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We study the Schrödinger equation for an off-diagonal tight-binding hamiltonian, as
well as the equations of motion for out-of-plane vibrations on the separable square
Fibonacci quasicrystal. We discuss the nature of the spectra and wave functions of the
solutions.
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1. Separable Quasicrystal Models

Much research has been conducted on the properties of excitations in quasicrystals, ever
since the early interest in this question [1] and up to this day [2]. Many exact results have
been found for 1-dimensional (1d) quasicrystals, yet the properties of excitations in 2d
and 3d quasicrystals are known to a much lesser degree. Furthermore, the different models
that have been mostly studied—such as 1d chains, the standard decagonal, octagonal, and
icosahedral tilings, or actual structural models of real quasicrystals—do not allow one to
easily focus on the dimensional dependence of the physical properties of quasicrystals,
though some interesting heuristic arguments have been given by Sire [3].

One of us [4] has recently studied the geometric properties and calculated the diffrac-
tion pattern of the square and cubic Fibonacci tilings, suggesting that they be used as
models for 2d and 3d quasicrystals (with obvious generalization to any higher dimension).
The advantage of these prototypical models of d-dimensional quasicrystals is that they are
separable—certain problems, such as the eigenvalue problems studied here, can be decom-
posed into d separate one-dimensional problems, yielding straightforward solutions, while
allowing directly to focus on the effect of dimensionality on the problem being studied. The
most apparent disadvantage of these models is that they do not occur in “real” quasicrystals,
yet they should not be dismissed as irrelevant because they can be artificially constructed
using, for example, conducting nanowires, coupled nanomechanical resonators, or photonic
quasicrystals.

The square Fibonacci tiling is constructed by taking two identical grids—each consist-
ing of an infinite set of lines whose inter-line spacings follow the well-known Fibonacci
sequence of short (S) and long (L) distances—and superimposing them at a 90◦ angle,
as shown in Fig. 1. This construction can be generalized, of course, to any quasiperiodic
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FIGURE 1 A section of the square Fibonacci tiling.

sequence as well as to higher dimensions. If the original 1d sequence has inversion symme-
try the generated 2d and 3d quasicrystals will have square and cubic point group symmetry,
respectively.

2. Electrons and (Scalar) Phonons

Here we take advantage of the separability of the square (and cubic) Fibonacci tilings to
study two problems: (1) The tight binding hamiltonian with zero onsite energy and hopping
amplitudes t for vertices connected by long (L) edges, 1 for vertices connected by short (S)
edges, and zero for vertices that are not connected by edges; and (2) The normal modes of
out-of-plane vibrations of a network of unit masses connected by springs according to the
square Fibonacci tiling, with spring constants k for long edges, and 1 for short edges.

The 2-dimensional Schrödinger equation for the connected-neighbor tightbinding
hamiltonian is given by

tn+1�(n + 1, m) + tn�(n − 1, m)

+ tm+1�(n, m + 1) + tm�(n, m − 1) = E�(n, m), (1)

where �(n, m) is the value of a 2d eigenfunction on a vertex labeled by the two integers
n and m, and E is the corresponding eigenvalue. The hopping amplitudes t j are equal to
1 or t according to the Fibonacci tiling as described above. The equations of motion for
the network of springs is obtained from the Schrödinger equation (1) by replacing t j by the
spring constant k j , replacing E by (kn+1 + kn + km+1 + km) − ω2, where ω is the normal
frequency, and viewing �(n, m) as the out-of-plane displacement of the (n, m) vertex. The
generalization of Eq. (1) to three or any higher dimension is obvious.

With no additional assumptions other than the absence of diagonal hopping or diagonal
springs this 2-dimensional eigenvalue problem, as well as its higher dimensional versions,
are all separable. Two-dimensional eigenfunctions can be expressed as products

�i j (n, m) = �i (n)� j (m), (2)

with eigenvalues

Ei j = Ei + E j , or ω2
i j = ω2

i + ω2
j , (3)

where �i (n) and � j (n) are two of the eigenfunctions of the corresponding 1d eigenvalue
equation on the Fibonacci chain, with eigenvalues Ei and E j or ω2

i and ω2
j , respectively.
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Separable quasiperiodic hamiltonians have been studied on such models in the past [5],
mainly focusing on square or cubic periodic lattices with constant hopping amplitudes (or
springs) and on-site energies (or masses) that follow the same quasiperiodic sequence in
all directions. These so-called “diagonal” models are separable if one requires the on-site
energies (or masses) to be of the form V (n, m, . . .) = Vx (n) + Vy(m) + . . ., in which case
they have solutions as above.

3. Adding Energies

When solving the 1d tight-binding problem using the standard methods of transfer matrices
and trace maps [1] one finds for any t that the nth approximant, with Fn atoms per unit cell,
has a spectrum containing Fn continuous bands, where Fn is the nth Fibonacci number. As
n increases and the quasicrystal is approached, the bands become narrower, and in the limit
n → ∞ the spectrum becomes singular-continuous, containing a Cantor-like set of points
whose total bandwidth (Lebesgue measure) is zero. Figures 2(a–c) show these bands for

FIGURE 2 Energy spectra of the first few 1d and 2d approximants with t = 1.2, 2.0, and
3.0. In (a–c) the number of bands for the 3rd to the 8th approximants are 3, 5, 8, 13, 21,
and 34. In (d) there is a single band for all approximants; in (e) the number of bands are 3,
3, 9, 13, 19, and 31; and in (f) there are 5, 13, 23, 47, 87, and 213 bands.
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the first few approximants for three values of the parameter t . One sees that as t increases
away from the periodic (t = 1) structure the gaps that are formed become increasingly
wider.

When adding two such spectra as in Eq. (3) we first note that due to the degeneracy of
Ei j = E ji the maximum number of bands for the nth approximant, if there is no overlap at
all, is Fn(Fn + 1)/2. The degree of overlap depends on t . We find three distinct behaviors
which can be described qualitatively as follows:

(1) For large enough t the gaps in the 1d spectrum are sufficiently wide such that the 2d
spectrum contains well separated bands (Fig. 2(f)). As n increases the total number of
bands increases and in the limit n → ∞ the 2d spectrum becomes singular-continuous
with zero total bandwidth.

(2) For t close to 1, gaps in the 1d spectrum are suficiently small such that the 2d bands
greatly overlap, forming a single or a few bands even in the n → ∞ limit [Fig. 2(d)].
The spectrum of the 2d quasicrystal is therefore absolutely continuous.

(3) For intermediate t a peculiar situation exists (observed also in the diagonal models
[5]) where even though the total number of bands increases with n the total integrated
bandwidth tends to a finite value (Fig. 2(e)). It is not clear to us at this point whether
the spectrum of the 2d quasicrystal in this case contains an absolutely continuous part
or whether it remains singular-continuous as in 1d.

Clearly, the transitions betw een the different behaviors are pushed to higher values of t
as the dimension increases and additional 1d spectra are added. We shall provide elsewhere
a detailed analysis of the phase diagram of this system as a function of t and dimension.
We shall also describe the differences between electrons and phonons.

4. Multiplying Wave Functions

An intriguing paradox arises in light of the discussion above. Since for any t the 1d spectrum
is singular-continuous, all 1d eigenfunctions ψi (n) are critical, decaying as a power laws
from different points n0. Any product of two such functions, as in Eq. (2), must be critical
on the 2d quasicrystal as well, yet we have observed that for t close to 1 the spectrum is
continuous, implying that the wave functions must be extended.

We would like to conjecture that the resolution of this paradox stems from the high
degeneracy of each eigenvalue when bands overlap and merge into one as in Fig. 2(d).
In general, many different pairs of 1d eigenvalues Ei and E j may add up to the same
2d eigenvalue E . Each eigenfunction �i j (n, m) with eigenvalue E is critical, all peaked
at different points (n0, m0) on the 2d quasicrystal, with substantial overlap due to their
slow spatial decay. It is plausible that one could construct linear combinations of these
critical eigenfunctions that are extended over the whole infinite quasicrystal. We intend to
investigate this conjecture in the near future.

To support our conjecture, we conclude by showing that for any value of t the eigen-
functions with energy E = 0 are extended over the 2d quasicrystal. First recall that for any
1d eigenfunction �i (n) with energy Ei , the function (−1)mψi (m) is a 1d eigenfunction with
energy −Ei . Therefore, �i (n, m) = (−1)mψi (n)ψi (m) is a 2d eigenfunction with energy
E = 0. Thus, for the nth approximant, the energy E = 0 is Fn-fold degenerate (a similar
situation arises for the labyrinth tiling [6]). Since the 1d eigenfunctions form a complete
set that spans all functions on the Fibonacci chain, one can perform a change of basis to
an alternative complete set φ j (n) = ∑

i c jiψi (n) whose members are all extended. The 2d
eigenfunctions 	 j (n, m) = (−1)mφ j (n)φ j (m), all with energy E = 0 are extended over
the whole 2d quasicrystal.
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We should conclude with a cautionary remark that all our conclusions rely on the fact
that the behavior for finite 2d approximants survives in the infinite limit. This is not obvious
until proven rigorously as in 1d .
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