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Parts of this presentation 
were given with Jelani Nelson 
(Harvard) as a KDD tutorial on 
streaming data mining. 
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207 big-data infographics (meta infographic) 
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O(n) Items 

O(polylog(n)) Space 

O(polylog(n)) Computation per item 
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Frequent i tems 

Misra, Gries. Finding repeated elements, 1982. 
Demaine, Lopez-Ortiz, Munro. Frequency estimation of internet packet streams with limited space, 2002 
Karp, Shenker, Papadimitriou. A simple algorithm for finding frequent elements in streams and bags, 2003 
The name ``Lossy Counting" was used for a different algorithm by Manku and Motwani, 2002 
Metwally, Agrawal, Abbadi, Efficient Computation of Frequent and Top-k Elements in Data Streams, 2006 
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f 0( ) = 0

`

f 0( ) = 2
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Assume we do this    times  t

 
Second fact: f 0(x) � f(x)� t

f

0(x)  f(x)
 
First fact: 

The proof (very short) 
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Third (not so obvious) fact: 
 
 
Which gives                  . In words: 
We can only delete    items          times!  

t  n/`

0 �
P

f

0(x) =
P

f(x)� t · ` = n� t · `

⌅

The proof (very short) 

` n/`

|f 0(x)� f(x)|  n/`



Useful form… 
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Define                                      
And 
 
We get that   
 
 
 
This is very useful for keeping approx’ distributions! 

p(x) = f(x)/n
p

0(x) = f

0(x)/n

|p0(x)� p(x)|  1/`



Threading Machine Generated Emai l  
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Email threads 

A simple email thread (that’s not very hard to do…) 



Threading Machine Generated Email 
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Ailon, Karnin, Maarek, Liberty, Threading Machine Generated Email, WSDM 2013 
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Threading Machine Generated Email 
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Threading Machine Generated Email 



What else can we do in the streaming model… 
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Items (words, IP-adresses, events, clicks,...): 
§  Item frequencies 
§  Counting distinct elements 
§  Moment and entropy estimation 
§  Approximate set operations 

Vectors (text documents, images, example features,...) 
§  Dimensionality reduction 
§  Clustering (k-means, k-median,…) 
§  Linear Regression 
§  Machine learning (some of it at least) 

Matrices (text corpora, user preferences, graphs...) 
§  Covariance estimation matrix 
§  Low rank approximation 
§  Sparsification  
 



Thanks!  
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Yahoo does big data algorithms, software and systems! 
 
Speak to our Talent Team or visit Careers.Yahoo.com and explore our 
career opportunities in NYC or Sunnyvale, CA 
  
 
 

Seth Tropper 
satropper@yahoo-inc.com 

Doug DeSimone 
desimone@yahoo-inc.com 

Keith Daniels 
kdnl@yahoo-inc.com 

Yahoo is an equal opportunity employer. 


