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Matrix Data

Often our data is represented by a large matrix.



Matrix Data

We will think of A ∈ Rd×n as n column vectors in Rd and typically n� d.

Typical web scale data:

Data Columns Rows d n sparse
Textual Documents Words 105 - 107 > 1010 yes

Actions Users Types 101 - 104 > 107 yes

Visual Images Pixels, SIFT 105 - 106 > 108 no

Audio Songs, tracks Frequencies 105 - 106 > 108 no

Machine Learning Examples Features 102 - 104 > 106 yes/no

Financial Prices Items, Stocks 103 -105 > 106 no



Matrix Data

Low rank matrix approximation is helpful for

� Dimension reduction

� Signal processing

� Compression

� Classification

� Regression

� Clustering

� . . .



Singular Value Decomposition (SVD)



Best rank k Approximation

B = Ak minimizes ‖A−B‖2 and ‖A−B‖F among all rank k matrices.



Best rank k Approximation

Block power methods and Lanczos like methods:

� Õ(k) passes over the matrix.

� Õ(ndk) operations

Õ(·) hides logarithmic factors and spectral gap dependencies.

By first computing AAT

� Ω(d2) space

� O(nd2) operations

Assuming d = o(n) and naive matrix matrix multiplication.



Matrix Approximation

Let PA
k = UkU

T
k be the best rank k projection of the columns of A

‖A− PA
k A‖2 = ‖A−Ak‖2 = σk+1

Let PB
k be the best rank k projection for B

‖A− PB
k A‖2 ≤ σk+1 +

√
2‖AAT −BBT ‖ [FKV04]

From this point on, our goal is to find B which is:

1. ‖AAT −BBT ‖ ≤ ε‖AAT ‖
2. Small, B ∈ Rd×` and `� d

3. Computationally easy to obtain from A



Random projection based algorithms



Random projection

1. Output B = AR [Sar06, WLRT08, CW09]

2. Where R ∈ Rn×` such that Ri,j ∼ N (0, 1/`).

Note that E[BBT ] = E[ARRTAT ] = A E[RRT ]AT = AAT
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Random projection

Johnson-Lindenstrauss property [JL84, FM87, DG99]

The matrix R exhibits the Johnson-Lindenstrauss property. For any y ∈ Rn

Pr
[∣∣‖yR‖2 − ‖y‖2∣∣ > ε‖y‖2

]
≤ e−c`ε2

If ` = Õ(Rank(A)/ε2) then by the union bound we have

‖ATA−BTB‖ = sup
‖x‖=1

∣∣‖xA‖2 − ‖xAR‖2∣∣ ≤ ε‖AAT ‖

This gives us exactly what we need!

Random projection

� 1 pass � O(nd`) operations



Fast random projection

� This can be accelerated by making R sparser [Ach03, Mat08, DKS10, KN10].

� But in general, R cannot be “much sparser” [KN10, NNW12, NN13, NN14].

Faster Johnson-Lindenstrauss transforms require very different machinery
[AC06, AL09, AC10, LAS11, AL11, KW11, AR14].

Fast random projection

� 1 pass (by row) � O(nd log(`)) operations



Matrix approximation in the streaming setting



Data is dynamically aggregated

Sometimes we get one column at a time (row operations impossible...)



Data is dynamically aggregated

Sometimes, we cannot even store the entire matrix.



Streaming Matrices

Note that AAT can be trivially computed from the stream of columns Ai

AAT =

n∑
i=1

AiA
T
i

In words, AAT is the sum of outer products of the columns of A.

Näıve solution

Compute AAT in time O(nd2) and space O(d2). Compute the best rank-k
projection for AAT in o(nd2).

Which is hopeless when d is large!
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Column Sampling

Sample only ` columns where [FKV04, AW02, Ver, DK03, RV07, Oli10]

` ∈ O
(
r log(r)

ε2

)
Each column of B is A(j)/pj w.p. pj = ‖A(j)‖22/‖A‖2F

Column sampling based on `2
2 norm

1. It can be performed in a column stream, O(nnz(A)) operations

2. The result is sparse if the data is sparse, potentially o(d`) space

r = ‖A‖2F /‖A‖22 is the numeric/stable rank of A.



Feature Hashing

Use the “count-sketch” matrix R that contains one {−1, 1} per row.

1. It can be applied in streaming in O(nnz(A)) operations

2. The result is dense, Ω(d`) space

3. Has some other surprising properties...

[CCFC02, WDL+09, CW12]



Experiments

The error term ‖AAT −BBT ‖ reduces like 1/
√
`.



Frequent Directions



Frequent Directions

Lemma from [Lib13]

One can maintain a matrix B with only ` = O(1/ε) columns s.t.

‖AAT −BBT ‖2 ≤ ε‖A‖2F

Intuition:

Extend Frequent-items [MG82, DLOM02, KPS03, MAEA05]



Frequent Items

Obtain the frequency f(i) of each item in the stream of items



Frequent Items

With d counters it’s easy but not good enough (IP addresses, queries....)



Frequent Items

(Misra-Gries) Lets keep less than a fixed number of counters `.



Frequent Items

If an item has a counter we add 1 to that counter.



Frequent Items

Otherwise, we create a new counter for it and set it to 1



Frequent Items

But now we do not have less than ` counters.



Frequent Items

Let δ be the median counter value at time t



Frequent Items

Decrease all counters by δ (or set to zero if less than δ)



Frequent Items

And continue...



Frequent Items

The approximated counts are f ′



Frequent Items

� We increase the count by only 1 for each item appearance.

f ′(i) ≤ f(i)

� Because we decrease each counter by at most δt at time t

f ′(i) ≥ f(i)−
∑
t

δt

� Calculating the total approximated frequencies:

0 ≤
∑
i

f ′(i) ≤
∑
t

1− (`/2) · δt = n− (`/2) ·
∑
t

δt

∑
t

δt ≤ 2n/`

� Setting ` = 2/ε yields
|f(i)− f ′(i)| ≤ εn



Email threading

C=769
w=1,490

C=753
w=1,395

C=652
w=1,300

C=632
w=1,221

C=1,742
w=6,446

C=153
w=704

C=193
w=12,098

payless.com
“Order confirmation”

payless.com
“Your order is shipped”

overstock.com:
“Order confirmation”

overstock.com:
“Your overstock.com 
order has shipped.”

overstock.com:
“Overstock.com password 

reset request.”

PayPal.com: 
“You submitted an order in the 

amount of * usd to overstock.com.”

Find all email pairs such that Pr(e1|e2) ≥ θ [AKLM13].



Frequent Directions

We keep a sketch of at most ` columns



Frequent Directions

We maintain the invariant that some columns are empty (zero valued)



Frequent Directions

Input vectors are simply stored in empty columns



Frequent Directions

Input vectors are simply stored in empty columns



Frequent Directions

When the sketch is ‘full’ we need to zero out some columns...



Frequent Directions

Using the SVD we compute B = USV T and set Bnew = US



Frequent Directions

Note that BBT = BnewB
T
new so we don’t “lose” anything



Frequent Directions

The columns of B are now orthogonal and in decreasing magnitude order



Frequent Directions

Let δ = ‖B`/2‖2



Frequent Directions

Reduce column `22-norms by δ (or nullify if less than δ)



Frequent Directions

Start aggregating columns again...



Frequent Directions

Input: `, A ∈ Rd×n

B ← all zeros matrix ∈ Rd×`

for i ∈ [n] do
Insert Ai into a zero valued column of B
if B has no zero valued colums then

[U,Σ, V ]← SV D(B)
δ ← σ2

`/2

Σ̌←
√

max(Σ2 − I`δ, 0)
B ← U Σ̌ # At least half the columns of B are zero.

Return: B



Bounding the error

We first bound ‖AAT −BBT ‖

sup
‖x‖=1

‖xA‖2 − ‖xB‖2 = sup
‖x‖=1

n∑
t=1

[〈x,At〉2 + ‖xBt−1‖2 − ‖xBt‖2]

= sup
‖x‖=1

n∑
t=1

[‖xCt‖2 − ‖xBt‖2]

≤
n∑

t=1

‖CtTCt −BtTBt‖ · ‖x‖2 ≤
n∑

t=1

δt

Which gives:

‖AAT −BBT ‖ ≤
n∑

t=1

δt



Bounding the error

We compute the Frobenius norm of the final sketch.

0 ≤ ‖B‖2F =

n∑
t=1

[‖Bt‖2F − ‖Bt−1‖2F ]

=

n∑
t=1

[(‖Ct‖2F − ‖Bt−1‖2F )− (‖Ct‖2F − ‖Bt‖2F )]

=

n∑
t=1

‖At‖2 − tr(CtTCt −BtTBt) ≤ ‖A‖2F − (`/2)
n∑

t=1

δt

Which gives:
n∑

t=1

δt ≤ 2‖A‖2F /`



Bounding the error

We saw that:

‖AAT −BBT ‖ ≤
n∑

t=1

δt

and that:
n∑

t=1

δt ≤ 2‖A‖2F /`

Setting ` = 2/ε yields
‖AAT −BBT ‖ ≤ ε‖A‖2F .

The two proofs are very similar...



Stronger bounds

Lemma: covariance approximation guarantee [GP14, GLPW15]

‖ATA−BTB‖2 ≤ ‖A−Ak‖2F /(`− k) for any k < `.

Lemma: projection approximation guarantee [GP14]

‖A− πBk
(A)‖2F ≤

(
1 + k

`−k
)
‖A−Ak‖2F for any k < `.

Lemma: space optimality [Woo14, GLPW15]

Frequent directions is space optimal. Any algorithm (randomized or not) with
matching guaranties must require as much space, up to a word-size factor.



Frequent Directions
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Slower than hashing or sampling but still very fast.



Frequent Directions

The error term ‖AAT −BBT ‖ reduces like 1/`



Matrix approximation online



Online PCA

Consider clustering the reduced dimensional vectors online
(e.g. [Mey01, LSS14])

The PCA algorithm must output yt before receiving xt+1.



Online PCA, prior models

Regret minimization: Minimizes
∑

t ‖xt − Pt−1xt‖2 where Pt−1 is committed to
before receiving xt [WK06, NKW13]

Random projection: can guarantee online that ‖(X − (XY +)Y ‖2F is small
[CW09, Sar06]

Stochastic model: Assumes xt are drown i.i.d. from an unknown distribution
[OK85, ACS13, MCJ13, BDF13]



Principal Component Analysis

Given a set of vectors xt ∈ Rd the goal is to map them to yt ∈ Rk that minimize:

min
{Φ|ΦT Φ=Ik}

∑
i

‖xt − Φyt‖22



Online regression

Note that this is non trivial even when d = 2 and k = 1.

For x1 there aren’t many options...



Online regression

Note that this is non trivial even when d = 2 and k = 1.

For x2 this is already a non standard optimization problem



Online regression

Note that this is non trivial even when d = 2 and k = 1.

In general, the mapping xi 7→ yi is not necessarily linear.



Online PCA algorithms

Lemma: online PCA with Frobenius bounds [BGKL15]

minΦ ‖X − ΦY ‖2F ≤ ‖Xk‖2F + ε‖X‖2F with target dimension ` ∈ O(k/ε2)

Lemma: improved online PCA with spectral bounds [KL15]

minΦ ‖X − ΦY ‖22 ≤ σ2
k+1 + εσ2

1 with target dimension ` = Õ( k
ε2

)



Online PCA algorithm intuition

The covariance matrix XTX visualized as an ellipse.



Online PCA algorithm intuition

The optimal residual is R = X −Xk



Online PCA algorithm intuition

Any residual R = X − ΦY such that ‖RTR‖ ≤ σ2
k+1 + εσ2

1 would work



Online PCA algorithm intuition

Let us assume we know ∆ = σ2
k+1 + εσ2

1.



Online PCA algorithm intuition

We start with mapping xt 7→ 0 and R[1:t] = X[1:t]



Online PCA algorithm intuition

This is continued as long as ‖RTR‖ ≤ ∆



Online PCA algorithm intuition

When ‖RTR‖ > ∆ we update the projection to prevents it from happening



Online PCA algorithm intuition

We commit to a new online PCA direction ui such that ‖RTR‖ ≤ ∆ again.



Online PCA with Spectral Bounds
input: X
U ← all zeros matrix
for xt ∈ X do

if ‖(I − UUT )X1:t‖2 ≥ σ2
k+1 + εσ2

1

Add the top left singular vector of (I − UUT )X1:t to U
yield yt = UTxt



Open questions

� Reduce running time of Frequent Directions (there is some progress on that)

� Reduce running time of online PCA

� Reduce target dimension of online PCA, is it possible?

� Can we avoid the doubling trick in online PCA if we allow scaled isometric
reconstructions?



Thank you!
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Jiŕı Matousek.

On variants of the johnson-lindenstrauss lemma.
Random Struct. Algorithms, 33(2):142–156, 2008.

Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain.

Memory limited, streaming pca.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 2886–2894. 2013.

Adam Meyerson.

Online facility location.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages
426–431, 2001.

Jayadev Misra and David Gries.

Finding repeated elements.
Technical report, Ithaca, NY, USA, 1982.



Jiazhong Nie, Wojciech Kotlowski, and Manfred K. Warmuth.

Online pca with optimal regrets.
In ALT, pages 98–112, 2013.

Jelani Nelson and Huy L. Nguyen.

Sparsity lower bounds for dimensionality reducing maps.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 101–110, 2013.

Jelani Nelson and Huy L. Nguyên.

Lower bounds for oblivious subspace embeddings.
In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part I, pages 883–894, 2014.

Jelani Nelson, Huy L. Nguyên, and David P. Woodruff.

On deterministic sketching and streaming for sparse recovery and norm estimation.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX
2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 627–638, 2012.

Erkki Oja and Juha Karhunen.

On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix.
Journal of Mathematical Analysis and Applications, 106(1):69 – 84, 1985.

Roberto Imbuzeiro Oliveira.

Sums of random hermitian matrices and an inequality by rudelson.
arXiv:1004.3821v1, April 2010.

Mark Rudelson and Roman Vershynin.

Sampling from large matrices: An approach through geometric functional analysis.
J. ACM, 54(4), July 2007.



Tamas Sarlos.

Improved approximation algorithms for large matrices via random projections.
In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 143–152, Washington, DC,
USA, 2006.

Roman Vershynin.

A note on sums of independent random matrices after ahlswede-winter.
Lecture Notes.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg.

Feature hashing for large scale multitask learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 1113–1120, New York, NY, USA,
2009. ACM.

Manfred K. Warmuth and Dima Kuzmin.

Randomized PCA algorithms with regret bounds that are logarithmic in the dimension.
In Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pages 1481–1488, 2006.

Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.

A fast randomized algorithm for the approximation of matrices.
Applied and Computational Harmonic Analysis, 25(3):335 – 366, 2008.

David P. Woodruff.

Low rank approximation lower bounds in row-update streams.
In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pages 1781–1789, 2014.


