Simple and Deterministic Matrix Sketches

Edo Liberty
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+ ongoing work with: Mina Ghashami, Jeff Philips and David Woodruff.
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Data Matrices

Often our data is represented by a matrix.
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Data Matrices

which is often too large to work with on a single machine...

Data Columns Rows d n sparse
Textual | Documents | Words 10° - 107 | > 10% | yes
Actions | Users Types 10% - 10* | > 108 | yes
Visual Images Pixels, SIFT | 10° - 10" | > 10° | no
Audio Songs, tracks | Frequencies 10° - 107 | > 10° no
ML Examples Features 102-10* [ >10° | no
Financial | Prices Items, Stocks | 103 -10° | > 10° | no

We think of A € RY*" as n column vectors in R? and typically n > d.
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Streaming Matrices

Sometimes, we cannot store the entire matrix at all.
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Streaming Matrices

Example: can we compute AAT from a stream of columns A;?
(enough for PCA for example).
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Streaming Matrices

Example: can we compute AAT from a stream of columns A;?
(enough for PCA for example).

n
AAT =3 AAT
i=1

Naive solution
Compute AAT in time O(nd?) and space O(d?).

Think about 1Mp images, d = 10°. This solution requires 102 operations
per update and 1T space.
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Matrix Approximation

Matrix sketching or approximation

Efficiently compute a concisely representable matrix B such that
B~ A or BBT ~ AAT

Working with B instead of A is often “good enough”.

Dimension reduction

Signal denoising

Classification

Regression

Clustering

Approximate matrix multiplication
Reconstruction

Recommendation
m ...
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Matrix Approximation

Column subset selection algorithms

Paper Space Time Bound
FKV04 O(k*/€® max(k*, e~ 2)) O(k° /€® max(k*, e —2)) P, €A
DV06 #C = O(k/e + k% log k) O(nnz(A)(k/e + k% log k)+ P, eR
O(n(k/e + k% log k)) (n+d)(k? /2 + K3 log(k /) + k* log? k))
DKMO06 #C = 0(1/£?) O((n + 1/£2)/e* + nnz(A)) P, ely
“LinearTimeSVD" o((n+1/£%) /%)
#C = O(k/%) O((k/€%)?(n + k/€%) + nnz(A)) P, eA
O((k/€)(n + k/£?))
DKMO06 #C4+R = 0O(1/£"%) O((1/™% + nk/e™ + nnz(A)) P, ely
“ConstantTimeSVD" | O(1/e'? + nk/e*)
#C+R = O(k? /%) O(K° /T2 1 nk3 /™ 4 nnz(A)) P, A
O(KS /€2 + nk3 /%)
DMMO8 #C =0(k? /%) O(nd?) C, eR
“CUR” #R = O(k* /%)
MDO09 #C = O(k log k/&?) O(nd?) Po(kiog k/e2)r €R
“ColumnSelect” O(nk log k/<?)
BDM11 #C = 2k/e(1 + o(1)) O((ndk + dk3)e —273)

Pak/e(140(1)): ER

[Relative Errors for Deterministic Low-Rank Matrix Approximations, Ghashami, Phillips 2013]

Sparsification and entry

g

(p log(n) iz /<2)'/2

Paper Space Time Bound

AMO7 pn/eZ £ n- polylog(n) nnz pn/e% 4+ nnzn - polylog(n) [|[A— B> < e||lAll2
AHK06 (nnz - n/e%)1/? nnz(nnz - n/e2)1/? A— B> < ||lAll2
D711 pnlog(n)/e? nnz pnlog(n) /&> A— B> < <|lAll2
AKL13 ii p log(n) /g2 + nnz A—Bll2 < e|lAll2

[Near-optimal Distributions for Data Matrix Sampling, Achlioptas, Karnin, Liberty, 2013]
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Matrix Approximation

Linear subspace embedding sketches
Paper Space Time Bound
DKMO06 #R = 0(1/£7) O((d + 1/%)/* + nnz(A)) P, ely
LinearTimeSVD o((d + 1/e2) /&%)
#R = O(k/%) O((k/€%)?(d + k/€?) + nnz(A)) P, eA
O((k/€2)*(d + k/€%))
Sar06 #R = O(k/= + klogk) O(nnz(A)(k/e + klogk) + d(k/e + PO(k/e+klog k)» €R
turnstile O(d(k/e + klog k)) k log k)?))
CW09 #R = O(k/e) O(nd? + (ndk /<)) Pogk/e) €R
CW09 O((n + d)(k/¢)) O(nd” + (ndk /<)) C, eR
CW09 O((k/e%)(n + d /%)) O(n(k/?)? + nd(k/€?) + nd?%) C, R
Deterministic sketching algorithms
Paper Space Time Bound
FSS13 O((k/<) log n) n((k/e) log n) O Park/e]: €R
Lib13 #R = 0(p/e) O(ndp/e) Po(p/e) €Lz
O(dp/<)
GP13 #R = [k/e + k] O(ndk /<) P, eR
O(dk/¢e)

[Relative Errors for Deterministic Low-Rank Matrix Approximations, Ghashami, Phillips 2013]
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Frequent Directions

Efficiently maintain a matrix B with only £ = 2/¢ columns s.t.

IAAT — BBT |2 < €[|All?

Extend Frequent-items

[Finding repeated elements, Misra, Gries, 1982.]

[Frequency estimation of internet packet streams with limited space, Demaine, Lopez-Ortiz, Munro, 2002]
[A simple algorithm for finding frequent elements in streams and bags, Karp, Shenker, Papadimitriou, 2003]
[Efficient Computation of Frequent and Top-k Elements in Data Streams, Metwally, Agrawal, Abbadi, 2006]

(An algorithm so good it was invented 4 times.)
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Frequent Iltems
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Obtain the frequency f(i) of each item in the stream of items



Frequent Iltems

—
—

With d counters it's easy but not good enough (IP addresses, queries....)



Frequent Iltems
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(Misra-Gries) Lets keep less than a fixed number of counters /.



Frequent Iltems
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If an item has a counter we add 1 to that counter.



Frequent Iltems

Otherwise, we create a new counter for it and set it to 1



Frequent Iltems
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But now we do not have less than ¢ counters.
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Frequent Iltems
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Let 0 be the median counter value at time t
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Frequent Iltems

Decrease all counters by § (or set to zero if less than 0)



Frequent Iltems

And continue...
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Frequent Iltems

f(mm) =0
-
=
l-l l_I ] J
l J
Y
(

The approximated counts are f’



Frequent Iltems

m We increase the count by only 1 for each item appearance.
f'(i) < £(i)
m Because we decrease each counter by at most d; at time ¢t
F1(i) > F(i) = ) 6
t
m Calculating the total approximated frequencies:

0<> FI)SY 1= (£/2)-6e=n—(/2)- > b

Z(St é 2n/f
t
m Setting { = 2/ yields
|f(i)— (i) <en



Frequent Directions
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We keep a sketch of at most ¢ columns
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Frequent Directions

(== — ]

¢

We maintain the invariant that some columns are empty (zero valued)
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Frequent Directions

0/8/0/0/0/8| 0]

(== — (]

¢

Input vectors are simply stored in empty columns
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Frequent Directions
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Input vectors are simply stored in empty columns
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Frequent Directions

When the sketch is ‘full’ we need to zero out some columns...
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Frequent Directions

B=USVT
L
[ 1

Bow =US vT

1 |

EEEE

BoS=
EEEE
Boc=
SEEE
Bos=
EEEE

Using the SVD we compute B = USV'T and set Bpew = US
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Frequent Directions

B=USVT
L
[ 1

Bpew =US VT

1 |

R

Eoe/=
==
EEEE
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Eom=m|=
EEEE

Note that BB = Bpew B/, so we don't “lose” anything

hew
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Frequent Directions

B'= S
f_l_\
EEEEE]
BoS=
EEEE
Boc=
SEEE
Bos=
EE=== |
l_'_l
¢

The columns of B are now orthogonal and in decreasing magnitude order

— d
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Frequent Directions

0 = || Byl

—

0]

o

0

]
B/0/0/0/0/0[0

_ 2
Let 6 = || Byl



Frequent Directions
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Reduce column ¢3-norms by & (or nullify if less than §)
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Frequent Directions
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Start aggregating columns again...
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Frequent Directions

Input: ¢, Ac RIxn
B < all zeros matrix € RI*¢
for i € [n] do
Insert A; into a zero valued column of B
if B has no zero valued colums then
[U, X, V]« SVD(B)
0+ 03/2
Y « /max(X2 - 1;6,0)
B« Ux # At least half the columns of B are zero.
Return: B
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Bounding the error

We first bound ||AAT — BB ||

sup [[XA|2 = |xB[> = sup Z[x An)? + [IxBEY2 — ||xBt|1?]
[Ix||=1 lIxll=1%+=4
= sup vactnz 1xB¢)1?]
Ixl=1%+=
< Z |ctTct - BETBY| - ||x|I?
t=1

- >
t=1
Which gives:

IAAT — BBT|| <) 6,
t=1
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Bounding the error

We compute the Frobenius norm of the final sketch.

0<|[IBIF = D [IBF —IIB* 7]
t=1
= D IUCHF= 1B HIZ) = (ICHIF = 1BH17)]
t=1
= S A2~ tr(ctTct - BT BY)
t=1
n
< JAIF = (¢/2)) 6
t=1
Which gives:

> o < 2JAlF/¢
t=1
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Bounding the error

We saw that: .
IAAT = BBT|| <) 6,
t=1

and that:

n
> 6 < 2| AlF/¢
t=1
Setting ¢ = 2/¢ yields

IAAT — BBT|| < e[| AlI? -

The two proofs are (maybe unsurprisingly) very similar...
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Experiments

|AAT — BBT|| as a function of the sketch size /
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Synthetic input matrix with linearly decaying singular values.
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Experiments

Running time in second as a function of n (x-axis) and d (y-axis)
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The running time scales linearly in n, d and ¢ as expected.



More results

For any matrix A € R"¥?, FrequentDirections guaranties that:

IAAT — BBT |2 < ||A — Acll7/(£ — k).

This holds also for all k < ¢ including k = 0.

For example, for ¢ = [k + 1/e] we use O(dk + d/e) space and have

IAAT — BBT|l> < cl|A— Al?

This is space optimal.
Any streaming algorithm with this guarantee must use Q(dk + d/¢) space.
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More results

Let B € R®*9 pe the sketch produced by FrequentDirections. For any
k < £ it holds that

k
1A= mg(ANE < (14 =)A= Az

For example, for £ = [k/c| we use O(dk/c) space and have

1A = 7E(A)[F < (1+e)| A~ Adll?

This is space optimal.
Any streaming algorithm with this guarantee must use Q(dk /<) space.
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More results

There exists a variant of FrequentDirections with the same guaranties and
space complexity whose running time is

O(£%n + £nnz(A))

Here, (N)() suppresses logarithmic factors and numerical convergence
dependencies. The power method requires O(1) iterations to converge.

This is not optimal.
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Thanks
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