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ABSTRACT
Bucket testing, also known as split testing, A/B testing, or
0/1 testing, is a widely used method for evaluating users’ in-
teraction with new features, products, or services. Usually,
a small set of uniformly randomly chosen users are given
the new service and the overall satisfaction rate is evaluated
from the sample. In a recent work, Backstrom and Klein-
berg, defined the notion of network bucket testing. Here
the services are social in nature and users’ satisfaction is
only valid for measurement if some minimal number of their
friends are also given the service (core set users). The goal is
to estimate the mean user satisfaction rate while providing
the service to the least number of users. This challenging
problem is becoming increasingly relevant with the growing
popularity of social networks.
In this paper we introduce a simple general framework for

evaluating network bucket testing algorithms. The frame-
work is constructed in a way that testing algorithms are
only required to produce core sets of users. Given an algo-
rithm, the framework produces an unbiased user satisfaction
rate estimator and a corresponding variance bound for any
network and any user satisfaction function. Furthermore,
we present several simple testing algorithms which are eval-
uated using both synthetic and real social networks. Our
experiments corroborate the theoretical results, and demon-
strate the effectiveness of the proposed framework and algo-
rithms.

Keywords
Social networks, Bucket testing, A/B testing, Network Bucket
Testing, Unbiased estimation

1. INTRODUCTION
Bucket testing, a.k.a. split testing, A/B testing, or 0/1

testing, is a well know and widely used method for evaluat-
ing user engagement or satisfaction from a new service, fea-
ture, product etc. Before releasing a new service, providers
often choose a small subset of users to which the service is
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given. Based on these users’ behavior, the overall satisfac-
tion of users can be estimated. If the satisfaction is high
enough, the service is released to the entire user population.
For example, web page layouts significantly impacts users’
engagement. If a new page layout is considered, bucket test-
ing is used to verify that indeed the new layout is better than
the existing one. This example also explains why the num-
ber of users exposed to the new layout should is an issue.
On one hand, it should be large enough so that the measure-
ments are statistically valid. On the other hand, it should
be as small as possible. If the new layout is indeed worse,
these users ‘suffered’ from the experiment and the quality of
service provided to them was reduced. Each bucket test is
therefore given a budget, B, which is the maximal number
of users it is allowed to effect.

In social networks and services, however, the situation is
more complex. Users’ satisfaction might depend on whether
the service is also available to their friends. For example,
a messaging service might inherently be very useful but no
user can enjoy it if none of his friends have it too. Thus, to
measure users’ engagement the service must be given to at
least some of their friends. Other examples include, content
tagging, games, certain kinds of adds, event invitations, etc.
In [1] the authors suggest to set a parameter d > 0 such that
users’ interactions can be measured only if at least d of their
friends have also received the service. We adopt this model
as well.

Introducing some notations, let the graph G(V,E) rep-
resent the network in the standard way. Each node corre-
sponds to a user and {i, j} ∈ E iff users i and j are connected
(or ‘friends’). Also denote |V | = n and |E| = m. As in [1]
we assume for simplicity matters that all the nodes in G
have at least d neighbors. Let f : V → [0, 1] be an arbitrary
function over the users. The function f can be thought of as
measuring the user’s engagement or satisfaction. The aim
of the test is to estimate the mean value µ = 1

n

∑
i∈V fi. If

the algorithm chooses a set of users B (to give the service
to) it pays |B| from the total budget B. For the algorithm
to evaluate f on a core set of nodes A it must pays |B| form
the budget. The set B is the d-closure (or fringe) set of A
which is the minimal set containing A such that all nodes in
A have at least d neighbors in B.

An important difference between our work and [1] is the
restrictions put on the satisfactions function. In [1] a random
biased coin model generated the function f : V → {0, 1}.
While this model makes sense and indeed is very useful for
analysis, we argue that it is still restrictive. The first general-
ization is that our function receives real values f : V → [0, 1].



The reasoning for the latter is that in many cases, mea-
sures of satisfaction take scalar values. These include: the
amount of time spent in an application, number of times it
was launched, increase in activity, etc. Moreover, a random
model for f is not always justified. Here, we consider any
fixed or even adversarial satisfaction functions.
A fixed (or almost fixed) function f is a realistic scenario

but it is also mathematically justified. In fact, one can eas-
ily see that the variance of estimating the mean of random
function f is always dominated by variance obtained (over
the random bits of the algorithm) for an adversarial choice
of f .
Second, the authors of [1] suggest to choose the core set

A according to different random walk procedures. While
this gives good results we show that, in fact, there are vir-
tually an unlimited number of valid algorithms. (it is worth
mentioning that they also consider core sets including single
nodes and pairs of nodes). We argue that any distribution
over core subsets of nodes can be used. If the probability
of any node being in the sample is strictly positive, the ob-
tained estimator Z for µ is also unbiased. The only difference
between different distributions is the variance this estimator
exhibits. Thus, for every network, one should choose the dis-
tribution which minimizes the estimator variance. Since one
must choose an algorithm before starting the bucket test, we
give bounds on the variance from above for any f .
The rest of this work is organized as follows. In Section 2

we present the meta algorithm which applies the specific al-
gorithms presented in Section 3. Connections of our concept
to the random walk approach of [1] is considered in Section
4. A gradient decent optimization procedure aimed to re-
duce the estimator variance is briefly described in Section 5.
Experimental setup and corresponding results are described
in Section 6. We discuss the results and conclude the work
in Section 7.

2. META ALGORITHM
We start by describing the meta-algorithm which is iden-

tical to all the distributions over core sets. The meta al-
gorithm is straight forward and is identical to the one in
[1]. Accordingly, a given algorithm produces core sets from
some distribution over the graph’s set of core sets. Then, for
each selected core set it produces an unbiased estimator. It
continues to do so until it exhausts the budget B. The out-
put estimator is the mean of all estimators obtained during
the process. A formal description of the meta-algorithm is
elaborated in Algorithm 1.
The final estimator Y is unbiased since each of the Z es-

timators are:

E (Z) =
∑

A∈supp(Q)

Q(A)
∑

i∈A

1
nq(i)

f(i)

=
1
n

∑

i∈V

f(i)
q(i)




∑

A∈supp(Q)

Q(A) {i∈A}



 =
1
n

∑

i∈V

fi = µ,

where Q is the core set distribution over 2V , and q(i) gives
the probability that the i is in the chosen core set (see more
details in Algorithm 1). Note that if q(i) = 0 for some i this
expression is not valid.
Since the overall estimator Y is unbiased for any distri-

bution, the goal is to reduce its variance. Given the fact
that core sets A! are chosen i.i.d. we have that Var (Y ) =

Algorithm 1 Network Bucket Testing Meta-Algorithm

Input: B, budget
input: d, minimal degree threshold
Input: G(V,E), input graph
Input: Q, core set distribution over 2V

Input: q, such that q(i) ←
∑

A∈supp(Q) Q(A) {i∈A}

Output: Y , estimation of µ = 1
n

∑
i∈V f(i)

b ← 0 ; ! ← 1 ; L ← 1
while True do

A! ← drawn according to core set distribution Q
B! ← d-closure (fringe) set of A
b ← b+ |B|
if b > B then

break
end if
Z! ←

∑
i∈A

1
nq(i)f(i) ; L ← ! ; ! ← !+ 1

end while
return: Y ← 1

L

∑L
!=1 Z!

1
L2

∑L
!=1 Var (Z!) = 1

LVar (Z). To approximate the size of L

we compute the cost of this experiment which is
∑L

!=1 |B!|.
Assuming |B!| $ B and enforcing that the cost is less than
the budget we get that L ≈ B/E (|B1|). Note that since
|B!| are also i.i.d. random variables, applying Chernoff’s in-
equality shows that the value of L = (1 ± o(1))B/E (|B1|)
with high probability, the details are omitted. Finally, we
have that

Var (Y ) ≈ 1
BE (|B|)Var (Z) . (1)

where we omit the subscript and use B and Z instead of
B1 and Z1. Since the budget is fixed, the correct choice
of distribution over core subsets and estimators is the one
minimizing E (|B|)Var (Z). This quantity is highly related
to the efficiency defined in [1] as |B|/|A|. If the engagement
function f is itself random, as assumed in [1], we can expect
Var (Z) to be proportional to 1/|A|.

It remains to compute the variance Var (Z) = E
(
Z2

)
−

(E (Z))2. We start by calculating the second moment of the
estimate Z,

E
(
Z2) =

∑

A∈2V

Q(A)
∑

i∈A

∑

j∈A

1
n2q(i)q(j)

f(i)f(j)

=
∑

i∈V

∑

j∈V

1
n2

1
q(i)q(j)

f(i)f(j)
∑

A∈2V

Q(A) {{i,j}⊂A!}

=
∑

i∈V

∑

j∈V

1
n2

q(i, j)
q(i)q(j)

f(i)f(j)

(2)
where q (i, j) ≡

∑
A∈2V Q(A) {{i,j}⊂A!} is the probability

that both nodes i and j are simultaneously included in a core
set A. Maximizing this expression over functions f such that∑

f(i) = µn gives the worst variance possible. It is easily

verified that the maximal obtainable value is E
(
Z2

)
= µ2

q(1) ,

assuming w.l.o.g. that maxi
1

q(i) = 1
q(1) . This bound, how-

ever, is overly pessimistic since it is obtained in the unreal-
istic case where f(1) = µn and all other values are f(i) = 0.
We therefore need to enforce that the values of f are dis-
tributed over many values. A natural way to achieve this is
to limit ourselves to functions f such that f(i) ∈ [0, 1].



Proposition 1 Let W (i, j) = q(i,j)
q(i)q(j) . Moreover, let Uµ =

argmax|U|≤µn =
∑

{i,j}⊂U W (i, j).

Var (Z) ≤
∑

{i,j}⊂Uµ

W (i, j)/n2 − µ2. (3)

Proof. First, note that W is a positive semidefinite ma-
trix. This is because fTWf = n2E

(
Z2

)
≥ 0 for all f .

Therefore, fTWf is a convex function of f defined over the
convex set f(i) ∈ [0, 1] and

∑
f(i) = µn. The maximal

value of such functions is obtained in an extreme point of
the body. Let uµ be this extreme point uµ(i) ∈ {0, 1} and∑

i uµ(i) = µn. That is, for µn nodes we have uµ(i) = 1 and
for (1 − µ)n nodes uµ(i) = 0. Setting Uµ = {i|uµ(i) = 1}
completes the claim.

Computing this quantity amounts to finding the heaviest
subgraph of size µn of G when the weights of the edges are
gives by W . The heaviest subgraph problem is notoriously
hard [4][2]. It does, however admit scalable approximation
algorithms that work well in practice [3][7]. Regardless, in
our scenario, it is natural to assume that µ is at least a small
constant. Therefore, a random choice of Uµ is expected to
yields a µ2 approximation factor to the optimal. Moreover, if
any algorithms improves on the random choice by a factor of
t then the solution is guaranteed to by a tµ2 approximation
to the optimal. This discussion, unfortunately, goes beyond
the scope of this paper.
For the sake of simplicity, we use a more relaxed bound

which uses the spectral norm of W . Applying the Cauchy-
Schwarz inequality yields Var (Z) ≤ 1

n2 λ1(W )‖uµ‖2 − µ2.
Here λ1(W ) denotes the spectral norm of W (its largest
eigenvalue). Substituting ‖uµ‖2 = µn we get that:

Var (Z) ≤
(
1
n
λ1(W )− µ

)
µ , (4)

The largest eigenvalue λ1(W ) can be easily calculated using
power iteration method. Except for this bound being signif-
icantly easier to compute, we shall see in the results section
that it is also tight enough to give valuable information.
As seen above, the overall variance of the step estima-

tor Z is proportional to E (|B|)Var (Z), where both E (|B|)
and Var (Z) are complex function of the distribution over
core sets Q. In what follows we describe specific algorithms.
Those enable us to efficiently draw core subsets from a dis-
tribution Q and produce the probability vector q for every
graph. The goal, of course, is to reduce E (|B|)Var (Z) as
much as possible.

3. SPECIFIC ALGORITHMS
In order to describe the algorithm we require some addi-

tional notations. Let Ni = {j ∈ V : (i, j) ∈ E} indicate
the set of neighbors of node i and N+

i = {{i} ∪Ni}. We
denote by Ni,j = Ni ∩Nj (similarly N+

i,j = N+
i ∩N+

j ) and
M(i, j) = min{|Ni,j |, d − 1}. We denote Q the distribution
over subsets of nodes and Q(A) the probability of core set
being chosen. Also, let supp(Q) be the support of Q, i.e.,
A ∈ supp(Q) iff Q(A) > 0.

3.1 Naïve Algorithm
Here the core sets are simply the nodes of the graph,

supp(Q) = {{i} |i ∈ V }. In addition, the core set distribu-
tion Q is simply Pr (A) = p(i), where p is some distribution

defined over the nodes of G. Hence, q(i) = Pr (i ∈ A) =
p(i). Since the core set contains only one node and we ran-
domly pick d of its neighbors to form the closure set, we
clearly have |B| ≤ d+ 1.1 To compute the variance we note
that W (i, j) = 1

q(i) for i = j and zero otherwise. Since W
is a diagonal matrix in this case, its top eigenvalue equals
its maximal diagonal entry, we have that the spectral bound
(4) reduces to

Var (Z) ≤
(
1
n

1
mini p(i)

− µ

)
µ.

This is minimized using the uniform distribution p(i) = 1/n
and gives Var (Z) ≤ (1−µ)µ. In this case, it turns out, that
the näıve spectral bound of 4 is tight.

The overall variance achieved by the näıve algorithm for
any f and uniform node distribution is therefore

Var (Ynaive) =
1
B (d+ 1)(1− µ)µ . (5)

3.2 Edge Algorithm
The first non trivial core set distribution can include any

two nodes which are connected in the graph. Namely {i, j} ∈
supp(Q) if {i, j} ∈ E. Setting the probability of choosing
edge {i, j} to be p(i, j) we have

E (|B|) ≤ 2d−
∑

{i,j}∈E

p(i, j)M(i, j)

W (i, j) =
p(i, j)(∑

k∈Ni
p(i, k)

)(∑
k∈Nj

p(j, k)
) .

A possible good assignment for p could be achieved by pro-
ducing a maximal weighted matching on the graph G, where
the weight of edge {i, j} is set to M(i, j). Assigning proba-
bility 2/n for all edges in the matching and probability zero
to all other edges. Admittedly, not all graphs yield good
maximal weighted matching, or even any matching which
includes all nodes. We experimented with a simpler edge
selection algorithm which applies to any graph.

3.3 Neighborhood Algorithm
Here the core sets are the graph nodes and their neighbors

supp(Q) =
{
N+

i |i ∈ V
}
. In addition, we assign different

probabilities to each core set according Q(N+
i ) = p(i) where

p is an arbitrary distribution defined over the nodes of G.
The node i will be referred to as the center of N+

i . Hence,
a node i belongs to the core set A if one of its neighbors (or
itself) is the center node of A. Therefore we have

E (|B|) ≤ 1 +
∑

{i,j}⊂E

(p(i) + p(j)) (d−Mi,j)

W (i, j) =

∑
k∈N+

i,j
p(k)

(∑
k∈N+

i
p(k)

)(∑
k∈N+

j
p(k)

) .

4. CONNECTION TO RANDOM WALKS
In [1] the authors suggested generating the core sets ac-

cording to a random walk. That is, start at any node and at
each step move to one of the neighboring nodes uniformly at

1Recall our assumption that all nodes have at least d neigh-
bors.



random. One can theoretically consider a core set distribu-
tion Q which includes all length t paths in the graph. The
probability of a core set A is the probability of it being the
set of nodes produced by the random walk. Although it is
computationally impossible to compute Q it is quite easy to
sample from it simply by simulating the random walk. In
order to execute the meta algorithm one must also be able
to compute q(i). It is well known [6] that after a certain
number of such steps, one reaches the stationary distribu-
tion. In the stationary distribution the probability of being
at node i is proportional to its degree, denoted by deg(i).
Therefore, the expected number of times a node is included
in a length t random walk is t ·deg(i)/

∑
j∈V deg(i). Setting

q(i) = t · deg(i)/
∑

j∈V deg(i) completes the description of
the algorithm. It is worth noting that there is a slight dif-
ference in notation between the ones in [1] and those used
here. There, a node can appear multiple times in the core
set, so in a sense, it behaves more like a list than a set. This
is the reason the authors of [1] introduced the multiplicity
of nodes in core sets into their estimator.
A similar view is also possible for the other variants of

random walks proposed in [1]. The authors use random
walks which try to balance the probabilities q(i). This is
possible using a Metropolis-Hastings random walk as used,
for example, in [5]. Another option is to assign weights to
edges and transition with probabilities proportional to edge
weights. It turns out that it is possible, in most cases, to as-
sign such weights that the probability of visiting each node
is roughly the same. Again, computing or storing Q is com-
putationally impossible but sampling from it is easy. Setting
q(i) = t/n and applying the meta algorithm is identical to
the algorithms in [1].
One problematic aspect of using random walks is that it is

impossible to compute the matrix W and hence impossible
to analytically bound the variance for arbitrary unknown
functions f . Surprisingly, there is a way to overcome this
problem. In particular, one can simulate a very large number
of random walks and produce an empirical matrix W ′. It is
not hard to see that after sufficiently many simulations, we
would have W ′ ∼ W at least in the spectral sense. It can
be shown using sampling argumentation, that O(n2 log(n))
simulations would suffice for W ′ to be close enough to W to
give similar bounds.

5. GRADIENT DECENT OPTIMIZATION
In cases where the support of the core set distribution

is small we can directly minimize the overall variance of
the estimator. That is, find values for Q which minimize
E (|B|)Var (Z). One obstacle in doing so is that an exact
expression for the variance Var (Z) is not available. From
Proposition 1 we have that Var (Z) ≤

∑
{i,j}⊂Uµ

W (i, j)/n2.
Alas, computing this value requires solving an NP-hard prob-
lem. We therefore replace it with a simple bound which sums
over all elements ofW , namely, Var (Z) ≤

∑
{i,j}⊂V W (i, j)/n2.

Although this bound is extremely näıve, it serves well as
a surrogate to the actual value. The second obstacle is
that computing the closure set for a core set is also com-
putationally hard. For this problem we also use a sim-
ple bound which is the size of closure set achieved by a
greedy algorithm, Bg. Finally we are faced with minimizing
ψ(Q) = E (|Bg|)

∑
{i,j}⊂V W (i, j)/n2. Since ψ(Q) is a com-

plex function of the core set distribution we cannot hope to

minimize it exactly. We resort to minimizing ψ(Q) heuristi-
cally using Gradient Decent. The results of using Gradient
Decent on Neighborhood algorithm core sets are presented
in the experimental section.

6. EXPERIMENTAL SETUP AND RESULTS
Evaluating algorithms’ efficiency or preferring one algo-

rithm to another is impossible in general. The correct choice
of algorithm heavily depends on a wide range of parame-
ters. While the authors of [1] report good results of their
algorithms applied to portions of the Facebook network, we
observe that it does less well for others. Likewise, our algo-
rithms mostly outperform the näıve implementation but for
some values of f and some graph the näıve algorithms beats
them. The number of variations possible in the graphs, sat-
isfaction functions, algorithms, and measures of success, is
practically endless. Nevertheless, we tried to be as thorough
as possible. Our choices are described below.

6.1 Graphs
The first crucial factor in the success of an algorithm is the

Network it operates on. In this work we examine 3 different
graphs, one real and two synthetic.
DBLP: we used the Digital Bibliography and Library Projects
(DBLP) entire database. It contains data about authors of
manuscripts. We associated each node in the graph with an
author and an edge corresponds to coauthorship of at least
one paper. The graph we obtained contains 845, 211 nodes,
each with at least one edge (authors with no co-authors were
discarded).
BA: a synthetic graph constructed according to the model
of Albert and Barabási [8]. We start with a ring graph of
size 10. Then we add nodes one at a time. Each new node is
connected by edges to 10 other nodes already in the graph
with probabilities proportional to their degrees.
WS: a synthetic graph constructed according to the model
of Watts and Strogatz [9]. Here, to construct a network of n
nodes we start with an n node ring graph. Then, we connect
each node to 10 nodes to its right along the ring. Finally, we
reroute each edge to a random node with probability 1/2.

One immediate problem we encounter is that, due to our
model, nodes with degree lower than d cannot be measured.
That is simply because, even if all their neighbors are cho-
sen, they would not have d chosen neighbors. One can think
of several solutions for this issue. For example, change the
model by deciding that such nodes are still measurable if all
their neighbors are chosen. Or, define the mean to not in-
clude those and never measure their satisfaction. However,
since this is not the main point in of the paper we chose (as
in [1]) to simply remove those nodes. Note that after re-
moving some small degree nodes, other nodes might become
removable too. Here we simply continued removing those
until all degrees in the graph were at least d. This process
will be referred to as trimming.

6.2 Satisfaction functions
As explained throughout the paper, one of the most cru-

cial factors governing the variance of our estimation is the
satisfaction function f . While our proofs bound the vari-
ance for all functions f simultaneously, we experimented
with only three kinds. These were taken to represent ex-
treme cases of network biases.
Uniform: samples uniformly, without replacement, exactly



µn nodes from the graphs. For chosen nodes f(i) = 1 and
f(i) = 0 otherwise. This serves mostly as a sanity check and
as a baseline. We cannot expect any social feature to truly
have such a satisfaction function.
BFS: starts a Breadth First Search algorithm in an arbi-
trary node in the graph and assigns a value of f(i) = 1 to
all nodes it encounters until it encounters µn nodes. The rest
are give value zero. This function gives an extreme graph
topological bias.
Degree Percentile: assigns the value of f(i) = 1 to all
nodes in the top µ percentile in terms of degree. In other
words, f(i) = 1 for the µn nodes whose degree in the graph
is the highest. Here we simulate another extreme case of de-
gree bias. This is an important case for two reasons. First,
our algorithms are heavily influenced by node degrees and
so this choice of f might be ‘difficult’. Second, in reality,
social features are not independent of degree biases. This is
because the node degree usually relates to the user’s activity
or ‘socialness’ in some sense. This function is the extreme
case of all satisfaction distributions which are positively cor-
related with the degree.
Degree Bias: proposed in [1] and gives a less extreme de-
gree bias. Nodes are picked randomly with probability pro-
portional to log(deg(i)). The process terminates when we
have picked µn nodes. The function f assigns the value 1 to
all picked nodes and 0 otherwise.

DBLP Uniform BFS
Degree
Perce-
ntile

Degree
Bias

Näıve 0.41 0.41 0.42 0.41
Edge 0.38 0.37 0.20 0.36

Edge-Matching 0.32 0.38 0.34 0.32
Neighborhood 0.34 0.85 0.63 0.34

Neighborhood-20 0.32 0.53 0.39 0.32
Neighborhood-40 0.28 0.57 0.46 0.28
Neighborhood-GD 0.24 0.48 0.43 0.24

Simple-RW 0.30 0.47 0.32 0.29
Metropolis-H-RW 0.29 0.47 0.42 0.28
Matrix-Scaling-RW 0.27 0.49 0.43 0.27
Triangle-Closing-RW 0.26 0.49 0.44 0.26

Table 1: The table gives the Normalized RMSE
scores for the various algorithms and satisfactions
functions. The graph here is the DBLP graph and
the satisfactions functions mean in is µ = 0.1.

6.3 Algorithms
The algorithms we examined all produce their estimates

according to meta algorithm (see Algorithm 1). Here we
describe algorithms by the manner in which they choose
core sets. All Random Walk (RW) based algorithms are
described in detail in [1]. This serves mostly as a baseline
but also serves to validate their results on graphs other than
Facebook. For completeness we describe those shortly here.
These algorithms perform random walks on the network and
collect nodes they encounter into the core set. The difference
between them is the transition probability between neigh-
boring nodes. Below, we shortly recap each of the tested
algorithms.
Näıve: denotes the algorithm in which each core set in-
cludes one single node chosen uniformly at random (see Sec-
tion 3.1).

Barabási Uniform BFS
Degree
Perce-
ntile

Degree
Bias

Näıve 0.31 0.31 0.31 0.31
Edge 0.34 0.30 0.17 0.33

Edge-Matching 0.31 0.30 0.29 0.30
Neighborhood 0.54 0.60 0.41 0.54

Neighborhood-20 0.40 0.38 0.23 0.38
Neighborhood-40 0.40 0.40 0.23 0.39
Neighborhood-GD 0.36 0.34 0.19 0.35

Simple-RW 0.33 0.31 0.17 0.32
Metropolis-H-RW 0.36 0.35 0.28 0.35
Matrix-Scaling-RW 0.30 0.31 0.28 0.30
Triangle-Closing-RW 0.31 0.31 0.28 0.30

Table 2: The table gives the Normalized RMSE
scores for the various algorithms and satisfactions
functions. The graph contains n = 105 nodes and
is generated according to the model of Albert and
Barabási [8]. As before, the satisfactions functions
mean in is µ = 0.1.

Watts-
Strogatz Uniform BFS

Degree
Perce-
ntile

Degree
Bias

Näıve 0.31 0.31 0.31 0.31
Edge 0.29 0.31 0.25 0.29

Edge-Matching 0.28 0.31 0.28 0.28
Neighborhood 0.27 0.44 0.24 0.27

Neighborhood-20 0.30 0.44 0.25 0.30
Neighborhood-40 0.27 0.44 0.25 0.27
Neighborhood-GD 0.28 0.41 0.26 0.28

Simple-RW 0.28 0.34 0.24 0.28
Metropolis-H-RW 0.29 0.35 0.27 0.29
Matrix-Scaling-RW 0.28 0.34 0.27 0.28
Triangle-Closing-RW 0.27 0.34 0.27 0.27

Table 3: The table gives the Normalized RMSE
scores for the various algorithms and satisfactions
functions. The graph contains n = 105 nodes and
is generated according to the model of Watts and
Strogatz [9]. As before, the satisfactions functions
mean in is µ = 0.1.

Edge: refers to core sets of size two. An edge is chosen
uniformly at random and the core set contains its supporting
nodes (see Section 3.2).
Edge-Matching: a variant to the former Edge algorithm.
Here, the core sets are also pairs of nodes supported by
edges. The idea is to create a set of edges which behaves like
a matching but is simpler to obtain. The process proceeds
as follows. Start with an empty edge set Em. For every
node, pick the edge connecting it to its neighbor (in G) with
the least degree with respect to Em. In case of ties, pick the
one maximizing Mi,j (for definition see Section 3). Add the
picked edge to Em and continue. The core sets are pairs of
nodes supports of edges in Em chosen uniform at random.
Neighborhood: corresponds to a uniform distribution over
the sets N+

i . This, by selecting a node uniformly at random
and selecting it and its neighbors (see Section 3.3).
Neighborhood-k: this algorithm, which is a variant of
the former Neighborhood algorithm, also chooses nodes and
their neighborhoods but avoids doing so for nodes of very



high degree. More accurately, Neighborhood-k chooses node
i uniformly at random, if |N+

i | ≤ k it returns N+
i otherwise

it returns a singleton core set {i}.
Neighborhood-DG: here the core sets are still N+

i . How-
ever, the distribution Q over them is optimized using gradi-
ent decent (see Section 5) to reduce the overall estimation
variance.
Simple-RW: a random walk algorithm which gives the stan-
dard transition probability. Move from node i to j with
probability 1/deg(i).
Metropolis-Hastings-RW: moves from node i to j with
probability min(1/deg(i), 1/deg(j)), and stays in node i with
the remainder probability. This produces a uniform station-
ary distribution but tends to visit the same nodes many
time.
Matrix-Scaling-RW: transitions from i to j with proba-
bility w(i, j). These are computed by an iterative process to
try to make the stationary distribution as uniform as possi-
ble.
Triangle-Closing-RW: the transition probability between
i and j is depends on the node h visited before i. If {h, j} .∈
E the transition probability is w′(i, j). If {h, j} ∈ E this
probability is increased by a factor α ≥ 1 to be αw′(i, j).
The weights w′ are chosen to produce a node distribution
which is as close to uniform as possible.

6.4 Measure of Success
Our main measure of success for an algorithm is the Root

Mean Square Error (RMSE) of its outputs. Assume we exe-
cute an algorithm t times and produce outcomes Y1, . . . , Yt.
Since the satisfaction function f has mean µ the normalized
RMSE is given by 1

µ (
1
t

∑t
i=1(Yi −µ)2)1/2. We chose RMSE

as our measure of success since it embodies both accuracy
and reliability. Note that since RMSE (squared) estimates
E[(Yi − µ)2]/µ2, by Markov’s inequality we also get confi-
dence intervals.

6.5 Experimental Results
Tables 1–3 give the RMSE values achieved by the different

algorithms for different choices of f . Each combination of
algorithm and satisfaction function was run 1000 times and
the RMSE value is calculated according to Section 6.4. For
all tables we set the budget B to 1% of the network size.
This is a reasonable budget for actual bucket tests.
In Figure 1 the estimate normalized RMSE for the DBLP

graph and the Degree Bias satisfaction function, is plotted
vs. the budget B. It is clearly visible that the RMSE de-
creases with the increase in budget.

6.6 Gradient Decent Experiments
To demonstrate the benefits of the Gradient Decent opti-

mization (see Section 5) we applied the Neighborhood algo-
rithm to the DBLP graph. As before, we iteratively trimmed
that the minimal degree in the graph is 10. This resulted
in a graph containing n = 57285 nodes. In Table 4 we pro-
vide several statistics for three different distributions over
Neighborhood algorithm core sets, N+

i for all i ∈ V . The
first is uniform (Uniform), the second is relative to 1/|N+

i |
(Degree) and the third is the probability Q(N+

i ) assigned
by the Gradient Decent procedure (GD).
Examining the table it is observed that the Gradient De-

cent optimization reduces ψ(Q), mainly by reducing the av-
erage closure set size. In parallel, it also increases the effi-
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Figure 1: Estimate normalized RMSE for the DBLP
graph and the Degree Bias satisfaction function vs.
the budget B.

ciency of the algorithm. On the other hand it increases the
largest eigenvector when compared to that calculated for the
Uniform distribution.

While it is hard to foresee the exact strategy that Gradient
Decent optimization follows to reduce ψ(Q), Figure 2 may
provide some insights. In Figure 2, the DBLP graph degree
PDF is plotted for the three core set distributions (Uniform,
Degree, and GD). It is apparent that the GD optimization
causes the graph degree PDF to drop much faster than those
of the Uniform and Degree distributions. It turns out that
the GD optimization reduces the probabilities of higher de-
gree nodes. In fact, for the DBLP graph, it assigned zero
probably to any Neighborhood core set of size greater than
114. This is more than half of the core sets!

Uniform Degree GD

Average core set size E (|A|) 22.92 17.096 15.31
Average closure set size E (|Bg |) 72.56 54.77 26.29
Efficiency bound E (|A|) /E (|Bg |) 0.316 0.312 0.58

1
n2Σi,jW (i, j) 1.360 1.315 1.20

ψ(Q) 98.71 72.00 31.66
1
nλ1(W ) 1.718 4.621 2.13

Table 4: Statistics for different distributions over
Neighborhood algorithm core sets applied to the
DBLP graph.

6.7 Spectral Bounds
Being able to analytically bound the accuracy (RMSE) of

a network bucket test is crucial for two main reasons. Before
the test, the administrator must choose the best algorithm
to use. After the test, he/she must supply error bounds
on the resulting estimate. Given the discussion following
Proposition 1, this is a hard computational task. However,
using the spectral bound of Equation (4), designers can get
a rough bound for this quantity. To demonstrate the ben-
efits of this bound we use values from Table 4, derived for
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Figure 2: Probability distributions of the size of core
sets for the DBLP graph. The three distributions
represent different distributions over the core set
Ni+ . Uniform, selects each with constant probabil-
ity, 1/n. Degree, selected Ni+ w.p. proportional to
1/|Ni+ |, and GD selects Ni+ w.p. according to the
output of the Gradient Decent optimization.

the aforementioned Neighborhood algorithm core set distri-
butions, to calculate bounds for the DBLP graph. The cal-
culated bounds along with their corresponding simulation
results are plotted in Figure 3 for µ = 0.1.

7. DISCUSSION AND CONCLUDING RE-
MARKS

In this paper we proposed and analyzed several algorithms
for network bucket testing. The achieved results are com-
parable or better than previous algorithms depending on
the setup. However, we argue that the contribution goes
beyond that. First, our algorithms are simple to program,
provide unbiased estimates, efficient to execute, and ana-
lyzable. Moreover, we can efficiently produce good error
bounds for their performance. This gives us the ability to
choose the best algorithm for a network well before running
the test.
In addition, the framework lets algorithm designers ana-

lyze a very large variety of algorithms. For example, one can
consider core sets of triangles in the graph. Or, cover the
graph with small tightly connected subgraphs and consider
that as core sets. The possibilities are endless. We hope the
derivations also provide walk-through examples on how to
analyze those.
An additional benefit which is not mentioned in the pa-

per but is an immediate outcome of the Gradient Decent
approach. That is, one can combine any number of different
algorithms and consider the superset of their core sets. Ap-
plying the Gradient Decent process to the core superset can
automatically mix the different algorithms. The resulting
mixed algorithm is guaranteed to be better (no worse) than
the best single algorithm.
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Figure 3: RMSE upper bound for the DBLP graph
using the Neighborhood Algorithm. Along with the
bounds we give simulation results for different func-
tions, f . Namely. Uniform, BFS, Degree Percentile,
and Degree Bias. As expected, all simulation results
are lower than the theoretical bound.
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