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Abstract

We give near-optimal distributions for the sparsification of large m x n matrices,
where m « n, for example representing n observations over m attributes. Our
algorithms can be applied when the non-zero entries are only available as a stream,
i.e., in arbitrary order, and result in matrices which are not only sparse, but whose
values are also highly compressible. In particular, algebraic operations with the
resulting matrices can be implemented as (ultra-efficient) operations over indices.

1 Introduction

Given an m x mn matrix A, it is often desirable to find a sparser matrix B that is a good proxy
for A. Besides being an extremely natural mathematical question, such sparsification has become
ubiquitous preprocessing in a number of data analysis operations. A fruitful measure for the ap-
proximation of A by B is the spectral norm of A — B, where for a matrix C' its spectral norm
|Cl2 = max,),=1 |Cz|]2. Randomization has been key in achieving sparsification and the prob-
lem is typically cast as follows: given a matrix A and a budget s, devise a distribution over matrices
B such that the (expected) number of non-zero entries in B is s and || A — Bz is as small as possible.

Our work is motivated by typical big data matrices generated by some measurement process of a
number of attributes (rows), each column corresponding to an observation. Thus, m « n and,
typically, the total number of non-zero entries in A exceeds the available main memory by several
orders of magnitude. A key consideration in this context is the access model for A. On one end
of the spectrum, A is stored in durable storage and there is no bound on the time to construct the
probability distribution over matrices B. On the other end, a priori we know only some very basic
features of A, e.g., it’s number of rows, but the actual non-zero entries are presented to us one at a
time in an arbitrary order. For each entry we must decide whether to keep it or not upon presentation.

We work with the second option above, also known as the streaming model. The first reason for this
choice is pragmatic: for an increasing number of data analysis applications the streaming model is
reality. The second is that even when A exists in durable storage, random access to its entries is pro-
hibitively expensive and, in practice, one can only afford a small number of passes over A. Focusing
on streaming allows us to establish that for matrices with certain features that invariantly arise in
massive data collection, methods similar to the one below give provably near-optimal sparsification:
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1. Retain each entry of A independently of all other entries with probability
P = 0,4, )

where 6; is a simple function of the entire i-th row.
2. Set B;; = A;;/P;; for the retained entries and B;; = 0 for all other entries.

As we will see, the incredibly simple form (T]) of the probabilities P;; falls out naturally from generic
optimization considerations. Besides being interesting on its own, when combined with the fact
that B is an unbiased estimator of A, i.e., B;; = Aj;; /R-j, this fact has a remarkably practical
implication: every entry in the i-th row of B will belong in {—6;,0,+6;}. More generally, other
methods considered will give B;; = k;; - 6;, where k;; € Z, typically k;; € {—1,0, +1}. Thus, we
will see that the values of the non-zero entries of B can be represented using only one real number
0; per row (attribute), and typically a single bit per non-zero entry (no bits if the matrix is positive).

Perhaps more importantly, the resulting matrix can easily be stored as a standard search index where
each row (or column) corresponds to an indexed object, e.g., document. With such a representation,
multiplying B by a vector corresponds to issuing a search query which, assuming the query is sparse,
is extremely efficient. Moreover, we benefit from utilizing highly optimized compression schemes.
In a simple experiment, we measured the average number of bits per sample (total size of the sketch
divided by the number of samples s). The results were between 5 and 22 bits per sample depending
on the matrix and s. It is important to note that the number of bits per sample is usually less than
log(n) + log(m) which is the minimal number of bit required to represent a pair (¢,7). This is
because only non zero index offsets are stored. The result is a reduction of disc space by a factor of
between 2 and 5, depending on the number of samples and the matrix, relative to the compressed
size of the standard row-column-value list format.

1.1 Measuring the Error

The reason for measuring the difference of A from B with respect to the L2 norm is that this is not
only the most demanding, but also extremely relevant in the context of data analysis. Let us define
a linear trend in the data of A as any tendency of the rows to align with a particular unit vector x.
To examine the presence of such a trend, we need only multiply A with x: the ith coordinate of Ax
is the projection of the ith row of A onto x. Thus, |Ax|2 measures the strength of a linear trend z
in A, || A||2 measures the strongest linear trend in A, and thus, minimizing |A — B||2 minimizes the
strength of the strongest linear trend of A not captured by B.

In contrast, imagine that A is a 0/1 matrix, a case not uncommon in practice, and that we measured
|A — B| with respect to the Frobenius norm. In such a case, the quality of the approximation is
completely independent of which elements of A we keep in B and only depends only on how many
we keep. This is clearly bad since, assuming A does contain some structure, certain approximations
are far better than others.

1.2 Our Approach

Even after committing: (i) to measuring the quality of B by |A — Bz, (ii) to sampling the entries
of A independently (enabling working with streams), and (iii) to requiring B to be an unbiased
estimator of A, one is still left with the task of determining a good probability distribution P;; from
which to sample the entries of A in order to get B. At least two natural candidates come to mind:

e Ll-sampling: P;; oc |A;|.
e L2-sampling: P;; oc A7

Good arguments can and have been made in favor of both these distributions and both of them
have been investigated intensively in earlier works, as we discuss in Section[3] Therein we will see
that already some of the algorithmic design in the context of matrix sparsification has been guided
by beautiful results in the theory of random matrices. In this work we have taken this approach
to its logical conclusion. Specifically, rather than proposing a specific sampling distribution and
using results from random matrix theory to demonstrate that it has good properties, we start from a
cornerstone result in random matrix theory, Matrix-Bernstein’s inequality (see e.g [1]], Theorem 1.6)
for sums of independent random matrices, and work backwards to reverse-engineer near-optimal
distributions with respect to the notion of probabilistic deviations captured by the inequality.



Theorem 1.1 (Matrix Bernstein inequality). Consider a finite sequence {X;} of i.i.d. random m xn
matrices, where E[X1] = 0 and | X1 | < R. Let 0? = max {|E[X: XT ]|, |E[X{ X1]||}.

For some fixed s = 1, let X = (X1 +--- + X;)/s. Foralle =0,

se2
Pr{| X > ] < _
11> ) < o+ myep (——25 )

Imagine for a moment that, having fixed the probability distribution P over the non-zero elements
of A, we take B to be a random m x n matrix with exactly one non-zero element, formed by
sampling an element a;; of A according to P and letting B;; = a;;/P;;. Since E[B;;] = a;; for
every i, j, we see that B is an unbiased estimator of A, i.e., E[B] = A. Clearly, the same is true
if we repeat this s times taking i.i.d. samples By, ..., Bs and let their average be our matrix B.
Therefore, our goal to find a distribution P minimizing |E| = ||[A — (B + - -- + Bs)/s||. Writing
sE = (A—B)+-- +(A— B;) we see that s|| || is the operator norm of a sum of i.i.d. zero-mean
random matrices X; = A — B;, i.e., exactly the setting of Theorem[I.1] The relevant parameters are

o = max {|E[(A - B)(A~ B)"]|,|[E[(A - B)" (A~ B]|} (2)
R = max|A— Bi|2 over all possible realizations of B; . (3)

Equations (2) and (3] mark the starting point of our work. That is, our goal will be to find probability
distributions over the elements of A for which Theorem [I.1] yields the strongest possible bound on
| A— B|2. A key conceptual contribution of our work is the discovery that these distributions depend
on the sample budget s in a non-linear, but still highly-intuitive way, something also borne out in
experiments. The fact that minimizing the deviation metric of Theorem ie., o2+ Re /3, suffices
to bring out this non-linearity is testament to the theorem’s sharpness.

Theorem [I.1]is stated as a bound on the probability that the norm of the error matrix is greater than
some target error € given the number of samples s. Nevertheless, in practice the target error € is not
known in advance, but rather is a minimization target given the matrix A, the number of samples s
and the target confidence §. Specifically, for any given distribution P on the elements of A, define

se?

e1(P) = inf {e :(m+n)exp (—U(P)2 +R(P)€/3> < 5} . 4)

Our goal in the rest of the paper is to seek the distribution P* minimizing €;. Our result is an easily
computable distribution P which comes within a factor of 3 of £1(P*) and, as a result, within a
factor of 9 in terms of sample complexity (in practice we expect this to be even smaller, as the factor
of 3 comes from consolidating bounds for a number of different worst-case matrices). To put this in
perspective note that the definition of P* does not place any restriction either on the access model
for A while computing P*, or on the amount of time needed to compute P*. In other words, we are
competing against an oracle which in order to determine P* has all of A in its purview at once and
can spend an unbounded amount of computation to determine P*.

The only global information we will require are the ratios of the L1 norms of the rows of the matrix,
ie., of |A@ |1 = X, |Aij|- Clearly, the row-L1 norms (and therefore their ratios) could be trivially
computed in a single pass over the matrix, yielding a 2-pass algorithm. In our setting, though, since
different rows correspond to different attributes it is very reasonable to expect that good estimates of
these ratios are available a priori, i.e., before even touching the matrix A, since they simply reflect
the average absolute values of the m attributes. Moreover, as will become clear, these ratios do not
need to be known exactly to apply the algorithm and even rough estimates of them will give highly
competitive results. Finally, we note that these ratios can be estimated with extremely high accuracy
from a relatively small number of columns, using standard concentration arguments. Due to space
limitations we do not present these argument here.

2 Data Matrices and Statement of Results

Throughout A;) and AU) will denote the i-th row and j-th column of A, respectively. Also, we
use the notation All; = », ; [4; ;] and A2 = i A?’j. Before we formally state our result

we introduce a definition that expresses the class of matrices for which our results are most rele-
vant. Out of three conditions in the definition the essential one, reflecting the data matrix setting, is



Condition[I} The other two are merely technical and hold in all non-trivial cases where Condition ]
applies.

Definition 2.1. An m x n matrix A is a Data matrix if:

1. min [|A¢ |1 = max; [|AD) ;.
2. m 2230. )
3. [AlT/1Al5 = 30m.

Regarding Condition [I] recall that we think of A as being generated by a measurement process of
a fixed number of attributes (rows), each column corresponding to an observation. As a result,
columns have bounded L1 norm, i.e., ||A¢)|; < constant. While this constant may depend on the
type of object and its dimensionality, it is independent of the number of objects. On the other hand,
| A¢iyll1 grows linearly with the number of columns. As a result, we can expect Deﬁnitionto hold
for all large enough data sets. Condition [2]is trivial. Regarding Condition [3| since [|4]5 < |A|%,
we note that when all entries in A have the same magnitude, the ratio | A||3/] A|3 is greater than or
equal to the number of non-zero entries in A. While the ratio can be smaller than the number of
non-zero entries when the entry magnitudes have large variance, in all non-trivial cases it grows as
Q(n) and, thus, Condition 3] follows from n » m.

One last point is that to apply Theorem [I.T] the entries of A must be sampled wirh replacement. In
the streaming model, this means that when an entry is presented we need to decide not only whether
to keep it or not, but its multiplicity. A simple way to achieve this using O(s) active memory was
presented in [2]]: at any given moment maintain s independent, not necessarily distinct, samples of
A in main memory, updating them via reservoir-sampling on the ] P;; for the elements seen so far.
The final output are the s samples present in memory upon termination of the stream. In Section D]
we discuss how to implement sampling with replacement far more efficiently, using O(log(s)) active
memory and dramatically less computation and randomness. To simplify the exposition of our
algorithm, though, we invoke the simple sampling of [2] in Step [5] below. Also for simplicity of
exposition, we assume that we are given the actual||A¢; [, for all 1 < @ < m. As we discuss
immediately below the algorithm, all that is actually needed are their ratios.

Algorithm 1 Construct a proxy to a data matrix A

1: Input: The dimensions of an m x n matrix A and |A;ll; for all 1 < i < m. A desired
probability of success § > 0 and a sample budget s.

2: Let

w = log((m +n)/d)/s a:=+w Bi=w/3. 5)
3: For( e Rt letT(¢) = 2 pi(C), where

i=1
2
| ellAg alApli\* | BlAmh
pi(C) = T < 2 > 2 : (6)
4: Find (o such that T({p) = 1 and let
pi(o)

5: Sample s non-zero elements of A with replacement, each A;; having probability 6; |Aij |
6: For each sample (i, j, A;; )¢, let B (©) be the m x n matrix with non-zero entry Bi(;) = A;;/Pi;.
7: Output: (B + ... 4 B®))/s.

Remark: Steps of the algorithm simply compute row-weights ;. For this, first a probability
distribution on the rows, p;((p), is computed in Step|3| Finding {y can be done very efficiently by
binary search because the function 7" is strictly monotone in ¢ while the constraint , p;({) = 1,
implies that to find (p it suffices to know the ratios of the |A;[1. Similarly for computing 6;.

Conceptually, we see that the probability assigned to each element A;; in Step [ is simply the



probability p; of its row times its own probability, |A4;;|/|A;)| under L1-sampling of elements from
its row. Finally, we note that in practice one does not, of course, actually form the matrices B; in
Steps 6] [7]but outputs B by aggregating the samples into a matrix.

Theorem 2.2. If A is a Data matrix and P is the probability distribution defined in (1)), then e1(P) <
3e1(P*), where P* is the minimizer of €1.

Remark: A key insight of our work is that the distribution we propose in (7)) is a combination of
two L1-based distributions. The first is the plain L1-distribution where P; joc|A; ;|. The second
is a distribution we call “Row-L1” where P; joc|A; ;| - |A(;)[l1. By considering (6), it follows that
when s is small, « ~ 3 and p; is nearly linear in HA(,;) |, as in L1-sampling. However, as s grows, «
becomes dominant compared to 3 and p; tends towards || A ;|7 as in Row-L1 sampling. This insight
is also borne out in the experiments where the sampling based on (/) is consistently best across all
cases, highlighting that the need to adapt the sampling distribution to the sample budget is a genuine
phenomenon and not simply an artifact of having derived the distribution by optimizing a tail bound.

3 Background and Related Work

By using the spectral norm to measure error we get a natural and sophisticated target: by minimizing
| A— B2 we seek to make E' = A— B a near-rotation, having only small variations in the amount by
which it stretches different vectors. This idea that the error matrix E should be isotropic motivated
the first work on element-wise sampling of matrices by Achlioptas and McSherry [3]. Concretely, to
minimize | E||z it is natural both to have E be zero-mean, i.e., for B to be an unbiased estimator of
A, and to sample the entries of A (and, thus, of F) independently, as independence tends to endow
isotropy. Thus, in the work of [3l], £ is a matrix of i.i.d. zero-mean random variables and the study
of the spectral characteristics of such matrices goes back all the way to Wigner’s famous semi-circle
law [4]]. To bound | E|2 in [3] a bound due to Alon Krivelevich and Vu [5] was used, a refinement
of a bound by Juhész [6] and Fiiredi and Komlés [7]. The most salient feature of that bound is that it
depends on the maximum entry-wise variance o2 of A — B, and therefore the distribution optimizing
the bound is the one in which the variance of all entries in E is the same. In turn, this means keeping
each entry of A independently with probability P; ; OCA% ; (up to a small wrinkle discussed below).

Several papers since have analyzed L2 sampling and variants [8,[9,[10,[11,13]]. An inherent difficulty
of that strategy is the need for a special handling of small entries. This is because when each item
A; ; is kept with probability p; ; OCA% ;» the resulting entry B;; in the sample matrix has magnitude
|A; ;/pijlocl/|A; ;1. Thus, if an extremely small element A; ; is accidentally picked, the largest
entry of the sample matrix “blows up”. In [3] this was addressed by sampling “small” entries with
probability proportional to |A; ;| rather than Af, ;- In [11], small entries are not handled separately
and the bound derived depends on the ratio between the largest and the smallest non-zero magnitude.

Random matrix “technology” has witnessed dramatic progress in the last few years and [12}[13] |14,
15]] provide a good overview of the results. This progress motivated Drineas and Zouzias in [[10] to
revisit L2 sampling but now using concentration results for sums of random matrices [[15], as we do
here. (Note that this is somewhat different from the original setting of [3]] since now F is not one
random matrix with independent entries, but a sum of many independent matrices since the entries
are chosen with replacement.) Their work improved upon all previous L2-based sampling results and
also upon the L1-sampling result of Arora, Hazan and Kale [16], discussed below, while admitting
a remarkably compact proof. The issue of small entries was handled in [[10] by simply deterministic
discarding all “sufficiently small” entries, a strategy that gives the strongest mathematical guarantee
(but see the discussion regarding deterministic truncation in the experimental section).

A completely different tack at the problem, avoiding random matrix theory, was taken by Arora et
al. [L6]. Their approximation keeps the largest entries in A deterministically (A; ; > &/+/n where
the threshold ¢ needs be known a priori) and randomly rounds the remaining smaller entries to
sign(A; j)e/+/n or 0. They then exploit the simple fact [A — B|| = sup,j1,jyj=1 2T (A - B)y
by noting that as a scalar quantity its concentration around its expectation can be established by
standard Bernstein-Bennet type inequalities. A union bound then allows them to prove that with
high probability, 27 (A — B)y < ¢ for every x and y. The result of [16] admits a relatively simple
proof. However, it also requires a truncation that depends on the desired approximation €. Rather
interestingly, this time the truncation amounts to keeping every entry larger than some threshold.



4 Mathematical comparison to other works

To have a definite comparison of our mathematical result with those of previous works we first state
the bound implied by Theorem [2.2]on the minimal number of samples s needed by our algorithm to
achieve an approximation B to the matrix A such that [A — B| < ¢ A| with constant probability.
The proof of Theorem[d.T]is given in Appendix [C]

Theorem 4.1. Let A be any matrix meeting the conditions of Definition[2.1and let B be the matrix
returned by Algorithm for 0 = 1/10 for a given sample budget s. For any ¢ > 0, if s = sq, where
s is as in Table[l} |A — B| < e| A| with probability at least 9/10.

To compare the sy of Theorem [.1]to earlier works we next introduce a few matrix metrics.

Stable rank: Denoted as sr and defined as | A|2% /| A|%, this is a smooth analog for the algebraic
rank, always bounded by it from above, and resilient to small perturbations of the matrix. For data
matrices we expect it to be small, capturing the “inherent dimensionality” of the data.

Numeric density: Denoted as nd and defined as || A|3/| A|%, this is a smooth analog of the number
of non-zero entries nnz(A). For 0-1 matrices it equals nnz(A), but when there is variance in the
cardinality of the entries it is smaller.

Numeric row density: Denoted as nrd and defined as Y, || A;)||3/||All7- < n. In practice, it is often
close to the average numeric density of a single row, a quantity typically much smaller than n.

The third column of Table [T|below shows the corresponding values of s in previous works for con-
stant success probability, in terms of the matrix metrics defined above. The fourth column presents
the ratio of the samples needed by previous results divided by the samples needed by our method.
(To simplify the expressions, we present the ratio between our bound and [16] only when the result
of [16] gives superior bounds to [10], i.e., we always compare our bound to the stronger of the two
bounds implied by these works). Holding € and the stable rank constant we readily see that our
method requires roughly 1/+/n the samples needed by [[16]. In the comparison with [[10] we see that
the key parameter is the ratio nrd /n, a quantity typically much smaller than 1 for data matrices.
(As a point of reference for the assumptions, in the experimental Section[6| we provide the values of
all relevant matrix metrics for all the real data matrices we worked with, wherein the ratio nrd /n is
typically around 1072.)

By the discussion above, one would expect that L2-sampling should fare better than L1-sampling in
experiments. As we will see, quite the opposite is true. A potential explanation for this phenomenon
is the relative looseness of the bound of [16] for the performance of L1 sampling.

Citation Method Samples needed Sample Ratio
[31 L1,L2 st-(n/e?) + n - polylogn
nrd € nd 172

[10] L2 st-(n/e?)logn — + = <)

n n \sr-logn

sr-logn 172
[16] L1 (nd - n/e?)'/? ()
n
This paper | Bernstein | nrd-sr /22 -logn + (sr-nd /2 - log n)'/?

Table 1: ‘Sample Ratio’ is the ratio of samples needed by the corresponding work and this paper.

5 Proof outline

In what follows we repeatedly replace our objective function with simpler and simpler functions.
Each replacement will incur some (small) loss in accuracy but will bring us closer to a closed form
solution. Recalling the definitions of a, 8 from (3)) and rewriting the requirement in () as a quadratic
form in ¢ gives 2 — B8R — (ao)? > 0. Our first step is to observe that for any ¢, d > 0, the equation



£2 —¢-c—d = 0 has one negative and one positive solution and that the latter is at least (c++/d)/~/2

and at most ¢ + \/d. Therefore, if we deﬁneﬂ €9 1= ao + R we see that 1/+/2 < &1 /g5 < 1.
Our next simplification encompasses Conditions of Deﬁnition Let e3 := ad + SR where

~2 2 2 >
=m m E Az /P;; ., m E Az [Py R :=max |A;;|/P;; -
o ax{ ?X ; z]/ ij > jaX i zg/ U} L?X| U|/ ij
We will prove the following, allowing us to optimize P with respect to €3 instead of €a.

Lemma 5.1. For every matrix A satisfying Conditions[2|andBlof Definition[2.1} for every probability
distribution on the elements of A, |ea/e3 — 1| < 1/30.

In minimizing €3 we see that there is freedom to use different rows to optimize & and R. At a cost
of a factor of 2, we will couple the two minimizations by minimizing e, = max{es, e} where

2

J i
+ fmax —— |,
~ Py i Py

€5 :=max | «

Note that the maximization of R in €5 (and gg) is coupled with that of the o-related term by con-
straining the optimization to consider only one row (column) at a time. Clearly, 1 < e3/e4 < 2.

Next we focus on €5, the first term in the maximization of £4. The following lemma establishes that
for all matrices satisfying Conditionof Lemma minimizing 5 minimizes €4 = max{es, €g}.

Lemma 5.2. For every matrix satisfying Condition[I|of Definition[2.1} argminp e5 C argminp 4.
Finally, we will derive in closed form the probability distribution P minimizing €5.

Lemma 5.3. The function €5 is minimized by P;; = ”’Z((i“”)l - Ay
is the unique ¢ > 0 such that Y, p;((o) = 1.

, where p; is as in () and (o > 0

To prove Theorem we see that Lemmas and combined imply that there is an efficient
algorithm for minimizing €4 for every matrix A satisfying Condition [I] of Definition [2.1] If A also
satisfies Conditionsandof Definition 2.1} then the facts 1/v/2 < £1/22 < 1, |ea/e3 — 1| < 1/30,
and 1 < e3/eq4 < 2, imply m < e1/e4 < 31/30. In general, if ¢ < g4/61 < C we can

conclude that &, (arg min(ey)) < (C/c) min(e;). Thus, the fact 62+/2/29 < 3 yields our claim.

6 Experiments

We experimented with 4 matrices with different characteristics, the contents and properties of which
are as follows. The sizes and many other statistics of the matrices are summarized in Table[2]

Enron: Subject lines of emails in the Enron email corpus [17]]. Columns correspond to subject lines,
rows to words, and entries to tf-idf values. This matrix is extremely sparse to begin with.
Wikipedia: Document-term matrix of a fragment of the English Wikipedia. Entries are tf-idf values.
Images: A collection of images of buildings from Oxford [18]]. Each column represents the wavelet
transform a single 128 x 128 pixel grayscale image.

Synthetic: This synthetic matrix simulates a collaborative filtering matrix. Each row corresponds to
an item and each column to a user. Each user and each item was first assigned a random latent vector
(i.i.d. Gaussian). Each value in the matrix is the dot product of the corresponding latent vectors plus
additional Gaussian noise. We simulated the fact that some items are more popular than others by
retaining each entry of each item ¢ with probability 1 — i/m where i = 0,...,m — 1.

6.1 Sampling techniques and quality measure

The experiments report the accuracy of sampling according to four distributions. In Figure
“Bernstein” denotes the distribution of this paper, i.e., equation (7). The Row-L1 distribution is a

"Here and in the following, to lighten notation, we will omit all arguments, i.e., P, o(P), R(P), from the
objective functions ¢; we seeks to optimize, as they are readily understood from context.



simplified version of the Bernstein distribution, where P;joc|A;;| - |A(;[1 Finally, L1 and L2 refer
to P;joc|A;j| and Pjjoc| A;j|%, respectively, as defined earlier in the paper.

Although to derive our sampling probability distributions we targeted minimizing |A — B2, in
experiments it turns out to be more fruitful to consider a more sensitive measure of quality of ap-
proximation. The reason is that, due to scaling, for a number of values of s one has |A—B|jz > || A2
which would suggest that the all-Os matrix is a better sketch for A than the sampled matrix, some-
thing which, as we will see, is far from the case. As a trivial example, consider the possibility
B ~ 10A. Clearly, B is very informative of A although |A — B| = 9| A||. To avoid this pitfall, we
computed instead | PP A|| /| A |, where PP is the projection on the top k left singular vectors of
B, while A}, = P,fA is the optimal rank & approximation of A. Intuitively, this measures how well
the k left singular space of B capture A, relative to A’s own, and thus optimal, top-k left singular
vectors. We also computed | AQZ | r/||Ax||» where QP is the projection on the top k right singular
vectors of A. Note that, for a given k, approximating the row-space is harder than approximating
the column-space since it is of dimension n which is significantly larger than m, a fact also borne
out in the experiments. In the experiments we made sure to choose a sufficiently wide range of
sample sizes so that at least the best method for each matrix goes from poor to near-perfect both in
approximating the row and the column space.

In all cases we report k = 20 which is close to the upper end of what could be efficiently computed
on a single machine for matrices of this size. (The results for all smaller values of k are qualitatively
indistinguishable to & = 20.) Finally, we note that in carrying out L1 and L2 sampling we did
not implement truncation. This is because in both cases, for most values of the sample budget s
considered, i.e., values for which our method manages to deliver very good approximations, the
truncations required by the accompanying theoretical results would result in simply returning either
the entire matrix, in the case of L1 sampling, or the empty matrix, in the case of L2 sampling.

00 an s00 s 600 a0

Figure 1: Each vertical pair of plots corresponds to one matrix. Left to right: Wikipedia, Images, En-
ron, and Synthetic. Each top plot shows the quality of approximation ratio, | Pk A| ¢ /| A | (bottom
plots show | AQY | 7 /|| Ax|). The number of samples s is on the z-axis in log scale = = log;(s).

| Measure [ Synthetic | Enron [ Images | Wikipedia |
m 1.00e+02 | 1.26e+04 | 5.14e+03 | 4.39e+05
n 1.00e+04 | 1.76e+05 | 4.92e+05 | 3.43e+06

nnz(A) || 5.00e+05 | 7.24e+05 | 2.52e+08 | 5.34e+08
[A]l1 1.76e+07 | 4.01e+09 | 6.54e+09 | 5.30e+09
|A| 7 3.17e+04 | 5.76e+06 | 1.97e+06 | 7.47e+05
[A]l2 8.653+03 | 1.02e+06 | 1.75e+06 | 1.63e+05

ST 1.34e+01 | 3.21e4+01 | 1.27e+00 | 2.10e+01
nd 3.09e+05 | 4.85e+05 | 1.10e+07 | 5.04e+07
nrd 3.18e+03 | 1.53e+03 | 2.32e+03 | 1.91e+04

Table 2: Values of the metrics defined in Section |4]for the four matrices in our experiments.



6.2 Insights

The experiments demonstrate two main insights. First and most important, Bernstein-sampling is
never worse than any of the other techniques and is often strictly better. A dramatic example of this
is the Wikipedia matrix for which it is far superior to all other methods.

The second insight is that L1-sampling, i.e., simply taking P;; = |A;;|/| A1, performs rather well
in many cases. Hence, if it is impossible to perform more than one pass over the matrix and one
can not obtain any estimate of the ratios of the L.1-weights of the rows, L1-sampling seems to be a
highly viable option.
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Appendix: Near-optimal Distributions for Data Matrix Sampling

A Optimizations on the L1 ball

Lemma A.l. For any z,p € R", if p;, = 0 and |p|i = 1, then maxy |zi|/pr = ||z|1 and
> w2/ = |x|3, with equality holding in both cases if and only if p, = |z |/|z]1.

Proof. To prove maxy, |x;|/pr = |x[1 we note that if |x;|/p; # |x;|/p;, then changing p;,p; to
P, p; such that p} + p’; = p; + p; and |z;|/p; = |x;|/p} can only reduce the maximum. In order for
all |z |/pk to be equal it must be that py, = |x|/|«|1 for all j, in which case maxy, |z|/px = |z]1.

The second claim follows from applying Jensen’s inequality to the convex function z > x2. O

To prove Lemma [5.1] we first establish the following.
Lemma A.2. For any matrix A and any probability distribution P on the elements of A, we have

AL : JA]
lo2/5% — 1| < STAGT and |R/R — 1| < A

Proof. Recall that By contains one non-zero element A;; /P, ;, while all its other entries are 0. There-
fore, E[ By BT ] and E[BY B,] are both diagonal matrices where

E[(B1BY);.] Z A?,/P;  and  E[(B{ Bi);,] Z AZ/P; .
Since the operator norm of a dlagonal matrix equals its largest entry we see that
5% := max {miaxz A% /Py m;fixz A% /Pij} = max{|E[B, BI]|, |E[BF B:]|} -
J ’ i

We will also need to bound 5 from below. Trivially, 7* > |[E[By B || = max; }; A?;/P;. Let
pi = >; Pij. Applying Lemma to the i-th row of A by taking zp = A and pr = Pix/pi
yields the second inequality below. Applying it with z = |[A()||l1 and py = py, yields the third

2

. Aj; - A? _
5% > max ) p,J, = maxp; ' ) ka > max p; A= D A3 9)
(3 - ij 7 5 (3 7

On the other hand, 02 = max{|E[Z: Z{ |||, |E[Z{ Z1]|}, where Z; = B; — A. Since E[B;] = A,
|E[Z,Z{ ]| = |E[B:1Bf — AB{ — BiA" + AAT]| = |E[B.B{] — AA"|

and, analogously, |E[Z] Z1]| = |E[B{ B1] — AT A|. Therefore, by the triangle inequality, |02 —
52| < ||A||* and the claim now follows from (9)

Recall that B; contains one non-zero entry A;;/P;; and that R is the maximum of |B; — A| over
all possible realizations of P, i.e., choices of ¢, j. Thus by the triangle inequality,

R =max|B; — A| < max|Bi| + |A| and R > max|Bi|—|4] .

Since B; has one non-zero entry, we see that max || By |2 = max;; |A;;|/Pij = R and, thus,
1] < |Al2/R. Applying Lemmato A € R™*" with distribution P yields R > ||A[;. O

Proof of Lemma[3.1} 1t suffices to prove that both |02 /5% — 1] and |R/R — 1| are bounded by 1/30.

Lemmal[A.2]yields the first inequality below and Condition [3|of Definition 2.1|the second. The third
inequality holds for every matrix A, with equality occurring when all rows have the same L.1 norm.
2 2
AR AR 1
2ilA@ i~ 30mY, [AglT 30

|02 /5% — 1| <
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Lemma [A.7] yields the first inequality below. The second inequality follows from rearranging the
factors in the second inequality above. Condition [2]of Definition 2.1} i.e., m > 30, implies the third.

A _ 1 _1

R/R—1| < < < — .
IR/ | lAllL ~ /30m — 30

B Global minimization over the distribution

To find the probability distribution P that minimizes €5 we start by writing P = p;q;;, without loss
of generality. That is, we decompose P to a distribution p; = 0 over the rows of the matrix, i.e.,
Zi p; = 1, and a distribution g;; = 0 within each row ¢, i.e., >, j dij = 1, for all . We first prove that
(surprisingly) the optimal ¢ has a closed form solution while the optimal p is efficiently computable.

For any p, writing €5 in terms of p;, ¢;; we see that €5 is the maximum, over rows 1 < i < m , of

A2 A
2y B il (10)
7 qij Pi I3 i

Observe that since p is fixed, the only variables in the above expression for each row i are the g;;.
Lemma implies that setting ¢;; = |Ay;|/||A(;) |1 simultaneously minimizes both terms in (T0).
[Aij]
A a-

This means that for every fixed probability distribution p, the minimizer of €5 satisfies ¢;; =
Thus, we are left to determine

Ag Ag
() = max | Ml | BlAa]s
i \Pi pi

Unlike the intrarow optimization, the two summands in ® achieve their respective minima at differ-
ent distributions p. To get some insight into the tradeoff, let us first consider the two extreme cases.
When 8 = 0, minimizing the maximum over i requires equating all | A;)[|1/+/pi» i-e., pioc| Ag)ll3,
leading to the distribution we call “row-L;”, i.e., P;; oc |4 - [|A¢iy[1. When o = 0, equating the
| A¢iyll1/pi requires p; oc || Ay |1, leading to the “plain-L,” distribution P;; oc [Ay.

Nevertheless, since we wish to minimize the maximum over several functions, we can seek P under
which all functions are equal, i.e., such that there exists ¢ > 0 such that for all ¢,

alAg 1 A, 1

b | Al _ o

\/Pi Pi

Solving the resulting quadratic equation and selecting for the positive root yields equation (6)), i.e.,

2
Ag A 2 Ay

Since the quantities under the square root in (@) are all positive we see that it is always possible to
find ¢ > 0 such that all equalities hold, and thus (6) does minimize 5 for every matrix A. Moreover,
since the right hand side of (6) is strictly decreasing in ¢, binary search finds the unique value of ¢
suchthat >, p; = 1.

Finally, recall that our overall goal is to determine the minimizer of £4 = max{es, e¢}. We already
have determined the minimizer of 5. We will now show that for matrices satisfying Condition [I] of
Lemma 2.1 the minimizer of e5 is also the minimizer of e4. We first prove that

Lemma B.1. For any two functions f,g, if xo = argmin, f(z) and g(xg) < f(xo), then
minz max{f(x),g(ac)} = f(iC())
Proof.
minmax{f(x), g(z)} = min f(z) = f(zo) = max{f(zo), g(wo)} = min max{f(z), g(x)}
O
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Thus, it suffices to evaluate ¢ at the distribution P minimizing €5 and check that e¢(P) < e5(P).

We know that P is of the form P; ; = p;|A; j|/|Ag |1 for some distribution p. Substituting this

form of P into g4 gives (12). Condltlonof Lemma 1e maxj |AW)|; < ming A )||1, allows
us to pass from (T3) to (14). Finally, to pass from [n) to (T3) we note that the two max1mlzat10ns
over ¢ in (T4) involve the same expression, thus externahzmg the maximization has no effect.

1/2
es(P) = m]ax O[(Z ”(””;M) +ﬁm§1x”/()?||1 (12)
- 1/2
1A Il 1A I
< max |« | ma A;s + Bmax —Y1%
7 ( S Zi:| i i pi
i A _ 1/2 A
= max |« <H1 ” ”1 ”A(J)”l) + Bmaxw
7oL ! Pi i Pi
A 1/2 A :
< a (m H Hl -max HA 1) —|— 5max m (13)
L Pi J i Di
A 1/2 A,
< (6 < : u mln HA )”1) + /Blnaxw (14)
i A
< [ <|| O i, ”1> gl 1 s
Pi
A Ay,
< [a )”1 H_XM]
= P)

C Proof of Theorem 4.1]

Proof of Theorem We start by computing the value of £1 as a function of s, ¢, for the probability
distribution Py minimizing €5. Recall that in deriving we established that e5(Py) = (o, where

Co is such that 7" | p; (o) = 1, i.e.,

2
m A YN A moa2[An |2 28] A
=y of <z>||1+\/<all @)1) +/3’|| 0l <Za [ mlllJr Bl A I a6

= 2Go 2o Co =4 Co
This yields the following quadratic equation in (j
G =G 26141 — o® ) Al < 1 (17)

Treating as an equality and bounding the larger root of the resulting quadratic equation we get

1 m+n A 1 m+n Az 2
Go=0|BlA +a /ZHA@H? _ o[ el 55)” 1+\/0g( : )SZ’” lt) g,

The second equality is obtain by replacing «, 8 with their corresponding expression given in (2):

a = +/log((m +n)/5)/s and 8 = log((m + n)/5)/(3s). Recall that to prove Theorem n we
proved that if A meets the conditions of Definition[2.1] then

mine (P) = 6(Co) -

It follows that for ¢* = minp €1 (P),
soo(loelltmn)/0)3,[Anl  loglm +n)/0) 3, A2
ek (E*)2

The theorem now follows by taking e* = ¢|| A]. O
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D Efficient Parallel Reservoir Sampling

Assume we are to receive an unknown-length stream of items, each item having weight w; and that
we want to sample a single item from the stream so that the probability each item has to be chosen
is p; = w;/W, where W = ), w;. Reservoir sampling is the classic solution to this problem: select
the very first item in the stream as the “current” sample and from then on have each successive item
i replace the current sample with probability w;/Z;, where Z; = Y, j<i Wi

Assume now that, instead, we wanted to take s > 1 items from the stream, but as if the stream was a
set and we could sample it with replacement. One way to do this is to execute s independent reservoir
samplers as above in parallel, as was pointed out in [10]. Implementing this solution though in a
straightforward manner requires O(s) active memory, i.e., RAM, since each sampler must be able to
replace its sample with the current item at the pace of the stream and, moreover, O(s) randomized
operations per item in the stream, i.e., }(Ns) operations where N is the length of the stream.

When s is large this can be problematic and becomes impossible when s = nnz(B) is such that B
is too large to fit in main memory. Below we describe an algorithm that requires O(log s) active
memory and O(1) operations per item. The idea is that since the samplers are independent, we
can simulate the process above by determining for each item ¢ the (random) number of samplers,
r;, that would have replaced their current sample with item ¢ when item ¢ appeared. This random
variable is Bernouli distributed and can be sampled efficiently. If this number is greater than 0, we
write item ¢ along with r; to durable storage (disk) and process the next item in the stream. This
processing generates a sketch of the stream on disk, the length of which can be shown to be bounded
by O(slog(bN)), where b := max; |w;|/ min;, ,.o |w;|. When the stream finishes, we process the
sketch we generated from end to beginning as follows: for each pair (item j, ;) we encounter in
the sketch we process the r; update operations as the throwing of 7; balls into s bins uniformly at
random (this is because in the naive setting whether item 5 will replace the current sample, X, of a
particular sampler is independent of X'). Notice that since we are going over the sketch backwards,
the very first ball we place in a bin corresponds to the very last update of the sampler in the original
execution. Thus, for each bin, we ignore all but the first first ball placement and we stop as soon
as each bin has received a ball (thus we also avoid simulating the “irrelevant” part of the naive
computation). Performing this simulation only requires a bit-vector of length s in active memory.

Finally, we can avoid even the cost of the bit-vector, as follows. Imagine that we have encountered
an item ¢ with ; = 100. A naive simulation would choose 100 bins and put item ¢ in those bins
that happen to be empty. All we really need, though, is to know how many of the r; balls would
be assigned to empty bins, a random variable having the distribution mixed-bag(s, m, k) detailed
below. To sample this random variable we do not need to know which bins are empty but only how
many are empty, meaning we need only to maintain a counter, i.e., O(log s) bits of active memory.

Input: A, s
W =0
T = empty stack
S = empty list
for (i, w;) € stream do
p=wi/W
k = binomial(s, p)
if £ > 0 then
Push (4, k) into T
while length(T") > 0 and length(S) < s do
(i, k) = pop(T)
Pick ¢ from a mixed-bag(s, s — length(.5), k) distribution.
Add ¢ instances of i to S.

The distribution mixed-bag(s, m, k) assigns each integer ¢ probability ("7) (% )/(;). In words,
assume we have a bag containing s pieces of fruit only m of which are raisins. If we pick % fruit

randomly from the bag, then the number of raisins picked will be distributed as mixed-bag(s, m, k).
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