
The Mailman algorithm: a note on matrix vector multiplication

Edo Liberty ∗

Computer Science
Yale University
New Haven, CT

Steven W. Zucker ∗

Computer Science and Applied Mathematics
Yale University
New Haven, CT

Abstract

Given an m × n matrix A we are interested in applying it to a real vector x ∈ Rn in less than the
straightforward O(mn) time. For an exact deterministic computation at the very least all entries in A
must be accessed, requiring O(mn) operations and matching the running time of naively applying A to
x. However, we claim that if the matrix contains only a constant number of distinct values, then reading
the matrix once in O(mn) steps is sufficient to preprocess it such that any subsequent application to
vectors requires only O(mn/ log(max{m, n})) operations. Algorithms for matrix-vector multiplication
over finite fields, which save a log factor, have been known for many years. Our contribution is unique in
its simplicity and in the fact that it applies also to real valued vectors. Using our algorithm improves on
recent results for dimensionality reduction. It gives the first known random projection process exhibiting
asymptotically optimal running time. The mailman algorithm is also shown to be useful (faster than
näıve) even for small matrices.

keywords

Algorithms, Matrix vector multiplication, Mailman algorithm, Random Projections.

Introduction

A classical result of Winograd ([14]) shows that general matrix-vector multiplication requires Ω(mn) oper-
ations. This matches the running time of the näıve algorithm. However, since matrix-vector multiplication
is such a common, basic operation, an enormous amount of effort has been put into exploiting the special
structure of matrices to accelerate it. For example, Fourier, Hadamard, Toeplitz, Vandermonde, wavelet,
and others can be applied to vectors in O(npolylog(n)) operations.

Others have focussed on matrix-matrix multiplication. For two n × n binary (over F2) matrices the
historical Four Russians Algorithm [12] (modified in [10]) gives a log factor improvement over the näıve
algorithm, i.e, running time of O(n3/log(n)). Techniques for saving log factors in real valued matrix-matrix
multiplications were also found [9]. These methods are reported to be practically more efficient than näıve
implementations. Classic positive results, achieving a polynomial speedup, by Strassen [11] and Coppersmith
and Winograd [5] as well as lower bounds [4] for general matrix-matrix multiplications are known. These,
however, do not extend to matrix-vector multiplication.

We return to matrix-vector operations. Since every entry of the matrix, A, must be accessed at least
once, we consider a preprocessing stage. After the preprocessing stage x is given and we seek an algorithm to
produce the product Ax as fast as possible. Within this framework Williams [13] showed that an n×n binary
matrix can be preprocessed in time O(n2+ε) and subsequently applied to binary vectors in O(n2/ε log2 n).
Williams also extends his result to matrix operations over finite semirings. However, to the best of the
authors’ understanding, his technique cannot be extended to real vectors.

∗Research supported by AFOSR and NGA

1

In this manuscript we claim that any m×n binary matrix1 can be preprocessed in time O(mn) such that
it can be applied to any real vector x ∈ Rn in O(mn/ log(max{m, n})) operations. Moreover, any matrix over
a finite alphabet Σ can be preprocessed similarly and subsequently applied in O(mn log |Σ|/ log(max{m, n}))
operations.2 Such operations are common, for example, in spectral algorithms for unweighted graphs, com-
puting graph transitive closures, nearest neighbor searches, dimensionality reduction and compressed sensing.
Our algorithm also achieves all previous results (excluding that of Williams) while using a strikingly simple
approach.

The Mailman algorithm

Intuitively, our algorithm multiplies A by x in a manner that brings to mind the way a mailman distributes let-
ters, first sorting the letters by address and then delivering them. Recalling the identity Ax =

∑n
i=1 A(i)x(i),

metaphorically one can think of each column A(i) as indicating one “address”, and each entry x(i) as a letter
addressed to it. To continue the metaphor, imagine that computing and adding the term A(i)x(i) to the
sum is equivalent to the effort of walking to house A(i) and delivering x(i). From this perspective, the naive
algorithm functions by delivering each letter individually to its address, regardless of how far the walk is or
if other letters are going to the same address. Actual mailmen, of course, know much better. First, they
arrange their letters according to the shortest route (which includes all houses) without moving; then they
walk the route, visiting each house regardless of how many letters should be delivered to it (possibly none).

To extend this idea to matrix-vector multiplication, our algorithm decomposes A into two matrices, U
and P , such that A = UP . The matrix P is the ”address-letter” correspondence matrix. Applying P to x
is analogous to arranging the letters. U is the matrix containing all possible columns in A. Applying U to
(Px) is analogous to walking the route. Hence, we name our algorithm after the age-old wisdom of the men
and women of the postal service.

For simplicity, we describe the algorithm for an m×n matrix A, where m = log2(n) and A(i, j) ∈ {0, 1}.
Later we shall generalize it to include other matrix dimensions and possible entry values. There are precisely
2m = n possible columns in the matrix A, by construction, since each of the m column entries can be only 0
or 1. Define the universal columns matrix, Un, as the matrix containing each possible column {0, 1}m once.
By definition, for any column A(j) there exists exactly one index 1 ≤ i ≤ n such that A(j) = U

(i)
n . Define the

n × n correspondence matrix P as P (i, j) = δ(U (i), A(j)). Here δ stands for the Kronecker delta function.
δ(U (i)

n , A(j)) = 1 if U
(i)
n = A(j) and zero otherwise.

(UnP)(i, j) =
n∑

k=1

Un(i, k)P (k, j)

=
n∑

k=1

U (k)
n (i)δ(U (k)

n , A(j))

= A(j)(i) = A(i, j)

The Mailman algorithm simply uses the associativity of matrix multiplication to compute Ax = (UP)x =
U(Px). The fact that computing Px requires O(n) operations is clear since P is a sparse matrix containing
only n non-zeros. We later show that applying Un to any vector also requires O(n) operations. Thus,
although A is of size log(n) × n, the product Ax can be computed via U(Px) while performing only O(n)
operations. This gains a log(n) factor over the näıve application, requiring O(n log(n)) operations. If the
number of rows, m, in A is more than log(n) we partition A into at most dm/ log(n)e submatrices each of
size at most log(n)× n. Since each of the submatrices can be applied in O(n) operations, the entire matrix
can be applied in O(mn/ log(n)) operations. We now describe how to construct the correspondence matrix
P and how to apply the universal column matrix Un efficiently.

1A real valued matrix taking entry values from the set {0, 1}
2A matrix A is said to be over a finite alphabet if ∀ i, j A(i, j) ∈ Σ, and |Σ| is a finite constant.

2

Preprocessing: constructing the correspondence matrix

An entry in the correspondence matrix P (i, j) is set to 1 if A(j) = U (i); otherwise P (i, j) = 0. In the next
section we construct U such that each column i encodes in binary the value i− 1. Thus, if a column of A(j)

contains the binary representation of the value i−1, it is equal to U (i). We therefore construct P by reading
A and setting P (i, j) to 1 if A(j) represents the value i− 1. This concludes the preprocessing stage and can
clearly be achieved in O(mn) steps. Notice that since U is fixed, P encodes all the information about A.

Application: universal column matrices

Denote by Un the log2(n) × n matrix, which contains all strings {0, 1}log(n) as columns. Also denote by
0n and 1n the all zeros and all ones vectors of length n. Notice immediately that Un can be constructed
recursively:

U1 = (0 1) , Un =
(

0T
n/2 1T

n/2

Un/2 Un/2

)
.

Applying Un to any vector z requires less than 4n operations, which can be shown by dividing z into its first
and second halves, z1 and z2, and computing the product Unz recursively.

Unz =
(

0T
n/2 1T

n/2

Un/2 Un/2

) (
z1

z2

)
=

(
0T

n/2z1 + 1T
n/2z2

Un/2(z1 + z2)

)

Computing the vector z1+z2, and the sums 0T
n/2z1 and 1T

n/2z2 requires (at most) 2n operations. Denoting by
T (n) the number of operations required for applying Un to a vector x ∈ Rn, we get the recurrence relation:

T (2) = 2, T (n) = T (n/2) + 2n ⇒ T (n) ≤ 4n.

Computing 0T
n/2z1 can of course be removed from the runtime analysis, but we keep it in anticipation of

alphabets other than {0, 1}.

Constant sized alphabets

A matrix A is said to be over an alphabet Σ if ∀i, j A(i, j) ∈ Σ. Such matrices can be decomposed similarly
and applied to any vector in O(mn log(|Σ|)/ log(n)) time. The definition of Un is changed such that it
encodes all possible strings over Σ = {σ1, . . . , σS}, |Σ| = S.

U1 = (σ1, . . . , σS) Un =
(

σ11T
n/S . . . σS1T

n/S

Un/S . . . Un/S

)

The matrix Un is of size logS(n) × n and it can be applied to x ∈ Rn in O(n) time. The construction of
P also changes. P (i, j) is set to 1 iff A(j) represents the number i − 1 in base S under the transformation
σ1 → 0, . . . , σS → S−1. If the number of rows, m in A is larger than logS(n), we divide A it into dm/ logS(n)e
sections of size at most logS(n)× n. The total running time therefore becomes O(mn log(S)/ log(n)).

Saving a log(m) factor

If the number of rows, m, in A is larger than the number of columns, n, we can achieve an application running
time of O(mn/ log(m)). Assume that A is of size m × n where n = log(m). We have that A = PT UT

m,
where P is the correspondence matrix for AT as explained above. It is left to show that computing UT x for
x ∈ Rlog(m) requires O(m) operations. Denote by x1 the first element of x and by x2:n the remaining n− 1
elements.

UT
mx =

(
0m/2 UT

m/2

1m/2 UT
m/2

) (
x1

x2:n

)
=

(
0m/2x1 + UT

m/2x2:n

1m/2x1 + UT
m/2x2:n

)

3

Clearly, computing UT
mx requires computing UT

m/2x2:n and an additional O(m) operations which gives a total
running time of O(m). If the number of columns n of A is more than log(m), we partition A vertically to at
most dn/ log me submatrices of size m× log m. Since each submatrix is applicable in O(m) operations, the
total running time of applying A to a vector x ∈ Rn is O(mn/ log(m)).

Remark 1 (Matrix operations over semirings) Suppose we equip Σ with an associative and commuta-
tive addition operation (+), and a multiplication operation (·) that distributes over (+). If both A and x are
chosen from Σ the matrix vector multiplication over the semiring {Σ,+, ·} can be performed using the exact
same algorithm. This is, of course, not a new result. However, it includes all other log-factor-saving results.

Dimensionality reduction

Assume we are given p points {x1, . . . , xp} in Rn and are asked to embed them into Rm such that all distances
between points are preserved up to distortion ε and m ¿ n. A classic result by Johnson and Lindenstrauss
[7] shows that this is possible for m = Θ(log(p)/ε2). The algorithm first chooses a random m × n matrix,
A, from a special distribution. Then, each of the vectors (points) {x1, . . . , xp} is multiplied by A. The
embedding xi → Axi can be shown to have the desired property with at least constant probability.

Clearly a naive application of A to each vector requires O(mn) operations. A recent result by Ailon
and Liberty [3], improving on Ailon and Chazelle [2], gives a distribution over matrices A which can be
applied in O(n log(m)) operations. We now claim that, in some situations, an older result by Achlioptas
can be (trivially) modified to outperform this last result. In particular, Achlioptas [1] showed that the
entries of A can be chosen i.i.d. from {−1, 1} with probability 1/2 each. Using our method and Achlioptas’s
distribution, one can apply the chosen A to each vector in O(n log(p)/ log(n)ε2) operations (recall that
m = O(log(p)/ε2)). Therefore, if the number of points, p, is at most a constant polynomial in their dimension,
n, log(p) = O(log(n)) and applying A to xi requires only O(n/ε2) operations. For a constant ε this yields an
O(n) algorithm.3 It is important to mention that the above construction is the first to match the running
time lower bound for general dimensionality reduction.

Experiments

Here we compare the running time of applying a log(n) × n , {0, 1} matrix A to a vector of floating point
variables x ∈ Rn using three methods. The first is a näıve implementation in C: this simply consists of two
nested loops ordered with respect to memory allocation to minimize cache faults. The second is an optimized
matrix vector code: we test ourselves against LAPACK which uses BLAS subroutines [8, 6]. The third is,
of course, the mailman algorithm following the preprocessing stage.

Although the complexity of the first two methods is O(n log(n)) and that of the mailman algorithm is
O(n), we do not seem to get a log(n) speedup. This is because the memory access pattern in applying P
is problematic at best. The reader should bare in mind that these results might depend on memory speed
and size vs. CPU speed of the specific machine. The experiment below denotes the time required for the
actual multiplication not including memory allocation. (Experiments were conducted on an Intel Pentium
M 1.4Ghz processor, 598Mhz Bus speed and 512Mb of RAM.)

As seen in figure 1, the mailman algorithm operates faster than the näıve algorithm even for 4 × 16
matrices. It also outperforms the LAPACK procedure for most matrix sizes. The machine specific optimized
code (LAPACK) is superior when the matrix row allocation size approaches the memory page size. A machine
specific optimized mailman algorithm might take advantage of the same phenomenon and outperform the
LAPACK on those values as well.

3Notice that the dependance on ε is 1/ε2 instead of log(1/ε) which makes this result actually much slower for most practical
purposes.

4

4 6 8 10 12 14 16 18

Naive
LAPACK
Mailman

4 6 8 10 12 14 16 18

Naive
LAPACK
Mailman

Figure 1: Running time for multiplying an m×2m ±1 matrix to a double precision vector. m is given on the
x-axis. The y-axis gives the running time for achieving the multiplication using three different algorithms.
(1) Naive: matrix multiplication implemented as two nested for-loops written in C and ordered correctly with
respect to memory access. (2) LAPACK: a general purpose matrix multiplication implementation which is
machine optimized. (3) Mailman: the mailman algorithm as described above. The left figure is a plot of the
3 running times on an absolute scale, whereas the right one plots them relatively to the naive algorithm.

Concluding remark

It has been known for a long time that a log factor can be saved in matrix-vector multiplication when
the matrix and the vector are over constant size alphabets. In this paper we described an algorithm that
achieves this, while also dealing with real-valued vectors. As such, the idea by itself is neither revolutionary
nor complicated, but it is useful in current contexts. We showed, as a simple application of it, that random
projections can be achieved asymptotically faster than the best currently known algorithm, provided the
number of projected points is polynomial in their original dimension. Moreover, we saw that our algorithm
is advantageous in practice even for small matrices.

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.
J. Comput. Syst. Sci., 66(4):671–687, 2003.

[2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss
transform. In Proceedings of the 38st Annual Symposium on the Theory of Compututing (STOC), pages
557–563, Seattle, WA, 2006.

[3] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual bch codes. In
Symposium on Discrete Algorithms (SODA), accepted, 2008.

[4] Roger W. Brockett and David P. Dobkin. On the number of multiplications required for matrix multi-
plication. SIAM J. Comput., 5(4):624–628, 1976.

[5] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In STOC
’87: Proceedings of the nineteenth annual ACM conference on Theory of computing, pages 1–6, New
York, NY, USA, 1987. ACM.

[6] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of
fortran basic linear algebra subprograms. ACM Trans. Math. Softw., 14(1):1–17, 1988.

5

[7] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemp. Math., 26:189–206, 1984.

[8] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
fortran usage. ACM Trans. Math. Softw., 5(3):308–323, 1979.

[9] Nicola Santoro. Extending the four russians’ bound to general matrix multiplication. Inf. Process. Lett.,
10(2):87–88, 1980.

[10] Nicola Santoro and Jorge Urrutia. An improved algorithm for boolean matrix multiplication. Computing,
36(4):375–382, 1986.

[11] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, (4):354–356, 08 1969.

[12] M.A. Kronrod V.L. Arlazarov, E.A. Dinic and I.A. Faradzev. On economic construction of the transitive
closure of a direct graph. Soviet Mathematics, Doklady, (11):1209–1210, 1970.

[13] Ryan Williams. Matrix-vector multiplication in sub-quadratic time: (some preprocessing required). In
SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
995–1001, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

[14] Shmuel Winograd. On the number of multiplications necessary to compute certain functions. Commu-
nications on Pure and Applied Mathematics, (2):165–179, 1970.

6

