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Dimensionality reduction

(1− ε)
∥∥xi − xj

∥∥
2 ≤

∥∥Ψ(xi)−Ψ(xj)
∥∥

2 ≤ (1 + ε)
∥∥xi − xj

∥∥
2

(n
2

)
distances are ε preserved

Target dimension k smaller than original dimension d



Simple image search example

Simple task: search through your library of 10,000 images for near
duplicates (on your PC).

Problem: your images are 5 Mega-pixels each. Your library occupies
22 Gigabytes of disk space and does not fit in memory.

Possible solution: Embed each image in a lower dimension (say
500). Then, search for close neighbors in the embedded points.

This can be done in memory on a moderately strong computer.



Random projections

A distribution D over k × d matrices Ψ s.t.

∀x∈Sd−1 Pr
Ψ∼D

[|‖Ψx‖2 − 1| > ε] ≤ 1/n2

All
(n

2

)
pairwise distances are preserved w.p. at least 1/2.



Johnson Lindenstrauss Lemma

Lemma (Johnson Lindenstrauss 84)
Ψ = uniformly chosen k dimensional subspace (projection)

Pr [|‖Ψx‖2 − 1| > ε] ≤ c1e−c2ε
2k

k = Θ(log(n)/ε2) → Pr ≤ 1
n2

Definition
Such distributions are said to exhibit the JL property.



What is this good for?

We get:
Target dimension k independent of d
Target dimension k logarithmic in n
Ψ chosen independently of input points

These make random projection extremely useful in:
Linear Embedding / Dimensionality reduction
Approximate-nearest-neighbor algorithms
Rank k approximation
`1 and `2 regression
Compressed sensing
Learning

...



Johnson Lindenstrauss proof sketch

The distribution over the choice of Ψ is rotation invariant, thus:

Pr [|‖Ψx‖2 − 1| > ε] = Pr
x∼U(Sd−1)

[|‖Ikx‖2 − 1| > ε]

Informally: projecting a fixed vector on a random subspace is
equivalent to projecting a random vector on a fixed subspace.

From an isoperimetric inequality on the sphere,
the norm of the first k coordinates of a random unit vector is strongly
concentrated around its mean.



Dense i.i.d. distribution

Lemma (Frankl Meahara 87)

Ψ(i , j) ∼ N (0, 1√
k

) → JL property.

Proof.
Due to the rotational invariance of the Gaussian distribution:

‖Ψx‖2 ∼
√

1
k
χ2

k ≈ N (1,
1√
k

)

Which gives the JL property



Dense i.i.d. distributions

Lemma (Achlioptas 03, Matousek 06)

Ψ(i , j) ∈ {+1,−1} uniformly → JL property.
Ψ(i , j) ∼ any subgaussian distribution → JL property.

Proof.

‖Ψx‖22 =
k∑

i=1

〈Ψ(i), x〉2 =
k∑

i=1

y2
i

The random variables yi are i.i.d. and sub-Gaussian (Due to
Hoeffding).

The proof above is due to Matousek.



The need for speed

All of the above distributions are such that:
Ψ requires O(kd) space to store.
Mapping x 7→ Ψx requires O(kd) operations.

Example: projecting a 5 Megapixel image to dimension 500:
Ψ takes up roughly 10 Gigabytes of memory.
It takes roughly 5 hours to compute x 7→ Ψx .
(very optimistic estimate for a 2Ghz CPU)



Sparse i.i.d. distributions

Can the projecting matrix be made sparser?

Dasgupta, Kumar, Sarlos 09
Kane, Nelson 10
Braverman, Ostrovsky, Rabani 10

Lemma (Kane, Nelson 10)

Number of non zeros in Ψ can be O(d log(n)/ε), factor ε better than
naive.

Lemma (Dasgupta, Kumar, Sarlos 09)
This cannot be improved much.

Proof: Consider input vectors like [0,0,1,0,0, . . . ,0,1,0]T

Can the projection be sparser if the input vectors are not sparse?



Sparse i.i.d. distributions

If the vectors are dense, the projection can be sparse!

Lemma (Ailon Chazelle 06, Matousek 06)

For some q ∈ O(η2k) ≤ 1:

Ψ(i , j) =


1/
√

q w .p. q/2
−1/
√

q w .p. q/2
0 w .p. 1− q.

→ JL property

for x such that ‖x‖∞/‖x‖2 ≤ η (i.e. not sparse).



FJLT: random-sign Fourier + sparse projection

O d log d 

x∈S d−1 S x ∈ℝk

Project: Sparse projection matrix

∥S x∥2≈∥x∥2∥ x∥2=∥x∥2

Preprocess: Random-sign Fourier

∥x∥

∥ x∥∞=O  k /d 

Requires operations O k 3contains non zeros in expectation

Lemma (Ailon, Chazelle 06)
Let Φ be HD:

H is a Hadamard transform
D is a random ±1 diagonal matrix

∀x ∈ Sd−1 w.h.p. ‖Φx‖∞ ≤
√

k/d}



FJLT: random-sign Fourier + sparse projection

O d log d 

x∈S d−1 S x ∈ℝk

Project: Sparse projection matrix

∥S x∥2≈∥x∥2∥ x∥2=∥x∥2

Preprocess: Random-sign Fourier

∥x∥

∥ x∥∞=O  k /d 

Requires operations O k 3contains non zeros in expectation

Lemma (Ailon, Chazelle 06)

After the rotation, an expected number of O(k3) nonzeros in S is
sufficient for the JL property to hold.



FJLT: random-sign Fourier + sparse projection

O d log d 

x∈S d−1 S x ∈ℝk

Project: Sparse projection matrix

∥S x∥2≈∥x∥2∥ x∥2=∥x∥2

Preprocess: Random-sign Fourier

∥x∥

∥ x∥∞=O  k /d 

Requires operations O k 3contains non zeros in expectation

Lemma (Ailon, Chazelle 06)
SΦ exhibits the JL property
Computing x 7→ SΦx requires O(d log(d) + k3) operations

This is O(d log(d)) if k . d1/3

The belief is that O(d log(d)) time is possible for JL property for all k.



FJLT using dual BCH codes

Can we remove this constraint by derandomizing the projection matrix?

Consider the distribution Ψ = AD:
A is a fixed k × d matrix.
D is a diagonal matrix, D(i , i) = s(i) (Rademacher).

We have that:

‖ADx‖2 =

∥∥∥∥∥
d∑

i=1

A(i)D(i , i)x(i)

∥∥∥∥∥
2

=

∥∥∥∥∥
d∑

i=1

A(i)x(i)s(i)

∥∥∥∥∥
2

= ‖Ms‖2

where M(i) = A(i)x(i).



FJLT using dual BCH codes

Lemma ((L, Ailon, Singer 09) derived from Ledoux, Talagrand 91)
For any matrix M:

Pr
[
|‖Ms‖2 − ‖M‖Fro| ≥ ε

]
≤ 16e−ε

2/32‖M‖2
2

Since Ms = ADx
if ‖M‖Fro = 1 (true if A is column normalized).
and ‖M‖2 = O(k−1/2).

Pr [|‖ADx‖2 − 1| ≥ ε] ≤ c1e−c2ε
2k

We get the JL property



FJLT using dual BCH codes

Holder’s inequality

‖M‖2→2 ∈ O
(∥∥∥AT

∥∥∥
2→4
‖x‖4

)
Lemma
A← four-wise independent code matrix (concatenated code matrices)∥∥AT

∥∥
2→4 ∈ O(d1/4k−1/2).

Computing z 7→ Az requires O(d log(k)) operations.

Lemma
Φ← concatenated random-sign Fourier transforms
‖Φx‖4 = O(d−1/4) w.h.p.
Computing z 7→ Φz requires O(d log(d)) operations.



FJLT using dual BCH codes

O d log d 

x∈S d−1 B x ∈ℝk

∥B x∥2≈∥x∥2∥ x∥2=∥x∥2

Preprocess: Iterated random-sign Fourier

∥x∥

∥ x∥4=O d−1 /4

Require operations O d log d Applicable in time
Project: 4-wise independent matrix

Lemma (Ailon, Liberty 08)

Exhibits JL property and applicable in time O(d log d)
Construction exists for k . d1/2.

The constraint on k is weaker but still there...



Motivation from compressed sensing...

We want to get rid of the constraint on k altogether.

On the one hand:

Preprocessing becomes a bottleneck for k ∈ Ω(
√

d).
We need to avoid it.

On the other hand:

Sparse vectors seem to require it.

There is hope:
Sparse Reconstruction (Compressed Sensing) constructions naturally
deal with reconstructing sparse signals...



Motivation from compressed sensing...

Definition (Restricted Isometry Property (RIP))
for all r -sparse vectors x :

(1− ε)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + ε)‖x‖2

Lemma (Rudelson, Vershynin 08, Candes, Romberg, Tau 06)

Ψ← r log4(d)
ε2 random rows (frequencies) from Hadamard matrix,

then w.p. Ψ is RIP.

The same approximate isometric condition as random projections
Deals with sparse vectors without preprocessing
No constraint (e.g.

√
d upper bound) on r

Very simple construction



Almost optimal JL transform

d



Hadamard Matrix

H

1
−1

−1



RIP

k=O log n polylog d /4

1

k

JL property

kd D

Lemma
For any set X of cardinality n, with constant probability:

∀ x ∈ X (1− ε)‖x‖22 ≤ ‖
1√
k

ΦDx‖22 ≤ (1 + ε)‖x‖22.

Fast for all k .
Very simple construction (application time is O(d log(d)))



Almost optimal JL transform

r=O log n/2

k−1/2D

2

k−1/2D k−1/2D

2x

=

x x

largest entries in x

We break x to two vectors.
x = x̂ + x̌
x̂ is the r -sparse vector containing the r largest entries in x .
x̌ contains the rest. ‖x̌‖∞ ≤ 1/

√
r .



Almost optimal JL transform

r=O log n/2

k−1/2D

2

=

x 2x

k=O log n log4d /4

O 

Lemma (Rudelson, Vershynin 08)

w .p. ∀ x ∈ X
∥∥∥ 1√

k
ΦDx̂

∥∥∥2
= ‖x̂‖2 + O(ε)

Using the RIP property as black box.



Almost optimal JL transform

k−1 /2D k−1/2D

x xT

2 =O 

Lemma

w .p. ∀ x ∈ X 2
k (ΦDx̂)T ΦDx̌ = O(ε)

Not hard to show using Hoeffding’s inequality.
(Note that this function is linear in random bits supporting x̌)



Almost optimal JL transform

k−1/2D

2

=

2

O 

x x

∥x∥∞≤r
−1/2

Main technical lemma:

Lemma (Extension of Rudelson and Vershynin, and Talagrand.)

w .p. ∀ x ∈ X
∥∥∥ 1√

k
ΦDx̌

∥∥∥2
= ‖x̌‖2 + O(ε)



Almost optimal JL transform

From Talagrand:
∥∥∥ 1√

k
ΦDx̌

∥∥∥ = ‖x̌‖+ O(ε) if:

‖ 1√
k

ΦDx̌‖22 ∈ O
(

ε2

log(n)

)
where Dx̌ is diagonal matrix with x̌ on its diagonal.
By triangle inequality:

‖ 1√
k

ΦDx̌‖22 = ‖1
k

Dx̌ Φt ΦDx̌‖2 ≤ ‖
1
k

Dx̌ Φt ΦDx̌ − D2
x̌‖2 + ‖D2

x̌‖2

By the choice of x̌ : ‖D2
x̌‖2 = ‖x̌‖2∞ ≤ 1/r = ε2/ log(n)

To conclude the proof we need a similar bound for

‖1
k

Dx̌ Φt ΦDx̌ − D2
x̌‖2.



Main technical lemma

Lemma (Rudelson, Vershynin + careful modifications)

EΦ

[
sup

‖z‖2≤1,‖z‖∞≤α

∥∥∥∥D2
z −

1
k

DzΦt ΦDz

∥∥∥∥
]
∈ O

(
α log2(d)√

k

)
.

Substituting our choice of α2 = 1/r = ε2

log(n) and

k ∈ Ω

(
log(n) log4(d)

ε4

)

Satisfies the required bound and concludes the proof.



More...

This approach seems to actually give dependence ε−3 instead of
ε−4 as presented.
Krahmer and Ward 10 show that any RIP construction becomes a
JL construction if you add a random sign matrix.
This fixes the dependence on ε to the correct ε−2. It also uses RIP
constructions as a black box.

Future work:
Eliminating the polylog(d) factor for JL with no restriction on k .
This will also give an improved RIP construction.
Improving our understanding of random projections for sparse
input vectors, e.g. bag of words models of text documents.



Fin


