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Dimensionality reduction
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m (3) distances are ¢ preserved
m Target dimension k smaller than original dimension d




Simple image search example

Simple task: search through your library of 10,000 images for near
duplicates (on your PC).

Problem: your images are 5 Mega-pixels each. Your library occupies
22 Gigabytes of disk space and does not fit in memory.

Possible solution: Embed each image in a lower dimension (say
500). Then, search for close neighbors in the embedded points.

This can be done in memory on a moderately strong computer.

ﬂ



Random projections

Original space Target space
x€R’ v eR™ ¥ xeR’
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A distribution D over k x d matrices W s.t.
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Vesa-t PrIWxllp —1] > ¢] < 1/n?

All (3) pairwise distances are preserved w.p. at least 1/2.




Johnson Lindenstrauss Lemma

Lemma (Johnson Lindenstrauss 84)

W = uniformly chosen k dimensional subspace (projection)

Pri||[Wx|l, — 1] > €] < ce~ %=k

k=0(log(n)/e?) — Pr<—

Definition
Such distributions are said to exhibit the JL property.
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What is this good for?

We get:
m Target dimension k independent of d
m Target dimension k logarithmic in n
m V chosen independently of input points

These make random projection extremely useful in:
m Linear Embedding / Dimensionality reduction
m Approximate-nearest-neighbor algorithms
m Rank k approximation
m /4 and /> regression
m Compressed sensing
m Learning



Johnson Lindenstrauss proof sketch

The distribution over the choice of W is rotation invariant, thus:

PrIvKl = 11>l =  Pr [l 1] > <] J

Informally: projecting a fixed vector on a random subspace is
equivalent to projecting a random vector on a fixed subspace.

From an isoperimetric inequality on the sphere,
the norm of the first k coordinates of a random unit vector is strongly
concentrated around its mean.
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Dense i.i.d. distribution

Lemma (Frankl Meahara 87)

W(i,j)NN(O,\/LR) — JL property.

Proof.
Due to the rotational invariance of the Gaussian distribution:

1 1
[xly ~ yf g ~ N )

Which gives the JL property Ol

ﬂ



Dense i.i.d. distributions

Lemma (Achlioptas 03, Matousek 06)

V(i,j) € {+1,—1} uniformly —  JL property.
V(i,j) ~ any subgaussian distribution —  JL property.

||WX||2 = Z \ll(, Zy/
i=1

The random variables y; are i.i.d. and sub-Gaussmn (Due to
Hoeffding).

The proof above is due to Matousek.
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The need for speed

All of the above distributions are such that:
m V requires O(kd) space to store.
m Mapping x — Wx requires O(kd) operations.

Example: projecting a 5 Megapixel image to dimension 500:
m V takes up roughly 10 Gigabytes of memory.

m It takes roughly 5 hours to compute x — Wx.
(very optimistic estimate for a 2Ghz CPU)
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Sparse i.i.d. distributions

Can the projecting matrix be made sparser?

m Dasgupta, Kumar, Sarlos 09
m Kane, Nelson 10
m Braverman, Ostrovsky, Rabani 10

Lemma (Kane, Nelson 10)

Number of non zeros in W can be O(dlog(n)/e), factor ¢ better than
naive.

Lemma (Dasgupta, Kumar, Sarlos 09)
This cannot be improved much.

Proof: Consider input vectors like [0,0,1,0,0,...,0,1,0]"
Can the projection be sparser if the input vectors are not sparse?
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Sparse i.i.d. distributions

If the vectors are dense, the projection can be sparse!

Lemma (Ailon Chazelle 06, Matousek 06)
For some q € O(n?k) < 1:

1/V/q wp. q/2
\U(I,j):

-1/\/9 w.p. qg/2 — JL property
0 wp. 1—q.

for x such that || x|| . /|Ix|l, < n (i.e. not sparse).
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FJLT: random-sign Fourier + sparse projection

@x|l.=0( k/d) (Sdx)eR"
(<] \/\
loxl,=llxl, /2. lIS@xlb~ll,
S| f = .
) O L } (=} / (=}
L‘O
Preprocess: Random-sign Fourier Project: Sparse projection matrix
Requires O(d log(d)) operations contains O(k) non zeros in expectation
Lemma (Ailon, Chazelle 06)
Let ® be HD:

m H is a Hadamard transform
m D js a random +1 diagonal matrix

vx €S whp |ox|| < Vk/d}
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FJLT: random-sign Fourier + sparse projection

(8 dx)eR"
s @il
S| =)
o o
AO
Preprocess: Random-sign Fourier Project: Sparse projection matrix
Requires O(d log(d)) operations contains O(k’) non zeros in expectation

Lemma (Ailon, Chazelle 06)

After the rotation, an expected number of O(k3) nonzeros in S is
sufficient for the JL property to hold.




FJLT: random-sign Fourier + sparse projection

xes’! ®x|l.=0(/kId) (S®x)eRF

o \_{\
f||<15XI|z=||x||2 IS & xll,~[|x1l
o

b =} (=}
&o
Preprocess: Random-sign Fourier Project: Sparse projection matrix
Requires O(d log(d)) operations contains O(k?) non zeros in expectation

Lemma (Ailon, Chazelle 06)

S exhibits the JL property
Computing x — Sdx requires O(dlog(d) + k3) operations

This is O(dlog(d)) if k < d'/3
The belief is that O(d log(d)) time is possible for JL property for all k.
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FJLT using dual BCH codes

Can we remove this constraint by derandomizing the projection matrix? J

Consider the distribution ¥ = AD:
m Ais a fixed k x d matrix.
m D is a diagonal matrix, D(/, i) = s(i) (Rademacher).

We have that:

d

ZA(’)D i, i)x

i=1

|ADx|| =

ZA"

= [[Ms]|,
2

2

where M) = AU)x (/).
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FJLT using dual BCH codes

Lemma ((L, Ailon, Singer 09) derived from Ledoux, Talagrand 91)
For any matrix M:

Pr [|||MS||2 — M|l ol = 6] < 163_52/32||M||§

m Since Ms = ADx
m if M| g, =1 (true if Ais column normalized).
m and | M|, = O(k~1/?).

Pr(|||[ADx|, — 1| > €] < ¢4 o Cos2k

We get the JL property
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FJLT using dual BCH codes

Holder’s inequality

IMily2 € O (||AT],_lxlla)

Lemma

A < four-wise independent code matrix (concatenated code matrices)
m AT, ,, € O(d"/*k=1/2).
m Computing z — Az requires O(dlog(k)) operations.

& < concatenated random-sign Fourier transforms
m |[ox|, = O(d~/*) w.h.p.
m Computing z — &z requires O(dlog(d)) operations.



FJLT using dual BCH codes

Preprocess: Iterated random-sign Fourier ~ Project: 4-wise independent matrix
Require O(dlog(d)) operations Applicable in time O(dlog(d))

Lemma (Ailon, Liberty 08)

Exhibits JL property and applicable in time O(dlog d)
Construction exists for k < d'/2.

The constraint on k is weaker but still there... J




Motivation from compressed sensing...

We want to get rid of the constraint on k altogether. J

On the one hand:

Preprocessing becomes a bottleneck for k € Q(v/d).
We need to avoid it.

On the other hand:

Sparse vectors seem to require it. )

There is hope:
Sparse Reconstruction (Compressed Sensing) constructions naturally
deal with reconstructing sparse signals...
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Motivation from compressed sensing...

Definition (Restricted Isometry Property (RIP))
for all r-sparse vectors x:

(1 —e)llxlla < [IWxl, < (1 +€)lIxll2

Lemma (Rudelson, Vershynin 08, Candes, Romberg, Tau 06)

LR "%:(d) random rows (frequencies) from Hadamard matrix,
then w.p. V is RIP.

m The same approximate isometric condition as random projections
m Deals with sparse vectors without preprocessing

m No constraint (e.g. v/d upper bound) on r

m Very simple construction
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Almost optimal JL transform

k=0(log(n) polylog (d)l€*)

d ¢
J—— v 1 — ¢ — +1 |
d|=r— > —o— ||k ]
— | ¢ RP !
Hadamard Matrix JL property

For any set X of cardinality n, with constant probability:

vxeX (1-e)xlz < H\/—d’DXHz < (1 +e)lx|5.

m Fast for all k.
m Very simple construction (application time is O(d log(d)))
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Almost optimal JL transform

)
k'"®D k'"?®D koD
= +

r=0(log(n)/€’) largest entries in x

We break x to two vectors.
BX=X+X
B X is the r-sparse vector containing the r largest entries in x.
m X contains the rest. ||X||. < 1//T.
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Almost optimal JL transform

k_”2<15D

k=0(log(n)log*(d)/€*)

Lemma (Rudelson, Vershynin 08)

wp. V xeX oDs5| = ||X|I2 + O(¢)

|

Using the RIP property as black box.



Almost optimal JL transform

k71/2¢D

~

k—l/stD

wp. VY xeX 2(oDX)"oDx = O(e)

Not hard to show using Hoeffding’s inequality.

(Note that this function is linear in random bits supporting X)



Almost optimal JL transform

=<
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=<
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k—]/Z(pD

= +O(€)

Ix],=<r"

Main technical lemma:

Lemma (Extension of Rudelson and Vershynin, and Talagrand.)

wp. YV xeX oDx| = ||X||2 + O(¢)

|




Almost optimal JL transform

m From Talagrand: Hﬁ(DD)V( = ||X]| + O(e) if:
1 €2
— oD 0 <)
H\/E wllz log(n)

where Dy, is diagonal matrix with X on its diagonal.
m By triangle inequality:

1 1 1
IIW¢DX\|§ = || Dx®'®Dyl2 < || - Dx®'®Dx — Dfl|2 + [ D2

m By the choice of X: ||D2||o = || X||2, < 1/r = £2/log(n)
m To conclude the proof we need a similar bound for

1
||ED;(<D’<I>D;( — D%
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Main technical lemma

Lemma (Rudelson, Vershynin + careful modifications)

o — 1Dz¢fq>Dz

Ee [ sup P

ll2l12<1,]1 2]l oo <cr

alog?(d)
] €O <—\/F ) .

Substituting our choice of a? = 1/r = ( ; and

Iog

Keo (Iog(n) Iog“(d))

4

Satisfies the required bound and concludes the proof.
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More...

m This approach seems to actually give dependence 2 instead of
e~* as presented.

m Krahmer and Ward 10 show that any RIP construction becomes a
JL construction if you add a random sign matrix.
This fixes the dependence on ¢ to the correct ¢ 2. It also uses RIP
constructions as a black box.

Future work:

m Eliminating the polylog(d) factor for JL with no restriction on k.
This will also give an improved RIP construction.

m Improving our understanding of random projections for sparse
input vectors, e.g. bag of words models of text documents.
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