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ABSTRACT
The paper presents algorithms for estimating the number of
users in online social networks. While such networks some-
times publish such statistics, there are good reasons to vali-
date their reports. The proposed schemes can also estimate
the cardinality of network sub-populations. Since this infor-
mation is seldom voluntarily divulged, such algorithms must
operate only by interacting with the social networks’ public
APIs. No other external information can be assumed. Due
to obvious tra�c and privacy concerns, the number of such
interactions is severely limited. We therefore focus on mini-
mizing the number of API interactions needed for producing
good size estimates.

We adopt the standard abstraction of social networks as
undirected graphs and perform random walk based node
sampling. By counting the number of collisions or non-
unique nodes in the sample, we produce a size estimate.
Then, we show analytically that the estimate error vanishes
with high probability for fewer samples than those required
by prior-art algorithms. Moreover, although provably cor-
rect for any graph, our algorithms excel when applied to
social network-like graphs. The proposed algorithms were
evaluated on synthetic and real social networks such as Face-
book, IMDB, and DBLP. Our experiments corroborate the
theoretical results, and demonstrate the e↵ectiveness of the
algorithms.

Keywords
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1. INTRODUCTION
Online social networks have become increasingly popu-

lar in the recent decade which gave rise to an increasing
need in analyzing their properties and comparing them to
one another. Many properties of online social networks are
considered important. These include, for example: their
user age distribution, net activity, connectivity, and many
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more. The literature on attaining such parameters is vast
and any e↵ort to reference all of it is bound to fail. We
cite here only a handful of directly related works as exam-
ples. In [KNV06, HTV+09] the authors present a way to
detect proximity between two users. In [YSH+07] the au-
thors analyze the degree distribution, clustering property,
degree correlation, and evolution over time for three net-
works. That said, the total number of users (or users in a
certain demographic) seems to be one of the most crucial
factors in deriving the worth and overall performance of so-
cial networks. These figures are also critical for business
development issues, choosing between networks for adver-
tisement campaigns or for launching social applications. Al-
though countless sites, blogs, and other reports often present
such numbers, these are usually based on reports of the so-
cial networks themselves or on tra�c analysis and are not
guaranteed to be accurate (e.g. [FBS]).1 Moreover, since
each network reports slightly di↵erent figures, it is almost
impossible to compare between them. For example, Face-
book reported lately on crossing the 500 million active users
mark. However, it is unclear what constitutes an “active
user”. Thus, it is extremely important to be able to accu-
rately and reliably estimate the size of social networks in a
unified and unbiased way (without the networks’ consent or
control).

Since online social networks provide public interfaces, it is
possible to traverse their members’ network externally. By
“crawling”the network, we can collect statistics on any of the
above characteristics. In a similar spirit, in [BG07, BG08]
the authors suggested ways to measure various parameters of
search engines by interacting with their public search inter-
face only. One approach, is to crawl the network extensively.
In other words, since online social networks can be modeled
as undirected unweighted graphs (where the users are nodes
and edges are connections/friendships) we can perform a
breadth-first search (BFS) on the graph.2 This method is
impractical when dealing with online social networks since
the communication and computational burden of such an
undertaking would probably be prohibitive.

The second approach is to sample users uniformly at ran-
dom from the network. From a uniform sample, most statis-
tics can be estimated. This includes estimating the size

1Moreover, the published statistics do not provide an esti-
mate for connected sub-graphs, e.g., 20-30 year olds living
at the US.
2Note that online social networks’ public APIs provide lists
of connected users for every user. Thus, acting like a neigh-
bor list representation of the graph.



of the network using methods such as mark-and-recapture.
These methods have the advantage of requiring only O(

p
n)

users to be sampled to get a good estimate (where n is the
overall number of users) [LP56]. Their disadvantage though,
is that users must be sampled uniformly. Since online social
networks interfaces usually do not provide this functional-
ity, it must be simulated by other API queries which give for
each user the list of their neighbors. Alas, producing a sin-
gle uniformly chosen user might require many such queries.
This is explained in the next section.

In this work we show that there is no need to sample users
uniformly. In fact, by using the sampling bias we reduce
the number of required samples dramatically. For example,
for networks with a Zipfian-like degree distribution our al-
gorithms require only O(n1/4 log(n)) samples to converge.
Moreover, since the bias does not have to be corrected, each
such sample requires considerably less API queries. Surpris-
ingly, our algorithm is extremely simple and gives provable
error guarantees with high probability.

Experiments with our algorithm performed over a wide
range of real and synthetic data corroborate that it con-
verges significantly faster and to a more accurate estimate
than uniform sampling based approaches.

As a side note, simple variants of our algorithm also give
e�cient sub-linear algorithm for estimating the size of tran-
sitive closures in graphs and for estimating the size of search-
indexes as in [BG07]. However, this is a matter of farther
research and is beyond the scope of this paper.

The rest of this work is organized as follows. Section 2
surveys related work. Our algorithms are presented and
analyzed in Sections 3 and 4. In Section 5 we report our ex-
perimental results and conclude in Section 6. Various proofs
and discussions are included in the Appendix.

2. BACKGROUND AND PRIOR WORK
From this point on we consider the general problem of

estimating the size of undirected graphs. The graph repre-
sentation of online social networks is the obvious one. Each
node refers to one user and an edge is present between two
nodes if their corresponding users are “friends” in the social
network. Although our algorithms are correct for general
graphs, they are especially suited for graphs which naturally
occur in large social networks.

In [MV06] the authors provide a possible solution for an-
other problem which could be used to solve the problem at
hand as well. They present an algorithm for estimating the
number of attributes in a database. The algorithm samples
rows from the database uniformly at random. It then es-
timates the total number of attributes using the collected
information of how many times each attribute was picked.
This is identical to a well known problem in statistics called
“estimating the number of unseen types”. Their algorithm
can be applied to estimating the size of graphs if the graph
is represented as a database table containing two rows per
edge, one for each adjacent node.3 Clearly, the number
of distinct attributes in this database is n, the number of
nodes. The algorithm presented in [MV06] is guaranteed to
take at most r = O(n) samples. However, in graphs, unlike
in databases, it is possible to sample nodes (analogously,
attributes) uniformly at random which can dramatically de-

3Sampling uniformly from this table is possible in our setting
since random walks on graphs sample edges uniformly.

crease the number of samples.
In ecology, a method known as mark and recapture is used

to estimate population sizes.4 It relies on the same phe-
nomenon as the so called “birthday paradox” e↵ect. Infor-
mally, after sampling r nodes uniformly at random we expect
to encounter C ⇡ r2/2n collisions (nodes already picked).
Thus, n can be estimated by r2/2C. Surprisingly, taking
only O(

p
n) samples can guarantee that this estimate for n

is rather accurate.5 In [FTV98] the authors present a max-
imum likelihood estimator for this problem and show that
their estimator converges almost surely when the number of
samples increases. In [Cha87, HYCY03] the authors extend
these methods to non-uniform, but known, distributions.

That said, to use these methods one must sample nodes
uniformly at random from a graph, which is not straight
forward. To see how this can be done we remind the reader
a few basic facts from spectral graph theory. A random
walk on an undirected graph with n nodes {v1, . . . , vn} is
defined as such: start from an arbitrary node, then move to
a neighboring node uniformly at random and repeat. After
many such steps, the probability of being at any node v

i

is
close to p

i

= d
i

/D where d
i

is the degree of node v
i

and D =P
n

i=1 di is the sum of all node degrees in the graph. This
is called the stationary distribution of the random walk on
the graph. The number of random walk steps needed for the
stationary distribution to be reached depends on the mixing
rate property of the graph (see a survey by Lovász [Lov93]).
Fortunately, social network graphs and small world graphs
are known to have good mixing rates. We therefore assume
that nodes can be repeatedly sampled from the stationary
distribution without much computational overhead.

Using these properties of random walks, one can sam-
ple nodes also uniformly at random by using, for example,
rejection sampling. To be precise, a node v

i

is first sam-
pled according to the stationary distribution. Then, with
probability 1/d

i

it is kept. With probability 1 � 1/d
i

it is
rejected. Clearly the set of kept nodes is uniformly sam-
pled. However, since we only expect to accept a node with
probability n/D, to sample ⌦(

p
n) un-rejected nodes would

require an expected r = ⌦(D/
p
n) biased samples. Sev-

eral rejection sampling ideas and other methods for turning
the node sampling distribution to uniform were suggested
for specific graphs. Namely, the bipartite graph between
search queries and search results [BB98, BG07].6 Another
approach was considered in [GKBM10]. The authors present
a modified Metropolis-Hastings random walk which transi-
tions from node v

i

to an adjacent node v
j

with probability
1/max(d

i

, d
j

). With the remaining probability, it stays in
v
i

. Due the symmetry in the transition probabilities it can
be shown that the stationary distribution of this walk is uni-
form on the nodes. However, the mixing rate of this walk can
be significantly worse than that of the original graph, and
so, it is unclear when it is expected to outperform rejection
sampling, i.e., require fewer random walk steps.

An interesting tangentially related problem is known as
the “German tank problem” [Joh]. It was supposedly used

4Other names for this method or closely related ones,
include capture-recapture, capture-mark-recapture, mark-
recapture, and mark-release-recapture.
5We make a more general statement later in this paper.
6In fact, the authors try to compare between two di↵erent
search services but their approach is suitable for this task as
well.



during world-war II to estimate the number of German tanks
based on manufacturing numbers found on those captured
by the allied forces. In its mathematical formulation, ele-
ments with serial ID’s are sampled uniformly without re-
placement and the objective is to provide an estimate for
the total number of elements. This is not applicable to our
scenario since the users do not have serially allocated and
publicly available ID’s.

Estimating the number of nodes in a graph was also stud-
ied. In [Knu74] the authors estimate the size of a tree. Their
motivation was to estimate the running time of a backtrack-
ing program. Later [Pit87] extends their argument to acyclic
graphs. Finally [MS89] extends this idea to general undi-
rected graphs. However, the running time of the the latter
is unbounded in the worst case and expected to be more than
the number of nodes in the graph. Recently, in [YW10] the
authors try to estimate the size of social networks in a setup
very similar to ours. However, they either require that the
users be sampled uniformly or use the algorithm from [MS89]
which their experiments show is impractical.

Most similar to our approach is [HRH09] in which the au-
thors exploit random walks properties to compute various
network properties (such as, average clustering coe�cient,
degree distribution, degree correlation, and network size).
This, by approximating node degree distributions and col-
lision counting. While their approach is similar, it is less
straight-forward and it does not provide exact approxima-
tion guarantees (algorithms are corroborated only by simu-
lation results).

3. COLLISION COUNTING
In this section we present our graph size estimator. We

start by taking r samples {x1, . . . , xr

} independently from
the stationary distribution of the graph, i.e., node i whose
degree is d

i

is sampled with probability p
i

= d
i

/D where
D =

P
n

i=1 di. More formally 8i, j Pr[x
j

= i] = d
i

/D and
independently of all x

j

0 for j0 6= j.
We define three variables that the algorithm keeps track

of: (a) The sum of all sampled node degrees  1 ,Pr

j=1 dxj ;

(b) The sum of reciprocal sampled degrees  
�1 ,Pr

j=1 1/dxj

; and (c) Twice the number of collisions C , P
j 6=j

0 Y
j,j

0

where Y
j,j

0 = Y
j

0
,j

= 1 if x
j

= x
j

0 and 0 else. Using those
we define an auxiliary variable7

R ,  1 �1 � r .

The proposed estimator n̂ for the number of nodes in the
graph n is

n̂ , R/C . (1)

To see why this makes sense we start by computing E[R]
and E[C]. Using linearity of expectation and the fact that

7Compared to the definitions in [KLS11] here R includes an
extra �r term. This is due to examining E[ 1 �1] instead
of E[ 1]E[ 

�1]. This is numerically insignificant because
 1 �1 is typically ⇥(r2) but it makes the analysis slightly
simpler.

the samples are taken independently we obtain that
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Dividing these two expression, we get that the number of
nodes is n = E[R]/E[C]. Thus, if both R and C are close to
their expected values then intuitively n̂ should also be close
to n. The corollary below makes this exact.

Corollary 1. For any degree distribution and C, R de-
fined as above the estimator n̂ guarantees for any " 2 (0, 1]
and � 2 (0, 1]:

Pr(|n̂� n| � "n)  �

as long as the number of samples, r, satisfies:

r � r
c

, 1 +
63
"2�

· D

min(
pP

d2
i

, n)

Proof. If it is the case that |R � E[R]|  "E[R]/3 and
that |C � E[C]|  "E[C]/3 then:

(1�")n  (1� "/3)
(1 + "/3)

E[R]
E[C]

 R
C

 (1 + "/3)
(1� "/3)

E[R]
E[C]

 (1+")n .

Since n̂ = R/C this gives the desired result that |n̂�n|  "n.
In order for both R and C to be close to their expectation
with probability at least 1�� it is su�cient invoke the union
bound and require

Pr(|R� E[R]| � "E[R]/3) + Pr(|C � E[C]| � "E[C]/3)  �

Invoking Chebyshev’s inequality (twice) these are obtained
if the following holds

V ar(R)
E2[R]

+
V ar(C)
E2[C]

 "2�/9 .

Since both of these quantities are decreasing in the number
of samples r we seek the minimal number r which satisfies
the conditions. In Appendix A we calculate the variances of
both R and C and show that:

V ar(R)
E2[R]

 1
r(r � 1)

+
ab

r(r � 1)
+

a
r
+

b
r
+

2
r

V ar(C)
E2[C]

 a2

r(r � 1)
+

2a
r

where a = 1/
pP

p2
i

and b = (
P

n

i=1 1/pi)/n
2. It is easy to

verify that if r � 1 � 7cmax{a, b} then V ar(R)
E2[R]

+ V ar(C)
E2[C]


1/c. Setting c = 9/"2� completes the proof.

To understand the bound better, notice that a = 1/
pP

p2
i

= D/
pP

d2
i


p
n. This is tight when the node degrees are

all equal to each other. In fact, when the node degree distri-
bution is uniform, r

c

is of order O(
p
n), which agrees with

the bound derived from the maximum likelihood estimator
of n under uniform sampling. However, when there is a
heavy bias in node degree, as in social networks, this term is
significantly smaller. Moreover, since we assume there are no



zero degree nodes we have that b = (
P

n

i=1 1/pi)/n
2  D/n.

This is the mean degree of a nodes in the graph which is
usually small in social network graphs. The reader should
note that in most real life graphs and networks

pP
d2
i

< n.
We give an example below.

3.1 Performance for online social networks
In order to argue that our algorithm is suitable for sizing

social networks we have to assume something about their
node degree distributions. In [MMG+07], [YSH+07] and in
[GKBM10] the authors argue that, in several networks, the
nodes’ degrees exhibits di↵erent kinds of heavy tail distri-
butions. Mainly: Exponential, Double-Pareto and Zipfian.
Here we analyze, as an example, the Zipfian distribution.
Similar analyses can be performed for the other distribu-
tions as well.

If the nodes’ degrees are distributed according to a Zipfian
distribution with maximum degree of d

m

and parameter ↵ =
2 we have:

Pr(d = j) =
j�2

H
; j = 1, . . . , d

m

,

where H =
P

dm
j=1 j

�2 ⇡ ⇡

2

6 and 1 ⌧ d
m

= ⇥(
p
n). The `’th

moment of the degree distribution is defined as M
`

= E[d`]
and the first few moments of the Zipfian distribution are:

M
�1  1

H
; M1 ⇡ log d

m

H
; M2 ⇡ d

m

H
.

We also assume that the moments of the observed degree
distribution are close to those of the generating distribu-
tion. This is true for large graphs by the strong law of large
numbers (SLLN). This gives us that

P
n

i=1 p
`

i

⇡ M`

n

`�1(M1)`
.

Substituting the above into Corollary 1 and using the fact
that d

m

= ⇥(
p
n) we get that r

c

2 O(n1/4 log(n)). There-
fore, only O(n1/4 log(n)) samples su�ce for our estimator to
be accurate. Note the significant reduction in the number
of samples over the uniform distribution. For example, for
n = 109,

p
n ⇡ 30, 000 while n1/4 log(n) ⇡ 6000.

3.2 Subgraph size estimation
One surprising aspect of this estimator is that it works

for subgraphs as well8. Let X 0 be the subset of samples X
who are also in the subgraph. We perform the same random
walk and compute the same parameters C0,  0

1,  
0

�1, and
R0, which are defined as above but for X 0 instead of X. The
subgraph size is estimated by R0/C0. The proof provided
above works for this case as well. The only change is that
D is replaced by D0 which is the sum of node degrees in the
subgraph. But, since D (and therefore D0 as well) cancels
itself in the analysis our estimator remains unchanged.

That said, it is more e�cient to first estimate the size of
the entire graph and then estimate the subgraphs’ relative
size. Formally,  0

�1 =
P

r

i=1 1/dxiIxi2V

0 where I
xi2V

0 is
equal to 1 if x

i

is a node in the subgraph and 0 otherwise.
From the above we have that E[ 

�1] = rn/D, similarly
for the subgraph, E[ 0

�1] = rn0/D (n0 being the number of
nodes in the subgraph). Isolating n0 we get:

n0 = n
r
r
D
D

E[ 0

�1]

E[ 
�1]

⇡ n
 0

�1

 
�1

8Since the random walk sampling is performed on the full
graph, which is assumed to be connected, the algorithm is
agnostic to the subgraph connectivity property.

If the number of samples is large enough, the last step is cor-
rect since E[ 0

�1] ⇡  0

�1 and since E[ 
�1] ⇡  

�1. Under
most conditions, the ratio estimator requires only a constant
number of samples to converge. Thus, the main computa-
tional e↵ort is in estimating n, which is surprisingly lower
than that of directly estimating n0. To see this, let r

c

and
r0
c

be the number of samples needed to estimate the sizes of
the graph and the subgraph respectively. Since, in a ran-
dom walk we only hit a node in the subgraph with prob-
ability D0/D, we are expected to require Dr0

c

/D0 random
samples to obtain r0

c

samples from the subgraph. Thus, if
r0
c

/D0 � r
c

/D the second method is preferable. Note that
this holds in the natural situation that the nodes’ degree
distributions of the graph and subgraph are similar.

4. NON-UNIQUE ELEMENT COUNTING ES-
TIMATOR

In this section we present another estimator which is based
on counting non-unique elements instead of collisions. On
the one hand, it tends to be consistently, yet marginally,
more accurate. On the other hand, its proof is much more
involved. We thus choose to present the estimator along
with its performance (in the experimental results section)
without providing a proof of its correctness.

An element in the sample is considered non-unique if it
was sampled at least once before. This is slightly di↵er-
ent from counting collisions. For example, in the sequence
{1, 2, 3, 1, 1} there are two non-unique elements (the last two
1’s) but three collisions (x1 = x4, x1 = x5, and x4 = x5).
The intuition is that counting non-unique elements is less
sensitive to errors in which a specific node is oversampled.
This is because the non-unique count is linear in the number
of times each item was sampled whereas the collision count
is quadratic.

We estimate n by ñ which is the unique solution to the
following fixed point equation:

ñ = r � C̃ +
ñ
 

�1

rX

i=1

1
d
xi

✓
1� d

xi �1

ñr

◆
r

(2)

where C̃ is the number of non-unique elements. Note that r,
C̃ ,  

�1 and d
xi are all observed quantities. To see why this

is correct, first note that the expected number of non-unique
elements is E[C̃] = r � n +

P
n

i=1 (1� p
i

)r. Now, consider
that

nX

i=1

(1� p
i

)r = E[ 1
p
i

(1� p
i

)r] ⇡ 1
r

rX

i=1

D
d
xi

(1� d
xi

D
)r .

Also, D ⇡ rn

 �1
. Making these substitutions into the ex-

pectation expression gives the above fixed point equation.
Intuitively, the size estimate ñ is chosen such that the ob-
served number of non-unique elements is equal to its expec-
tation. As a remark, if the node distribution is uniform,
this estimator is identical to the maximum likelihood esti-
mator [FTV98].

5. EXPERIMENTAL EVALUATION

5.1 Networks of known sizes
In order to test our estimators’ accuracy we first experi-

mented with three networks whose exact sizes are known.
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Figure 1: Error curves - absolute normalized size
estimation errors vs. the percent of sampled nodes
for three networks: a 1-million-node synthetic net-
work (top), a network constructed from the Digital
Bibliography and Library Project (DBLP) database
(middle), and a network obtained from the Internet
Movie Data Base (IMDB) database (bottom).
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Figure 2: Confidence interval curves - relative es-
timated size vs. the percent of sampled nodes
for three networks: a 1-million-node synthetic net-
work (top), a network constructed from the Digital
Bibliography and Library Project (DBLP) database
(middle), and a network obtained from the Internet
Movie Data Base (IMDB) database (bottom).

1, 000.
The Digital Bibliography and Library Project; we
used the Digital Bibliography and Library Project’s (DBLP)
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Figure 3: Comparison curves - absolute relative er-
ror ratio between the non-unique and collision esti-
mators vs. the percent of sampled nodes for three
networks: a 1-million-node synthetic network (top),
a network constructed from the Digital Bibliography
and Library Project (DBLP) database (middle), and
a network obtained from the Internet Movie Data
Base (IMDB) database (bottom).

entire database.9 Edges in the graph were associated with

9The DBLP database can be found at http://dblp.uni-

co-authorship of at least one paper. The resulting graph
included 845, 211 nodes, each with at least one edge (authors
with no co-authors were omitted).
The Internet Movie Database; we useed public Internet
Movie Database’s (IMDB) entire database.10 Edge connec-
tions between actors were established according to joint par-
ticipation in at least one movie or TV episode. The resulting
graph included 1, 955, 508 nodes.

We produced three types of curves. All three were plot-
ted as functions of the percent of sampled nodes. Error
curves present the normalized absolute estimation error, i.e.,
|n� n̂| /n where n is the true size of the network and n̂ is
our estimate of it. Confidence interval curves give for each
estimator the 5’th and 95’th percentile value from 10, 000
independent estimations. In other words, 90% of the esti-
mated sizes fell between the lower and upper curves. Lastly,
comparison curves present the ratio between the errors of
the non-unique element estimator and that of the collision
estimator. It is important to stress that this ratio is between
the normalized absolute estimation errors and not between
the estimated values. All presented plots were produced by
averaging over 10, 000 independent experiments.

Examining the error curves depicted in Figure 1, the supe-
riority of degree sampling estimation (both non-unique and
collisions based) over uniform sampling estimation is well
observed. In particular, for the synthetic network, uniform
sampling estimation requires 5 times as many samples as
required by degree sampling estimation (0.5% vs. 2.5%), to
ensure a normalized absolute estimation error of less than
5%. Also, for the IMDB network, uniform sampling esti-
mation required almost 3 times more samples than required
by degree sampling estimation (0.3% vs. 0.8%) to ensure a
normalized absolute error of less than 10%.

Similar observations regarding the estimation error are
also notable examining the confidence interval curves de-
picted in Figure 2. These curves also demonstrate that
there is an inherent asymmetrical bias towards size over-
estimation. This is probably because both estimators are
inversely proportional to the number of collisions or non-
unique elements. For example, a 50% discrepancy between
the observed number of collisions and its expectation can
result in 100% size overestimation but only in 35% size un-
derestimation.

In all the curves above and for all three networks the non-
unique elements estimator slightly outperformed the colli-
sions based estimator. This phenomenon is visible when
examining the comparison curves depicted in Figure 3. For
example, for DBLP, the non-unique elements estimator pro-
vides a 5% reduced relative error over the collision based
estimator when 3% of the network is sampled. The reader
should note that the actual size estimates in this case di↵er
by only 0.25%.

In all the aforementioned experiments we estimated the
sizes of networks (whose sizes were already known) up to
precision of a few single percents. We observed that both
collision and non-unique based estimators perform well and
that degree based sampling is significantly preferred to uni-
form sampling. In the next section we estimate the size of a
subnetwork within Facebook and size of their entire network.

trier.de/xml/.
10The IMDB database can be found at ftp://ftp.fu-
berlin.de/pub/misc/movies/database/.



5.2 Facebook
We used two crawls performed on Facebook by the au-

thors of [GKBM10]. The first crawl consisted of 984, 830
uniformly sampled users collected during April 2009.11 The
second crawl was performed during October 2010 and con-
sisted of 988, 116 users. This crawl performed a simple ran-
dom walk on the Facebook graph and therefore selected
users with probability proportional to their degree.

5.2.1 Subnetwork size estimation

Since the actual size of Facebook is not known (other than
Facebook’s own reports) we first estimate the size of a sub-
graph whose size is known. We selected a random subset of
1, 000, 000 Facebook users and tried to estimate the size of
this sub-population using the first algorithm in Section 3.2.
This is done for two reasons. First, to test the subgraph
size estimation algorithm. Second, to make sure that Face-
book’s network topology and statistics are suitable for our
estimators. We present an error curve, a confidence inter-
val curve, and a comparison curve in Figure 4. Note that
the x-axis here gives the percent of nodes sampled from the
subnetwork and not the entire network as before.

These results corroborate that our subgraph size estima-
tors behave almost identically to the complete graph esti-
mators. This was expected since their analysis is essentially
identical. A more important discovery is that the network
topology and node degree distribution of Facebook are in-
deed suitable for our estimators to perform well.

5.2.2 Estimating the size of Facebook

We now estimate the size of the entire Facebook network.
Presenting accuracy plots in this case is not possible since
the true size of Facebook is not known. The uniform Face-
book sample collected during April 2009, contains 2053 col-
lisions and 2052 non-unique elements. Substituting these
into Equations (1) and (2) yields estimates of 237, 197, 785
and 236, 984, 623 users respectively. The very same month,
Facebook ([FBS]) reported of having “more than 200 million
active users” and “more than 250 million active users” three
months later. The crawl that was performed during October
2010 contained 4099 collisions and 4064 non-unique users,
taking 50 random walk steps between samples. This gives es-
timates of 475, 566, 857 and 475, 864, 724 respectively. Face-
book at the same time reported of having ”more than 500
million active users”. This is summarized in Table 1.

Table 1: Crawl details and consequent size estimates
of the entire Facebook network for April 2009 and
October 2010.

April 2009 October 2010
Sampling distribution uniform degree
Number of samples 0.98 · 106 1 · 106
Number of collisions 2053 4099
Number of non-unique 2052 4064
Collision estimator 237 · 106 475 · 106

Nun-unique estimator 236 · 106 475 · 106
Facebook report 200� 250 · 106 500 · 106

11The Facebook uniformly sampled crawl can be found at
http://odysseas.calit2.uci.edu/research/.
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Figure 4: Absolute relative estimation error (top),
confidence intervals (middle), and estimation rela-
tive error ratio (bottom) vs. the percentage of sam-
ples taken from a 1 million user subnetwork of Face-
book.

Notice that the second crawl sampled half as many users
relative to the network size at the time it was made. Yet,
it produced roughly twice as many collisions. This is be-
cause degree proportional sampling is expected to gener-
ate more collisions than uniform sampling. The discrep-
ancy between our estimates and the o�cial reports by Face-



book stems from two main reasons. On the one hand, the
crawler cannot distinguish between active and non active
users. Thus our estimates include non-active users which
causes an over estimation. On the other hand, our crawler
cannot pass through users whose privacy settings hide their
list of friends, which causes underestimation. Thus, our esti-
mates and Facebook’s reports give slightly di↵erent figures.
While Facebook counts “active” users, we estimate the num-
ber of Facebook users whose list of friends is visible to the
crawler regardless of their activity.

Since the crawler has no indication of users’ activity and
since it is unclear what Facebook defines as “active”, we
cannot o↵set this e↵ect. However, we can try to estimate the
number of blocked users (those whose privacy settings block
the crawler). This can be approximated using the fraction
of such users in other users’ friends lists which yields an
estimate of 650 · 105 users, active and non-active.

5.3 Synthetic network - large sample region
Interestingly, for a large enough number of samples (e.g.,

30% of the network’s size), uniform sampling estimation out-
performs degree sampling estimation. This phenomenon re-
peats itself for all three known size networks we examined.
We provide an error curve, a confidence interval curve, and
a comparison curve in Figure 5 for the synthetic network
only but this time extending the number of samples all the
way to 100%.

5.4 Practical improvement of the algorithm
The algorithms presented here use random walks to sam-

ple r graph nodes independently from their stationary dis-
tribution. This requires a minimal number of random walk
steps, say `, between any two sampled nodes. Thus, to pro-
duce r independent samples, r` random walk steps are re-
quired. While ` is small for rapid mixing graphs such as
social networks, this is still rather wasteful since only a 1/`
fraction of the encountered nodes are used to compute the
estimator n̂.

The first trivial improvement is to view the random walk
of length r` as ` disjoint and interleaved random walks. Pro-
ducing ` di↵erent estimators n̂1, . . . , n̂`

one could produce a
better estimator which is either their mean or their median.
Since n̂1, . . . , n̂`

are not independent it is impossible to prove
that the combined estimator exhibits better approximation
guarantees but it does perform better in practice.

This can be viewed di↵erently. Namely, modify the colli-
sion count estimator C to be C0 = 1

`

P
`

t=1 C`

0 where C
`

0 is
the number of collisions in random walk `0. Unfortunately,
C

`

0 are dependent random variables and one cannot argue
that V ar[C0] = V ar[C]/`. But it is still always true that
V ar[C0]  V ar[C] and that, practically, V ar[C0] is signifi-
cantly smaller than V ar[C]. This reduces the required num-
ber of samples by roughly a factor of `.

A better definition of C0 can be
P

|i�j|�`

Y
i,j

where i and

j range over [r`]. Intuitively, we consider any collision be-
tween two samples whose distance in the random walk is
larger than `. This insures that E[Y

i,j

] is still
P

n

i=1 p
2
i

. No-

tice that the number of such pairs is
�
r`

2

�
(1�O( 1

r

)). There-
fore, the number of expected collisions is roughly `2 times
larger than C. Intuitively, this should also allow a reduction
factor of `2 in the number of samples. While experimen-
tal results support this intuition, the same proof techniques
cannot be used since Y

i,j

exhibit complex dependencies. For
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Figure 5: Absolute relative estimation error (top),
confidence intervals (middle), and estimation rela-
tive error ratio (bottom) vs. the percent of sampled
nodes for a 1 million node synthetic network whose
node degree distribution is Zipfian. Note the large
number of samples relative to the network size.

example, the probability that Y
i,j

= 1 is significantly higher
given that Y

i�1,j�1 = 1. Nevertheless, this estimator was
successfully used in [HRH09] and was shown to be practi-
cally useful. Finally, we refer the reader to [KBM12] where
similar practical algorithmic enhancements are considered.



6. CONCLUSIONS
We presented two algorithms for estimating the size of

graphs. Both algorithms rely on nodes being samples from
the graph’s stationary distribution. We showed both an-
alytically and experimentally that, for social-networks and
other small world graphs, these algorithms considerably out-
perform uniformly sampling nodes. They consistently pro-
vide more accurate estimates while using a smaller number
of samples. This result is even more outstanding since uni-
formly sampling nodes is strictly harder than sampling them
according to the stationary distribution.
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APPENDIX
A. CONCENTRATION OF C AND R

The Proof of Corollary 1 required computing the values
of V ar[C]/E2[C] and V ar[R]/E2[R]. While the derivation
is somewhat tedious it is straight forward nonetheless. The



details are given below. For conciseness we define P
`

=P
n

i=1 p
`

i

where p
i

= d
i

/D.
In order to compute V ar[R] we need to calculate its first

two moments. Starting with the first moment and recalling
the samples are independent, we have that

E[R] =
rX

i,j=1
j 6=i

E[ dxi

d
xj

] = r(r � 1)
nX

i,j=1

p
i

p
j

d
i

d
j

= r(r � 1)nP2

(3)
Turning to the second moment of R, we have that

E[R2] =
rX

i,j=1
j 6=i

rX

i

0
,j

0=1
j0 6=i0

E[ dxi

d
xj

d
xi0

d
xj0

] .
(4)

The last summation can be divided into six cases.

1. There are 2!
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for i = i0, j 6= j0.
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for i 6= i0, j = j0.

5. There are 2 · 3!
�
r

3

�
occurrences where

E[ dxi

d
xj

d
xi0

d
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] = E[ dxi

d
xj
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E[ dxi

d
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d
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] = n2P 2
2 ,

for di↵erent i, j, i0, j0. This term is at most E2[R].

Combining the di↵erent cases above and using the fact that
nP2 � 1 it can be shown that for r � 2 the following in-
equality holds
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b
r
+

2
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Where we define a = 1/
p
P2 and b = P

�1/n
2. Note that

this also requires the facts that nP2 � 1, (r� 2)/(r� 1)  1

and P3/P
2
2  1/P 1/2

2 . The last inequality is due the fact

that P 1/3
3  P 1/2

2 from the monotonicity of `
p

norms.
We turn now to computing the variance of the number of

collisions C. We remind the reader our notations. Y
i,j

= 1
if x

i

= x
j

and 0 else, where {x1 . . . , xr

} are the r sampled
nodes. Moreover, C =

P
r

i,j=1
j 6=i

Y
i,j

. To compute the V ar(C)

we need to calculate its first two moments. Starting with
the first moment we have that

E[C] =
rX

i,j=1
j 6=i

E[Y
i,j

] = r(r � 1)P2 .

We compute E[C2] using the linearity of the expectation.

E[C2] = E[(
rX

i,j=1
j 6=i

Y
i,j

)2] =
rX
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j 6=i
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0
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To calculate the last summation we divide it into three cases.

1. There are 2!
�
r

2

�
occurrences where

E[Y
i,j

Y
i

0
,j

0 ] = E[Y
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] = P2 ,

for i = i0, j = j0.
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0 ] = P3 ,

for di↵erent i 6= i0, j = j0 or i = i0, j 6= j0.

3. There are 4!
�
r
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�
occurrences where

E[Y
i,j

Y
i

0
,j

0 ] = (E[Y
i,j

])2 = P 2
2 ,

for di↵erent i, i0, j, j0. This term is at most E2[C].

Combining the di↵erent cases above it can be easily shown
that for r � 2, the following inequality holds

V ar(C)
E2[C]

 1
r(r � 1)P2

+
2(r � 2)
r(r � 1)

P3

P 2
2

 a2
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where a = 1/
p
P2 as before. This completes the derivation

required for the proof.


