. Unfortunately,
their methodology falls short on several accounts. Theoret-
ically, they do not argue about future queries which is the
main motivation for their work. Practically, they suggest an
inefficient algorithm and do not recognize the critical impor-
tance of regularization.

Several recent lines of work investigate a dynamic setting
where the sampling technique is adaptive to the error bounds
sought by the query issuer [12, 13, 14]. These ideas combined
with modern data infrastructures [12, 13] lead to impressive
practical results.

Algorithm	
 Sampled	
 	

Database	

Query	
 Query	
 Query	
 log	

Complete	

Database	

Machine	
 Learned	
 Stra.fied	
 Sampling	
 Uniform	
 Sampling	

Approximate	
 Result	

Sampled	
 	

Database	

Approximate	
 Result	

Offline	
 	
 Online	

Figure 1: Standard architecture for database sam-
pling. Our algorithm determines sampling probabil-
ities for individual records based solely on a histor-
ical query log.

1.3 Our Contributions
In this paper we approach this problem in its fullest gener-
ality. We allow each record to be sampled with a different
probability. Then, we optimize these probabilities to mini-
mize the expected error of estimating future queries. Since
future queries are unknown we must make an assumption
about their nature. Our only assumption is that past and
future queries are drawn independently from the same un-
known distribution. This allows us to embed the stratifica-
tion task into a machine learning context and open the door
to new algorithms and analyses. Our contributions can be
summarized as follows.

1. We formalize stratified sampling as a machine learning
problem in the PAC model (Section 2).

2. We propose a simple and efficient one pass algorithm
for solving the regularized ERM problem (Section 3).
This gives a fully automated solution which obtains
provably good results for future queries.

3. We report extensive experimental results on both syn-
thetic and real data from Yahoo’s systems that show-
case the effectiveness of our proposed solution (Sec-
tion 4).

2. SAMPLING IN THE PAC MODEL
In machine learning as a whole and in the PAC model specif-
ically, one assumes that examples are drawn i.i.d. from an
unknown distribution (e.g. [15, 16]). Given a random collec-
tion of such samples — a training set — the goal is to train
a model that is accurate in expectation for future examples
(over the unknown distribution). Our setting is very similar.
Let pi be the probability with which we pick record i. Let qi
denote the query q evaluated for record i and y =

∑
i qi is

the correct exact answer for the query. Let ỹ =
∑
i∈S qi/pi

where i ∈ S with probability pi be the Horvitz-Thompson
estimator for y. The value y can be thought of as the la-
bel for query q and ỹ as the result our sampling would have
predicted for it. The model in this analogy is the vector of
probabilities p.

A standard objective in machine leaning theory (see for ex-
ample [17]) is to minimize the risk R(p) of the model p

R(p) = Eq L(p, q) .

Here, and throughout, Eq[·] stands for the expectation over
the unknown distribution from which queries q are drawn.
Note that in Machine Learning, the loss function is usually
applied to the predicted value L(ỹ, y). In our case ỹ itself is
a random variable. We therefore overload the notion of the
loss with L(p, q) = Eỹ L(ỹ, y). Note that the expectation
Eỹ[·] is taken only with respect to the random bits of the
sampling procedure.

The simplest and most well studied loss function is the
squared loss

L(ỹ, y) = (ỹ − y)2 → L(p, q) =
∑

q2i (1/pi − 1) .

Optimizing for relative squared loss L(ỹ, y) = (ỹ/y − 1)2 is
possible simply by dividing the loss by y2. For notational
brevity, the absolute squared loss is used for the algorithm
presentation and mathematical derivations. In the experi-
mental section we report results for the relative loss which
turns out to be preferred by most practitioners. The reader
should keep in mind that both absolute and relative squared
losses fall under the exact same formulation.

The absolute value loss L(ỹ, y) = |ỹ − y| was considered
by [9]. While it is a very reasonable measure of loss it is
problematic in the context of optimization. First, there is
no simple closed form expression for its expectation over ỹ.
While this does not rule out gradient descent based methods
it makes them much less efficient. A more critical issue with
setting L(ỹ, y) = |ỹ − y| is the fact that L(p, q) is, in fact,
not convex in p. To verify, consider a dataset with only
two records and a single query (q1, q2) = (1, 1). Setting
(p1, p2) = (0.1, 0.5) or (p1, p2) = (0.5, 0.1) gives Eỹ[|ỹ−y|] =
1.8. Setting (p1, p2) = (0.3, 0.3) yields Eỹ[|ỹ − y|] = 1.96.
This contradicts the convexity of L with respect to p.

3. EMPIRICAL RISK MINIMIZATION

Empirical Risk Minimization (ERM) is a standard approach
in machine learning in which the chosen model is the min-
imizer of the empirical risk. The empirical risk Remp(p) is
defined as an average loss of the model over the training set
Q. Here Q is a query log containing a random collection
of queries q drawn independently from the unknown query
distribution.

pemp = arg min
p
Remp(p) = arg min

p

1

|Q|
∑
q∈Q

L(p, q)

Notice that, unlike most machine learning problems, one
could trivially obtain zero loss by setting all sampling prob-
abilities to 1. This clearly gives very accurate “estimates”
but also, obviously, achieves no reduction in the database
size. In this paper we assume that retaining record i incurs
cost ci and constrain the sampling to a fixed budget B. The
interesting scenario for sampling is when

∑
ci � B. By

enforcing that
∑
pici ≤ B the expected cost of the sample

fits the budget and the trivial solution is disallowed.

ERM is usually coupled with regularization because aggres-
sively minimizing the loss on the training set runs the risk
of overfitting. We introduce a regularization mechanism by
enforcing that pi ≥ ζ for some small threshold 0 ≤ ζ ≤
B/
∑
i ci. When ζ = 0 no regularization is applied. When

ζ = B/
∑
i ci the regularization is so severe that uniform

sampling is the only feasible solution. This type of reg-
ularization both insures that the variance is never infinite
and guarantees some accuracy for arbitrary queries (see Sec-
tion 1.1). To sum up, pemp is the solution to the following
constrained optimization problem:

pemp = arg min
p

1

|Q|
∑
q∈Q

∑
i

q2i (1/pi − 1)

s.t.
∑
i

pici ≤ B and ∀ i pi ∈ [ζ, 1]

This optimization is computationally feasible because it min-
imizes a convex function over a convex set. Therefore, gradi-
ent descent is guaranteed to converge to the global optimal
solution.

A (nearly) closed form solution to this constrained optimiza-
tion problem uses the standard method of Lagrange multi-
pliers. The ERM solution, pemp, minimizes

max
α,β,γ

[
1

|Q|
∑
q∈Q

∑
i

q2i (1/pi − 1)−
∑
i

αi(pi − ζ)

−
∑
i

βi(1− pi)− γ(B −
∑
i

pici)]

where αi, βi and γ are nonnegative. By complementary
slackness conditions, if ζ < pi < 1 then αi = βi = 0. Taking
the derivative with respect to pi we get that

pi ∝
√

1
ci

1
|Q|
∑
q∈Q q

2
i

Combining with the above, for some constant λ we have

pi = CLIP1
ζ(λzi) where zi =

√
1
ci

1
|Q|
∑
q∈Q q

2
i and

CLIP1
ζ(z) = max(0,min(1, z)) .

The value for λ is the maximal value such that
∑
pici ≤ B

and can be computed by binary search. This method for

computing pemp is summarized by Algorithm 1, which only
makes a single pass over the training data (in Line 3).

Algorithm 1 Train: regularized ERM algorithm

1: input: training queries Q,
budget B, record costs c,
regularization factor η ∈ [0, 1]

2: ζ = η · (B/
∑
i ci)

3: ∀ i zi =
√

1
ci

1
|Q|
∑
q∈Q q

2
i

4: Binary search for λ satisfying
∑
i ci CLIP1

ζ(λzi) = B
5: output: ∀ i pi = CLIP1

ζ(λzi)

3.1 Model Generalization
The reader is reminded that we would have wanted to min-
imize the risk which means finding

p∗ = arg min
p′

R(p′) = arg min
p′

Eq L(p′, q) .

However, Algorithm 1 minimizes the empirical risk by find-
ing

p = arg min
p′

Remp(p
′) = arg min

p′

1

|Q|
∑
q∈Q

L(p′, q) .

Generalization, in this context, refers to the risk associated
with the empirical minimizer. That is, R(p). Standard
generalization results from machine learning reason about
|R(p) − R(p∗)| as a function of the number of training ex-
amples and the complexity of the learned concept.

For classification, the most common measure of model com-
plexity is the Vapnik-Chervonenkis (VC) dimension. A com-
prehensive study of the VC dimension of SQL queries was
presented by Riondato et al. [18]. For regression problems,
such as ours, Rademacher complexity (see for example [19]
and [20]) is a more appropriate measure. Moreover, it is
directly measurable on the training set which is of great
practical importance.

Luckily, here, we can bound the generalization directly. Let
z∗i =

√
(1/ci)Eqq2i . Notice that, if we replace zi by z∗i in

Algorithm 1 we obtain the optimal solution p∗.

The proof begins by showing that z∗i and zi are 1±ε approxi-
mations of one another, and that ε diminishes proportionally
to
√

1/|Q|. This will yield that the values of λ and λ∗, pi
and p∗i , and finally R(p) and R(p∗) are also 1 ± O(ε) mul-
tiplicative approximations of one another which concludes
our claim.

For a single record, the variable z2i is a sum of i.i.d. ran-
dom variables. Moreover, z∗2i = Eqz2i . Using Hoeffding’s
inequality we can reason about the difference between the
two values.

Pr
[∣∣z2i − z∗2i ∣∣ ≥ εz∗2i] ≤ 2e−2|Q|ε2/ skew2(i) .

Definition: The skew of a record is defined as

skew(i) = (max
q
q2i)/(Eqq2i) .

It captures the variability in the values a single record con-
tributes to different queries. Note that skew(i) is not directly
observable. Nevertheless, skew(i) is usually a small constant

times the reciprocal probability of record i being selected by
a query.

Taking the union bound over all records, we get the minimal
value for ε for which we succeed with probability 1− δ.

ε = O

√maxi skew2(i) log(n/δ)

|Q|


From this point on, it is safe to assume z∗i /(1 + ε) ≤ zi ≤
(1+ε)z∗i for all records i simultaneously. To prove that λ∗ ≤
(1 + ε)λ assume by negation that λ∗ > (1 + ε)λ. Because
CLIP1

ζ is a monotone non-decreasing function we have that

B =
∑

ci CLIP1
ζ(λ
∗z∗i) >

∑
ci CLIP1

ζ(λ(1 + ε)z∗i)

>
∑

ci CLIP1
ζ(λzi) = B

The contradiction proves that λ∗ ≤ (1 + ε)λ. Using the fact
that CLIP1

ζ(x) ≥ CLIP1
ζ(ax)/a for all a ≥ 1 we observe

pi = CLIP1
ζ(λzi) ≥ CLIP1

ζ(λzi(1 + ε)2)/(1 + ε)2

≥ CLIP1
ζ(λ
∗z∗i)/(1 + ε)2 = p∗i /(1 + ε)2

Finally, a straightforward calculation shows that

R(p) =
∑
i

(1/pi − 1)Eqq2i

≤
∑
i

(
(1 + ε)2/p∗i − 1

)
Eqq2i

≤ (1 + 3ε)
∑
i

(1/p∗i − 1)Eqq2i + 3ε
∑
i

Eqq2i

≤ (1 +O(ε))R(p∗) .

The last inequality requires that
∑
i Eqq

2
i is not much larger

than R(p∗) =
∑
i (1/p∗i − 1)Eqq2i . This is a very reasonable

assumption. In fact, in most cases we expect
∑
i Eqq

2
i to be

much smaller than
∑
i (1/p∗i − 1)Eqq2i because the sampling

probabilities tend to be rather small. This concludes the
proof of our generalization result

R(p) ≤ R(p∗)

1 +O

√maxi skew2(i) log(n/δ)

|Q|

 .

4. EXPERIMENTS
In the previous section we proved that if ERM is given a
sufficiently large number of training queries it will generate
sampling probabilities that are nearly optimal for answering
future queries.

In this section we present an array of experimental results
using our algorithm. We compare it to uniform sampling
and stratified sampling. We also study the effects of varying
the number of training example and strength of the regular-
ization. This is done for both synthetic and real datasets.

Our experiments focus exclusively on the relative error de-
fined by L(ỹ, y) = (ŷ/y−1)2. As a practical shortcut, this is
achievable without modifying Algorithm 1 at all. The only
modification needed is normalizing all training queries such
that y = 1 before executing Algorithm 1. The reader can
easily verify that this is mathematically identical to mini-
mizing the relative error. Algorithm 2 describes the testing
phase reported below.

Algorithm 2 Test: measure expected test error.

1: input: Test queries Q, probability vector p
2: for q ∈ Q do
3: yq ←

∑
i qi

4: v2q = E(ỹq/yq − 1)2 = (1/y2q)
∑
i q

2
i (1/pi − 1)

5: output: (1/|Q|)
∑
q∈Q v

2
q

4.1 Details of Datasets

Cube Dataset. The Cube Dataset uses synthetic records
and synthetic queries which allows us to dynamically gener-
ate queries and test the entire parameter space. A record is
a 5-tuple {xk; 1 ≤ k ≤ 5} of random real values, each drawn
uniformly at random from the interval [0, 1]. The dataset
contained 10000 records. A query {(tk, sk); 1 ≤ k ≤ 5} is a
5-tuple of pairs, each containing a random threshold tk in
[0, 1] (uniformly) and a randomly chosen sign sk ∈ {−1, 1}
with equal probability. We set qx = 1 iff ∀k, sk(xk − tk) ≥ 0
and zero else. We also set all record costs to ci = 1. The
length of the tuples and the number of record is arbitrary.
Changing those yields qualitatively similar results.

DBLP Dataset. In this dataset we use a real database
from DBLP and synthetic queries. Records correspond to
2,101,151 academic papers from the DBLP public database
[21]. From the publicly available DBLP database XML file
we selected all papers from the 1000 most populous venues.
A venue could be either a conference or a journal. From
each paper we extracted the title, the number of authors,
and the publication date. From the titles we extracted the
5000 most commonly occurring words (deleting several typ-
ical stop-words such as “a”, “the” etc.).

Next 50,000 random queries were generated as follows. Se-
lect one title word w uniformly at random from the set of
5000 commonly occurring words. Select a year y uniformly
at random from 1970, . . . , 2015. Select a number k of au-
thors from 1, . . . , 5. The query matches papers whose titles
contain w and one of the following four conditions (1) the pa-
per was published on or before y (2) the paper was published
after y (3) the number of authors is ≤ k (4) the number of
authors is > k. Each condition is selected with equal prob-
ability. A candidate query is rejected if it was generated
already or if it matches fewer than 100 papers. The 50,000
random queries were split into 40,000 for training and 10,000
for testing.

YAM+ Dataset. The YAM+ dataset was obtained from an
advertising system at Yahoo. Among its many functions,
YAM+ must efficiently estimate the reach of advertising
campaigns. It is a real dataset with real queries issued by
campaign managers. In this task, each record contains a sin-
gle user’s advertising related actions. The result of a query
is the number of users, clicks or impressions that meet some
conditions.

In this task, record costs ci correspond to their volume on
disk which varies significantly between records. The budget
is the pre-specified allotted disk space available for storing

Dataset Cube DBLP YAM+
Sampling Rate 0.1 0.01 0.01

Uniform Sampling 0.664 0.229 0.104
Neyman Allocation 0.643 0.640 0.286

Regularized Neyman 0.582 0.228 0.102

ERM-η, smallest training set 0.637 0.222 0.096
ERM-ρ, smallest training set 0.623 0.213 0.092
ERM-η, largest training set 0.233 0.182 0.064
ERM-ρ, largest training set 0.233 0.179 0.059

Figure 2: Average expected relative squared errors
on test set for two standard baselines (uniform sam-
pling and Neyman allocation); one novel baseline
(Regularized Neyman); and ERM using two regu-
larization methods. Note that Neyman allocation
is worse than uniform sampling for two of the three
datasets, and that“Regularized Neyman”works bet-
ter than either of them on all three datasets. The
best result for each dataset is shown in bold text.
In all cases it is achieved by regularized ERM. Also,
more training data reduces the testing error, which
is to be expected. Surprisingly, a heuristic variant of
the regularization (Section 4.4) slightly outperforms
the one analyzed in the paper.

the samples. Moreover, unlike the above two examples, the
values qi often represent the number of matching events for
a given user. These are not binary but instead vary between
1 and 10,000. To set up our experiment, 1600 contracts
(campaigns) were evaluated on 60 million users, yielding 1.6
billion nonzero values of qi.

The queries were subdivided to training and testing sets each
containing 800 queries. All training queries were chronolog-
ically issued before any of the testing queries. The train-
ing and testing sets each contained roughly 60 queries that
matched fewer than 1000 users. These were discarded since
they are considered by YAM+ users as too small to be of any
interest. As such, approximating them well is unnecessary.

4.2 Baseline Methods
We used three algorithms to establish baselines for judg-
ing the performance of regularized ERM. Both of the first
two algorithms, uniform sampling and Neyman allocation,
are well known and widely used. The third algorithm was
a novel hybrid of uniform sampling and Neyman allocation
that was inspired by our best-performing version of regular-
ized ERM.

4.2.1 Standard Baseline Methods
The most important baseline method is uniform random
sampling. It is widely used by practitioners and has been
proved optimal for adversarial queries. Moreover, as shown
in Section 1, it is theoretically well justified.

The second most important (and well known) baseline is
Stratified Sampling, specifically Neyman allocation (also
known as Neyman optimal allocation). Stratified Sampling
as a whole requires the input records to be partitioned into
disjoint sets called strata. In the most basic setting, the op-
timal sampling scheme divides the budget equally between

the strata and then uniformly samples within each stratum.
This causes the sampling probability of a given record to be
inversely proportional to the cardinality of its stratum. In-
formally, this works well when future queries correlate with
the strata and therefore have plenty of matching samples.

4.2.2 Strata for Neyman Allocation
The difficulty in applying Neyman allocation to a given data
system lies in designing the strata. This task incurs a large
overhead for developing the necessary insights into the struc-
ture of the database and the queries.

Our experiment used the most reasonable strata we could
come up with. It turned out that the only dataset where
Neyman allocation beat uniform random sampling was the
synthetic Cube Dataset, whose structure we understood com-
pletely (since we designed it). This, however, does not pre-
clude the possibility that better strata would have produced
better results and possibly have improved on uniform ran-
dom sampling for the other datasets as well.

Strata for Cube Data Set. For the Cube Dataset, we hap-
pened to know that good coverage of the corners of the cube
is important. We therefore carved out the 32 corners of
the cube and assigned them to a separate “corners” stra-
tum as follows. A point was assigned to this stratum if
∀k ∈ {1 . . . 5}, min(xk, 1 − xk) < C where the threshold

C = (1/160)(1/5) ≈ 0.362 was chosen so that the total vol-
ume of the corners stratum was 20 percent of the volume
of the cube. This corners stratum was then allocated 50
percent of the sampling scheme’s space budget. This caused
the sampling probabilities of points in the corners stratum
to be 4 times larger than the probabilities of other points.

Strata for DBLP Data Set. For the DBLP dataset, we
experimented with three different stratifications that could
plausibly correlate with queries: 1) by paper venue, 2) by
number of authors, and 3) by year. Stratification by year
turned out to work best, with number of authors a fairly
close second.

Strata for YAM+ Data Set. For the YAM+ dataset users
were put into separate partitions by the type of device they
use most often (smartphone, laptop, tablet etc.) and avail-
able ad-formats on these devices. This creates 71 strata.
YAM+ supports Yahoo ads across many devices and ad-
formats and advertisers often choose one or a few formats
for their campaigns. Therefore, this partition respects the
structure of most queries. Other reasonable partitions we
experimented with did not perform as well. For example,
partition by user age and/or gender would have been reason-
able but it correlates poorly with the kind of queries issued
to the system.

4.2.3 Novel Baseline Method
The winner of a preliminary round of experiments was ERM
with mixture regularization (see Section 4.4). We realized
that this same regularization method could be applied to
probability vectors produced by Neyman allocation, possi-

bly improving the results and providing a stronger baseline.
Because this baseline method uses mixture regularization,
we defer its detailed description to Section 4.5.

4.2.4 Results for Baseline Methods
Figure 2 tabulates the baseline results against which the ac-
curacy of regularized ERM is judged. The sampling rate
is B/

∑
ci. The rest of the rows contain the quantity

(1/|Q|)
∑
q∈Q v

2
q , the output of Algorithm 2.

A comparison of the two standard baseline methods shows
that uniform random sampling worked better than Neyman
allocation for both of the datasets that used real records
and whose structure was therefore complex and somewhat
obscure.

Results for our novel baseline method appear in the table
row labeled“Regularized Neyman”, and are discussed in Sec-
tion 4.5.

4.3 Main Experimental Results
Figure 3 shows the results of applying Algorithm 1 to the
three above datasets. There is one plot per dataset. In
all three plots the y-axis is the average expected normal-
ized squared error as measured on the testing queries; lower
values are better. The different curves in each plot in Fig-
ure 3 report the results for a different size of training set.
The worst results (highest curve) correspond to the small-
est training set. The best results (lowest curve) are for the
largest training set. There is also a black line across the mid-
dle of the plot showing the performance of uniform random
sampling at the same average sampling rate (budget). More
training data yields better generalization (and clearly does
not affect uniform sampling). This confirms our hypothesis
that the right model is learned.

The x-axis in Figure 3 varies with the value of the parame-
ter η which controls the strength of regularization. Moving
from left to right means that stronger regularization is being
applied. When the smallest training set is used (top curve),
ERM only beats uniform sampling when very strong reg-
ularization is applied (towards the right side of the plot).
However, the larger the training set becomes, the less reg-
ularization is needed. This effect is frequently observed in
many machine learning tasks where smaller training sets re-
quire stronger regularization to prevent overfitting.

It is important to point out that overfitting is a very real
concern. Most settings suffer from significant overfitting if
not enough regularization is applied. The crucial role of reg-
ularization is another novel contribution of this work which
was not explained by previous art.

4.4 Mixture Regularization
In Algorithm 1, the amount of regularization is determined
by a probability floor whose height is controlled by the user
parameter η. We have also experimented with a different
regularization that seems to work slightly better. In this
method, unregularized sampling probabilities p are gener-
ated by running Algorithm 1 with η = 0. Then, regularized
probabilities are computed via the formula p′ = (1−ρ)p+ρu
where u = B/(

∑
i ci) is the uniform sampling rate that

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p

e
c
te

d
 E

rr
o

r

[weaker...] Value of Regularization Parameter Eta [...stronger]

Cube Dataset

Uniform Sampling p = 1/10
50 Training Queries

100 Training Queries
200 Training Queries
800 Training Queries

6400 Training Queries

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p

e
c
te

d
 E

rr
o

r

[weaker...] Value of Regularization Parameter Eta [...stronger]

DBLP Dataset

Uniform Sampling p = 1/100
5000 Training Queries

10000 Training Queries
20000 Training Queries
40000 Training Queries

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p

e
c
te

d
 E

rr
o

r

[weaker...] Value of Regularization Parameter Eta [...stronger]

YAM+ Dataset

Uniform p = 1/100
50 Training Queries

100 Training Queries
200 Training Queries
400 Training Queries

All Training Queries

Figure 3: The three plots correspond to the three
datasets. The y-axis is the average expected nor-
malized squared error on the testing queries (lower
values are better). The different curves in each plot
correspond to different sizes of training sets (see the
legend). The black horizontal line corresponds to
uniform sampling using a similar sampling rate. The
value of η (strength of regularization) varies along
the x-axis.

would hit the space budget. Note that p′ is a convex combi-
nations of two feasible solutions to our optimization problem
and is therefore also a feasible solution. Test error as a func-
tion of training set size and the value of ρ are almost iden-
tical to those achieved by η-regularization (Figure 3). The
only difference is that the minimum testing errors achieved
by mixture regularization are slightly lower. Some of these
minima are tabulated in Figure 2. This behavior could be
specific to the data used but could also apply more generally.

4.5 Neyman with Mixture Regularization
The Mixture Regularization method described in Section 4.4
can be applied to any probability vector, including a vector
generated by Neyman allocation. The resulting probability
vector is a convex combination of a uniform vector and a
Neyman vector, with the fraction of uniform controlled by
a parameter ρ ∈ [0, 1]. We note that this idea is similar in
spirit to Congressional Sampling [5].

The estimation accuracy of Neyman with Mixture Regu-
larization is tabulated in the “Regularized Neyman” row of
Figure 2. Each number was measured using the best value
of ρ for the particular dataset (tested in 0.01 increments).
We note that this hybrid method worked better than either
uniform sampling or standard Neyman allocation.

4.6 Accuracy as a Function of Query Size
Our main experimental results show that (with appropriate
regularization) ERM can work better overall than uniform
random sampling. However, there is no free lunch. The
method intuitively works by redistributing the overall supply
of sampling probability, increasing the probability of records
involved in hard queries by taking it away from records that
are only involved in easy queries. This decreases the error of
the system on the hard queries while increasing its error on
the easy queries. This tradeoff is acceptable because easy
queries initially exhibit minuscule error rates and remain
well below an acceptable error rate even if increased.

We illustrate this phenomenon using scatter plots that have
a separate plotted point for each test query showing its ex-
pected error as a function of its numeric cardinality card(q) :=∑
|qi|/max |qi|. As discussed in Section 1.1, the numeric

cardinality is a good measure of how hard it is to approxi-
mate a query result well using a downsampled database.

These scatter plots appear in Figure 4. There is one plot
for each of the three datasets. Also, within each plot, each
query is plotted with two points; a blue one showing its error
with uniform sampling, and a red one showing its error with
regularized ERM sampling.

For high cardinality (easy) queries ERM typically exhibits
more error than uniform sampling. For example, the ex-
treme cardinality queries for the Cube dataset experience
a 0.001 error rate with uniform random sampling. With
our solution the error increases to 0.005. This is a five fold
increase but still well below an average 0.25 error in this
setting. For low cardinality (hard) queries, ERM typically
achieves less error than uniform sampling. However, it does
not exhibit lower error on all of the hard queries. That is
because error is measured on testing queries that were not
seen during training. Predicting the future isn’t easy.

4.7 Variability Caused by Sampling Choices
The quantity 1

|Q|
∑
q∈Q v

2
q output by Algorithm 2 is the av-

erage expected normalized squared error on the queries of
the testing set. While this expected test error is minimized
by the algorithm, the actual test error is a random variable
that depends on the random bits of the sampling algorithm.
Therefore, for any specific sampling, the test error could be
either higher or lower than its expected value. The same

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

E
x
p

e
c
te

d
 E

rr
o

r

Numeric Cardinality of Test Query

Cube Dataset

ERM
Uniform Sampling

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06

E
x
p

e
c
te

d
 E

rr
o

r

Numeric Cardinality of Test Query

DBLP Dataset

Regularized ERM
Uniform Sampling

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000 1e+06

E
x
p

e
c
te

d
 E

rr
o

r

Numeric Cardinality of Test Query

YAM+ Dataset

Regularized ERM
Uniform Sampling

Figure 4: These three plots show the expected error
of each test query. Clearly, for all three datasets, er-
ror is a generally decreasing function of the numeric
cardinality of the queries. The advantage of ERM
over uniform random sampling lies primarily at the
more difficult low cardinality end of the spectrum.

thing is true for uniform random sampling. Given this ad-
ditional source of variability, it is possible that a concrete
sample obtained using ERM could perform worse than a
concrete sample obtained by uniform sampling, even if the
expected error of ERM is better.

To study the variability caused by sampling randomness,
we first computed two probability vectors, pe and pu for the
YAM+ dataset. The former was the output of ERM with

mixture regularization with ρ = 0.71 (its best value for this
dataset). The latter was a uniform probability vector with
the same effective sampling rate (0.01). These were kept
fixed throughout the experiment.

Next the following experiment was repeated 3000 times. In
each trial a random vector, r, of n random numbers was cre-
ated. Each of the values ri was chosen uniformly at random
from [0, 1].

The two concrete samples specified by these values are

i ∈ Se if pe,i < ri and i ∈ Su if pu,i < ri

Finally we measured the average normalized squared error
over the testing queries for the concrete samples Se and Su.
The reason for this construction is so that the two algorithms
use the exact same random bits.

Smoothed histograms of these measurements for regular-
ized ERM and for uniform sampling appear in Figure 7.
For esthetic reasons, these histograms were smoothed by
convolving the discrete data points with a narrow gaussian
(σ = 0.006). They approximate the true distribution of con-
crete outcomes.

The two distributions overlap. With probability 7.2%, a
specific ERM outcome was actually worse than the outcome
of uniform sampling with the same vector of random num-
bers. Even so, from Figure 7 we clearly see the distribution
for regularized ERM shifted to the left. This corresponds to
the reduced expected loss but also shows that the mode of
the distribution is lower.

Moreover, the ERM outcomes are more sharply concentrated
around their mean, exhibiting standard deviation of 0.049
versus 0.062 using uniform sampling. This is despite the
fact that the right tail of the ERM distribution was slightly
worse, with 17/3000 outcomes in the interval [0.4, 0.6] ver-
sus 11/3000 for uniform. The increased concentration is
surprising because usually reducing expected loss comes at
the expense of increasing its variance. This should serve as
additional motivation for using the ERM solution.

4.8 Effect of Including Costs in Optimization
We now turn to inspecting the benefit of incorporating indi-
vidual record costs (ci) in the optimization solution. This is
done by comparing Algorithm 1 against a modified version of
Algorithm 1 that is oblivious to the record costs except when
enforcing the space constraint. The modification consists of
deleting the

√
1/ci term from the formula for zi in line 3 of

Algorithm 1. However, the ci term in line 4 is retained so
that the modified algorithm does not inadvertently gain an
unfair advantage.

The results of this experiment appear in Figure 6. For the
YAM+ data, record costs corresponded to the size of the
record on disk. For the DBLP dataset, we created artifi-
cial costs uniformly distributed over [0, 1]. The red curves
show test error as a function of ρ using our actual ERM
system. The blue curves show the same measurements for
the modified system that is partially oblivious to the record
costs.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.0001 0.001 0.01 0.1 1

E
x
p

e
c
te

d
 E

rr
o

r

’Sampling Rate’ = Budget / (Total Cost)

YAM+ Dataset

Uniform Sampling
Regularized ERM

Figure 5: ERM with mixture regularization versus
uniform random sampling at various effective sam-
pling rates (B/

∑
ci). The gains might appear unim-

pressive in the log-log scale plot but are, in fact,
40%-50% throughout which is significant.

For the DBLP dataset with artificial costs, the partially
oblivious system clearly performed worse. Oddly enough,
for the YAM+ dataset, the two systems performed almost
the same. We suspect that this has something to do with
the fact that the costs ci and the values qi are both deter-
mined by the number of events for the given user, and hence
are heavily correlated. The unmodified system that fully
considered the costs ci managed to fit slightly more records
into the sample by favoring the smaller ones. However, these
smaller records had less power to reduce the prediction er-
ror. We conjecture that these two effects roughly cancelled
each other out.

5. CONCLUDING DISCUSSION
Using three datasets, we demonstrate that our machine learn-
ing based sampling and estimation scheme provides a useful
level of generalization from past queries to future queries.
That is, the estimation accuracy on future queries is better
than it would have been had we used any combination of
uniform or stratified sampling. Moreover, it is a disciplined
approach that does not require any manual labor or data
insights such as needed for using Stratified Sampling (cre-
ating strata). Since we believe most systems of this nature
already store a historical query log, this method should be
widely applicable.

The ideas presented extend far beyond the squared loss and
the specific ERM algorithm analyzed. Machine learning the-
ory allows us to apply this framework to any convex loss
function using gradient descent based algorithms [22]. One
interesting function to minimize is the deviation indicator
function L(ỹ, y) = 1 if |ỹ − y| ≥ εy and zero else. This
choice does not yield a closed form solution for L(p, q) but
using Bernstein’s inequality yields a tight bound that turns
out to be convex in p. Online convex optimization [23] could
give provably low regret results for any arbitrary sequence
of queries. This avoids the i.i.d. assumption and could be es-
pecially appealing in situations where the query distribution
is expected to change over time.

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p

e
c
te

d
 E

rr
o

r

[weaker...] Value of Regularization Parameter Rho [...stronger]

DBLP Dataset with Artificial Costs

Uniform Sampling p = 1/100
Not Using Costs

Using Costs

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p

e
c
te

d
 E

rr
o

r

[weaker...] Value of Regularization Parameter Rho [...stronger]

YAM+ Dataset

Uniform Sampling p = 1/100
Not Using Costs

Using Costs

Figure 6: These plots show the effect of taking the
costs ci into account while computing the values zi.
For YAM+, record costs correspond to the size of
the record on disk. For the DBLP dataset randomly
generated artificial record costs were used.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
a

b
ili

ty
 (

R
e

s
c
a

le
d

)

Average Error

YAM+ Dataset

Uniform Sampling
Regularized ERM

Figure 7: These smoothed histograms show the vari-
ability of results caused by random sampling deci-
sions. Clearly, the distribution of outcomes for regu-
larized ERM is preferable to that of uniform random
sampling.

6. REFERENCES
[1] Frank Olken and Doron Rotem. Simple random

sampling from relational databases. In Proceedings of
the 12th International Conference on Very Large Data
Bases, VLDB ’86, pages 160–169, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc.

[2] Frank Olken and Doron Rotem. Random sampling
from database files: A survey. In Statistical and
Scientific Database Management, 5th International
Conference SSDBM, Charlotte, NC, USA, April 3-5,
1990, Proccedings, pages 92–111, 1990.

[3] Frank Olken. Random Sampling from Databases. PhD
thesis, University of California at Berkeley, 1993.

[4] Joseph M. Hellerstein, Peter J. Haas, and Helen J.
Wang. Online aggregation. SIGMOD Rec.,
26(2):171–182, June 1997.

[5] Swarup Acharya, Phillip B. Gibbons, and Viswanath
Poosala. Congressional samples for approximate
answering of group-by queries. SIGMOD Rec.,
29(2):487–498, May 2000.

[6] Edo Liberty, Michael Mitzenmacher, Justin Thaler,
and Jonathan Ullman. Space lower bounds for itemset
frequency sketches. CoRR, abs/1407.3740, 2014.

[7] Jerzy Neyman. On the two different aspects of the
representative method: the method of stratified
sampling and the method of purposive selection.
Journal of the Royal Statistical Society, pages
558–625, 1934.

[8] William G Cochran. Sampling techniques. John Wiley
& Sons, 2007.

[9] Surajit Chaudhuri, Gautam Das, and Vivek
Narasayya. Optimized stratified sampling for
approximate query processing. ACM Trans. Database
Syst., 32(2), June 2007.

[10] Surajit Chaudhuri, Gautam Das, Mayur Datar,
Rajeev Motwani, and Vivek Narasayya. Overcoming
limitations of sampling for aggregation queries. In
Data Engineering, 2001. Proceedings. 17th
International Conference on, pages 534–542. IEEE,
2001.

[11] Shantanu Joshi and Christopher Jermaine. Robust
stratified sampling plans for low selectivity queries. In
Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, ICDE ’08, pages
199–208, Washington, DC, USA, 2008. IEEE
Computer Society.

[12] Sameer Agarwal, Barzan Mozafari, Aurojit Panda,
Henry Milner, Samuel Madden, and Ion Stoica.
Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 29–42, New York, NY,
USA, 2013. ACM.

[13] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early
accurate results for advanced analytics on mapreduce.
Proc. VLDB Endow., 5(10):1028–1039, June 2012.

[14] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet
Talwalkar, Michael Jordan, Samuel Madden, Barzan
Mozafari, and Ion Stoica. Knowing when you’re
wrong: Building fast and reliable approximate query
processing systems. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of

Data, SIGMOD ’14, pages 481–492, New York, NY,
USA, 2014. ACM.

[15] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27(11):1134–1142, November 1984.

[16] Michael J Kearns and Umesh Virkumar Vazirani. An
introduction to computational learning theory. MIT
press, 1994.

[17] Mehryar Mohri, Afshin Rostamizadeh, and Ameet
Talwalkar. Foundations of Machine Learning. The
MIT Press, 2012.

[18] Matteo Riondato, Mert Akdere, UÇ§ur

ÃÂĞetintemel, StanleyB. Zdonik, and Eli Upfal. The
vc-dimension of sql queries and selectivity estimation
through sampling. In Dimitrios Gunopulos, Thomas
Hofmann, Donato Malerba, and Michalis Vazirgiannis,
editors, Machine Learning and Knowledge Discovery
in Databases, volume 6912 of Lecture Notes in
Computer Science, pages 661–676. Springer Berlin
Heidelberg, 2011.

[19] Peter L. Bartlett and Shahar Mendelson. Rademacher
and gaussian complexities: Risk bounds and structural
results. J. Mach. Learn. Res., 3:463–482, March 2003.

[20] Shai Shalev-Shwartz and Shai Ben-David.
Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York,
NY, USA, 2014.

[21] DBLP XML database. http://dblp.uni-trier.de/xml/.

[22] Elad Hazan and Satyen Kale. Beyond the regret
minimization barrier: Optimal algorithms for
stochastic strongly-convex optimization. J. Mach.
Learn. Res., 15(1):2489–2512, January 2014.

[23] Martin Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. 2003.

