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ABSTRACT

In dimensionality reduction, a set of points in Rd is mapped into Rk, with the target dimension k smaller than

the original dimension d, while distances between all pairs of points are approximately preserved. Currently

popular methods for achieving this involve random projection, or choosing a linear mapping (a k×d matrix)

from a distribution that is independent of the input points. Applying the mapping (chosen according to this

distribution) is shown to give the desired property with at least constant probability. The contributions in

this thesis are twofold. First, we provide a framework for designing such distributions. Second, we derive

efficient random projection algorithms using this framework. Our results achieve performance exceeding other

existing approaches. When the target dimension is significantly smaller than the original dimension we gain

significant improvement by designing efficient algorithms for applying certain linear algebraic transforms.

To demonstrate practicality, we supplement the theoretical derivations with experimental results.

Acknowledgments: Special thanks to Steven Zucker, Nir Ailon, Daniel Spielman, Ronald Coifman, Amit

Singer and Mark Tygert. Their work, ideas and guidance can be seen throughout this manuscript.



1. LIST OF COMMON NOTATIONS

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input vectors’ original dimension

Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real d dimensional space

x or xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input vector(s) in Rd

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of input vectors or a constant polynomial in that number

k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .target dimension

ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .constant required precision, 0 < ε < 1/2

Sd−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set {x ∈ Rd | ‖x‖2 = 1}

‖ · ‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the `2 norm for vectors and the Spectral norm for matrices

‖ · ‖p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .`p norm (for vectors)

‖ · ‖p→q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .operator norm from `p to `q (for matrices)

H, Hd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a d× d Walsh Hadamard transform

±1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{+1,−1}

χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a subset of Rd

FJLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the fast JL transform by Ailon Chazelle [1]

FJLTr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a revised version of the FJLT algorithm, chapter 3 and [2]

FWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a fast projection algorithm described in chapter 5 and [2]
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2. INTRODUCTION TO RANDOM PROJECTIONS

2.1 Linear embedding and the JL property

In many applications one is given a set of n points in high dimension, say d, and is interested in embedding

these points into a space of lower dimension, k, such that all distances are preserved almost exactly.

More precisely, given n vectors {x1, . . . , xn} in Rd and a constant 0 ≤ ε ≤ 1/2, we are interested in a

mapping Ψ : Rd → Rk such that k ¿ d and

∀i, j (1− ε)‖xi − xj‖ ≤ ‖Ψ(xi)−Ψ(xj)‖ ≤ (1 + ε)‖xi − xj‖. (2.1)

Naturally, one might approach this task in a deterministic fashion by evaluating the incoming vectors.

However, it is well known that a randomized approach to this problem is significantly easier. Johnson and

Lindenstrauss in [3] were the first to give such a randomized construction. The final step in their proof

is still common to all random projection schemes; Let Ψ be a linear mapping (a k × d matrix) chosen

from a probability distribution Dk,d such that for any vector x ∈ Rn, ‖Ψx‖2 is approximately ‖x‖2 with

high probability. Let the vector x be the difference xi − xj . Since Ψ is a linear operator we have that

Ψ(xi) − Ψ(xj) = Ψ(xi − xj) = Ψ(x). Moreover, since there are only
(
n
2

)
pairwise distances, if the failure
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probability (distortion larger than ε) is smaller than 1/n2, by the union bound, the entire metric is ε preserved

with probability at least 1/2. Without loss of generality, we can consider only unit vectors, ‖x‖2 = 1. The

notation Sd−1 stands for the d− 1 dimensional `2 sphere, i.e. the set {x ∈ Rd | ‖x‖2 = 1}. We have that if

∀x ∈ Sd−1 Pr
Ψ∼Dk,d

[|‖Ψx‖ − 1| > ε] ≤ 1
n2

(2.2)

then for every i and j simultaneously

∀i, j (1− ε)‖xi − xj‖ ≤ ‖Ψ(xi)−Ψ(xj)‖ ≤ (1 + ε)‖xi − xj‖ (2.3)

with probability at least 1/2. Thus, a matrix, Ψ, chosen according to a distribution Dk,d which satisfies

Equation 2.2 exhibits Equation 2.3 with at least constant probability.

Definition 2.1.1. A distribution Dk,d over k×d matrices is said to exhibit the JL (Johnson Lindenstrauss)

property if

∀x ∈ Sd−1 Pr
Ψ∼Dk,d

[|‖Ψx‖ − 1| > ε] ≤ c1e
−c2kε2

(2.4)

for some constants c1 and c2.

Lemma 2.1.1 (Johnson, Lindenstrauss [3]). Let Dk,d denote the uniform distribution over all k×d projection

matrices. The distribution Dk,d exhibits the JL property.1

The surprising fact about the JLlemma (Lemma 2.1.1) is that Equation (2.2) is satisfied for k =

Ω(log(n)/ε2). This means that any set of n points in Rd (equipped with the `2 metric) can be embed-

ded into dimension k = Θ(log(n)/ε2) with distortion at most ε using a randomly generated linear mapping

Ψ. Moreover Noga Alon [4] showed that this result is essentially tight (in its dependence on n).

It is remarkable to notice that the target dimension k is not only logarithmic in the input size (n) but

also independent of the original dimension d. Further, the randomized algorithm which achieves this is

independent of the input vectors {x1, . . . , xn}, (depends only on their number). These properties make

random projections a critical ingredient in many algorithms. Examples for such application can by found in:
1 In Linear Algebra, a projection matrix P is a square matrix such that P = P 2. Here, a rectangular matrix Ψ is a said to

be a projection if ΨT Ψ = (ΨT Ψ)2.
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approximate nearest neighbor searching [5, 6, 7, 8, 9], learning [10, 11, 12], matrix low rank approximation

[13, 14, 15, 16, 17, 18, 19, 20], other linear algebraic operations [21, 22, 23, 24], and many other algorithms

and applications, e.g, [25, 26, 27, 28, 29, 30].

2.2 Classic results, review of known JL distributions

The construction of Johnson and Lindenstrauss is surprisingly simple. They proposed choosing Ψ uniformly

at random from the space of projection matrices. In other words, Ψ contains a random k dimensional

subspace of Rd. One technique to sample from this distribution is to start with a k× d matrix whose entries

are chosen i.i.d. according to the Gaussian distribution, then orthogonalize and normalize its rows (using

the Grahm-Schmidt procedure, for example). The idea of their proof is as follows; the success probability

of accurately projecting any fixed vector x onto a random subspace is equal to the success probability of

projecting a random vector in Rd onto the first k vectors of the canonical basis (its first k coordinates).

Johnson and Lindenstrauss proceed to give the relevant concentration over Sd−1 which proves the lemma.

Their proof, however, can be made significantly simpler by considering a slightly modified construction.

Gupta and Dasgupta [31] as well as Frankl and Maehara [32] suggested that each entry in Ψ be chosen

uniformly at random from a Gaussian distribution (without orthogonalization). These proofs still relay on

the rotational invariance of the distribution but are significantly easier. A sketch of a possible proof is given

below.2

Since the distribution of Ψ is the same as the that of Ψ′ = ΨU for any complete orthogonal transformation

U . We look at ΨUUT x for U such that Ux = e1 = (1, 0, . . . , 0)T (w.l.o.g ‖x‖2 = 1). Since ‖Ψ′e1‖2 is the `2

norm of Ψ′(1), the first column of Ψ′, and Ψ′ distributes like Ψ, we need only show that Pr[
∣∣‖Ψ(1)‖ − 1

∣∣ >

ε] ≤ c1e
−c2kε2

. Note that the term ‖Ψ(1)‖ is simply sum of squared values of k i.i.d. Gaussian distributed

variables. The statistical concentration is achieved using well studied properties of the χ2 distribution.

More difficult to prove are cases where the distribution is not rotationally invariant. The first such
2 The given proof is not the one supplied in [31] or in [32]. The authors encountered this idea in several informal discussions

but are not aware of its specific origin.
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construction was given by Dimitris Achlioptas [33] who proposed a distribution over matrices Ψ such that

Ψ(i, j) ∈ {−1, 0, 1} with constant probabilities. Matousek [34] extended this result to any i.i.d. sub-Gaussian

symmetric distributed entries. These proofs relay on a slightly weaker condition which is the independence

of the rows of Ψ. Denote by Ψ(i) the i’th row of Ψ, ‖Ψx‖2 =
∑k

i=1〈Ψ(i), x〉2. We notice that if the rows of

Ψ(i) are i.i.d. then 〈Ψ(i), x〉2 are also i.i.d. By characterizing the distribution of the variables 〈Ψ(i), x〉2 one

can derive a concentration result using a quantitative version of the central limit theorem. We review this

in more detail further into the introduction.

2.3 Motivation for accelerating random projections

In many of the applications mentioned in section 2.1 the original dimension d is very large whereas the target

dimension in manageable in size. An implementation of any of the constructions described in the last section

requires O(kd) bits to store and O(kd) operations to apply to each input vector. This is, in many cases,

impractical. For example, if the input vectors are grey scale values of 5 megapixels images, and the target

dimension, k, is 1000, the matrix Ψ will occupy 20 gigabytes of space/memory (in 4 byte float precision).3

This amount of memory use is (as of today) extremely inconvenient. On most modern machines it will invoke

intensive paging and thus perform very poorly.

In some situations, one might be able to avoid storing the matrix Ψ altogether; e.g., when the task is

to embed a fixed given set of points. In this case, one can successively generate each row Ψ(i), compute its

dot product with all input vectors, store the results and discard the row Ψ(i). This way only one row of Ψ

is stored in any point in time. However, this ’generate-and-forget’ method can not be used in the Nearest

Neighbor setup, for example, becauset query points must be projected using the same matrix as the data

points and are not known in advance. Nevertheless, this idea is used in practice quite intensively mainly due

to its simplicity.

Regardless of space usage and handling, applying these matrices is prohibitive from the time stand point.
3 It is worth mentioning that Achlioptas’s matrix will only occupy 1/32 of this amount since each entry is representable by

1 bit instead of a 32 bit float.

10



For the described modest application, even when the matrix fits in memory, the running time on a 3Ghz

processor will be in the minutes, for each projected vector. This prevents this method from being used in

any real time system or on any moderately large data set. If random projection is to be used in practice one

must come up with faster, more efficient, ways of accomplishing it.

2.4 Sparse Projective matrices

One possible approach to accelerate the projection process is to seek JLdistributions over sparse matrices.

Applying a matrix to any vector requires as many operations as the number of non-zeros it contains. If

the i.i.d. entries in Ψ are very likely to be zero, the number of non-zeros in Ψ should be much less than

kd. However intuitive this idea is, it can be shown that, unless the number of non-zeros in Ψ is Ω(kd),

the same success probability cannot be achieved. One way to see this is to consider projecting the vector

[1, 0, . . . , 0]T . The resulting quantity ‖Ψx‖2 is exactly the norm of the first column of Ψ. Hence, the norm of

the first column of Ψ must statistically concentrate around 1, i.e., |∑k
i=1 Ψ(i, 1)2 − 1| ≤ ε with probability

at least 1 − 1/n. Since any event with probability 1 − 1/n ≤ Pr < 1 must rely on Ω(log(n)) random bits

we get that any column of Ψ contains Ω(log(n)) non-zeros.4 Since ε is a constant, each column contains

Ω(log(n)) = Ω(k) non-zeros. Therefore, the entire matrix contains O(kd) non-zeros and our hope for sparse

projection matrices is shattered.

As we saw, sparse matrices cannot exhibit the JL property. We showed this by considering success

probability of accurately projecting sparse vectors like x = [1, 0, . . . , 0]T . Notice however, that such sparse

vectors are relatively ”few”. By ”few” we mean that a very small portion of Sd−1 is occupied by them.

We can therefore ask: can sparse projective matrices preserve lengths of non-sparse vectors? This question

was posed and answered by Ailon and Chazelle in [1], and resulted in the FJLT algorithm. It is worth

mentioning that this result was the first to give an asymptotical acceleration of a JL transform. Their

work gave theoretical insights and motivations that can be seen throughout this document. They showed

that, if the `∞ norm of the input vector x ∈ Sd−1 is bounded by O(
√

k/d), then Ψ can be chosen from a

4 Under the assumption that producing each Ψ(i, j) requires a constant number of random bits.
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distribution over sparse matrices which contain only O(k3) non-zeros in expectation. This result was then

generalized by Matousek [34] who showed that any vector x such that ‖x‖∞ ≤ η can be projected with

at most ε distortion and high probability by a matrix containing only O(k2η2d) non-zeros in expectation.

Ailon and Chazelle further showed that any vector x ∈ Rd can be isometrically, randomly, rotated such that

‖Φx‖∞ ≤
√

k/d w.h.p. Here Φ is a fast randomized isometry which requires only O(d log(d)) operations to

apply. For completeness we show a sketch of the proof by Matousek [34].

Consider the term ‖Ψx‖22 =
∑

y2(i) where yi = 〈Ψ(i), x〉 and Ψ(i) denotes the i’th row of Ψ. Since the

entries of Ψ are i.i.d., so are the random variables yi. We need only show that the sum of k such variables

concentrates in the right way. It turns out that it is sufficient for yi to be distributed s.t. E[yi] = 0,

V ar[yi] = k−1/2 and yi have a uniform sub-Gaussian tail. The definitions are given below.

Definition 2.4.1 (Matousek [34]). A real random variable Y is said to have a sub-Gaussian upper tail if

for some constant α:

Pr(Y > t) ≤ E[e−αt2 ] (2.5)

for all t > 0. If this condition holds only up to some t ≤ t0, the distribution of Y is said to have a sub-

Gaussian upper tail up to t0. A collection of variables Yi is said to have uniform sub-Gaussian upper tail if

they are all sub-Gaussian with the same constant α.

Lemma 2.4.1 (Matousek [34]). Let Yi be i.i.d. random variables with E[Yi] = 0, V ar[Yi] = 1 and Yi have

a uniform sub-Gaussian tail up to at least
√

k. Define the random variable Z = 1√
k
(
∑k

i=1 Y 2
i − 1). The

variable Z has a sub-Gaussian tail up to at least
√

k.

Proving lemma 2.4.1 turns out to be rather technical and it is given in full detail in [34]. However, given

its correctness, the JL property follows almost directly. Let Yi =
√

kyi where yi = 〈Ψi, x〉. First notice that:

‖Ψx‖22 − 1 =
k∑

i=1

y2
i − 1 (2.6)

=
1
k

k∑

i=1

Y 2
i − k (2.7)

=
1√
k

Z (2.8)
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where Z = 1√
k
(
∑k

i=1 Y 2
i − 1). Assume that E[Yi] = 0, V ar[Yi] = 1 and Yi exhibit a uniform sub-Gaussian

upper tail up to
√

k. According to lemma 2.4.1, Z is sub-Gaussian up to
√

k, which is used as follows:

Pr[|‖Ψx‖2 − 1| > ε] ≤ 2Pr[‖Ψx‖22 − 1 > 2ε] (2.9)

= 2 Pr[Z > 2
√

kε] (2.10)

≤ 2e−C(2
√

kε)2 = c1e
−c2kε2 (2.11)

The last equation follows from the fact that Z is sub-Gaussian up to
√

k and ε ≤ 1/2. This matches the

success probability required by the JL property (definition 2.1.1).

A simple example can be random Gaussian entries for Ψ(i, j) (normalized be 1/
√

k). Due to the rotational

invariance of the Gaussian distribution Yi is, itself, distributed like a Gaussian with mean zero and variance

one. Clearly a Gaussian has a sub-Gaussian upper tail. This proves the JL lemma in yet another way.

Matousek further gives the connection between the `∞ norm of x and the required (expected) density of

Ψ for Yi to exhibit the appropriate sub-Gaussian tails. Let s(i) be i.i.d. copies of s such that

s =





+ 1√
q with probability q/2

− 1√
q with probability q/2

0 with probability1− q

(2.12)

Lemma 2.4.2 (Matousek [34]). Let η2 ≤ q, let x ∈ Sd−1 such that ‖x‖∞ ≤ η, and let Y =
∑d

i=1 s(i)x(i),

where the s(i) are as described above. Then Y has a sub-Gaussian tail up to
√

2q/η.

Combining lemmas 2.4.1 and 2.4.2 gives the minimal expected sparsity for Ψ required to successfully

project a vector x ∈ Sd−1 whose `∞ norm is bounded by η. Lemma 2.4.1 requires
√

2q/η ≥
√

k and thus

q = Θ(η2k). The expected number of non-zeros in Ψ is therefore kdq = Θ(k2η2d). Putting these ideas

together proves the following Lemma 2.4.3.

Lemma 2.4.3 (Matousek [34]). Let η ∈ [1/
√

d, 1] be a constant. Set q to be

q = C0η
2k (2.13)
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for a sufficiently large constant C0. Let Ψ(i, j) be i.i.d.

Ψ(i, j) =





+ 1√
qk

with probability q/2

− 1√
qk

with probability q/2

0 with probability 1− q

(2.14)

The lemma claims that:

Pr [|‖Ψx‖ − 1|] ≤ c1e
−c2kε2

(2.15)

for all x ∈ Sd−1 such that ‖x‖∞ ≤ η.

Furthermore, Matousek shows that the above lower bound for q is, up to a constant multiplicative factor,

tight.

We now discuss the FJLT algorithm. It begins by randomly and isometrically rotating the input vector

x such that the rotated vector’s `∞ norm is bounded by O(
√

log(n)/d) (and in that sense behaves like a

random vector). According to Lemma 2.4.3 such vectors can be accurately projected into Rk using a matrix

containing only O(k3) entries in expectation. This is, of course, better than O(kd) for any k ∈ o(d1/2). The

result is recaped in Lemma 2.4.4.

Lemma 2.4.4 (Ailon, Chazelle [1]). Let Ψ = PHD be chosen according to the following distribution:

• H: The Walsh Hadamard d× d Matrix (deterministic).

• D: A diagonal matrix whose entries are distributed i.i.d. uniformly over {−1, +1}.

• P : A k × d matrix whose i.i.d. entries are either zero with probability 1 − q or normally distributed

according to N(0, q−1) with probability q.

where q = Θ(ε3 log2(n)d−1).5 The distribution for Ψ exhibits the JL property. Moreover, applying Ψ to any

vector x ∈ Rd requires O(d log(d) + min{kd, log3(n)ε−2)} operations in expectation.

Given the formalization above, to prove this lemma we need only show that

∀ x ∈ Sd−1 Pr[‖HDx‖∞ >
√

log(n)/d] ≤ 1/n. (2.16)

5 We assume that q < 1. if q ≥ 1 we set q = 1 and the claim is trivial due to [32]
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Fig. 2.1: A sketch of the FJLT construction. The FJLT algorithm was given in [1] and is recaped in lemma 2.4.4.

This can be easily seen by noticing that each H(i, j) = ±1/
√

d and so (HDx)(i) = 1√
d

∑d
j=1 b(j)x(j) where

b(j) are ±1 variables w.p. 1/2 each. Using the Hoeffding bound and then a union bound for all coordinates

and and all vectors yields the desired result.

Finally, the running time can be thought of as O(d log(d) + k3), where d log(d) operations are required

to perform the Hadamard transform and O(k3) to apply the sparse projective matrix P .6

2.5 Our contributions

The contributions in this thesis can be organized into three groups. The first gives efficient algorithms for

computing several linear transforms. This cleans up a number of inefficiencies in the FJLT algorithm and

the way it is applied. The second gives, relatively simple, sufficient conditions for a matrix distribution to

exhibit the JLproperty, thus a framework for finding such distributions emerges. Finally, working within

this framework, we develop a number of new algorithms which reduce the required randomness and running

time of current random projection algorithms. We now discuss each of these in more detail.

2.5.1 Fast linear transforms

The first improvement revises the FJLT algorithm, to remove inefficiencies in the way it was originally

described. When k is significantly smaller than d, the FJLT algorithm computes a complete d dimensional

Fourier or Hadamard transform, but this is inefficient since at most O(k3) coefficients are required (potentially

6 It is worth mentioning that this result holds also for mapping into Rk equipped with the `1 matric.

15



much less than d). We give simple algorithms which compute any k′ coefficients out of a d × d Hadamard

or Fourier transform in O(d log(k′)) operations instead of O(d log(d)). This simple modification reduces the

running time of the FJLT algorithm to O(d log(k) + k3) which gives an improvement over the inefficient

construction whenever k ∈ o(poly(d)). The revised FJLT algorithm is denoted by FJLTr and is discussed in

Chapter 3.

We also consider algorithms for applying unstructured matrices to real vectors. We show that given any

O(log(d)) × d matrix over a finite alphabet, A, one can apply A to any vector in Rd in O(d) operations.

Although similar results have been known for over fifty years our construction is new and slightly more

general. We nickname our algorithm the mailman algorithm and we describe it in Chapter 7. Applying

a matrix chosen according to Achlioptas’ ±1 JL distribution using the Mailman algorithm, gives an O(d)

running time random projection algorithm, for the case where k ∈ O(log(d)). This matches the running

time lower bound for random projections.

2.5.2 A two stage framework

Fig. 2.2: A random projection algorithm consisting of two stages. First, vectors are rotated isometrically in Rd so

that they lay in a set χ(A) ⊂ Rd w.h.p. Then they are projected into dimension k using the k × d matrix

A, composed with a random diagonal ±1 matrix D.

Inspired by the ideas in [1] and later [34], we consider linear dimensionality reduction as a two stage

process. In the first stage, each vector x ∈ Sd−1 is rotated isometrically in Rd, using a random isometry

Φ, such that, with high probability, Φx lies in a subset of Sd−1 which we denote by χ. A useful example
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discussed above for χ is the set of unit vectors such that ‖x‖∞ ≤ η for some constant η. In the second stage,

the vectors Φx are projected into dimension k using a k × d matrix A. Our requirement for A is that

∀x ∈ χ Pr [|‖ADx‖2 − 1| ≥ ε)] ≤ 1/n. (2.17)

The matrix D is a diagonal random ±1 matrix. It is added so that A itself can potentially be deterministic.

In words, the requirement from A is that it (when composed with D) projects vectors from χ into Rk

with high probability and accuracy. There is no such guaranty for vectors not in χ. We say that χ is the

probabilistic domain of A. Intuitively, this requirement is easier to fulfill for a smaller set χ. However,

mapping all vectors into a smaller set χ (applying Φ) might require more randomness and computational

effort. Chapter 4 is dedicated to characterizing the relation between any matrix A and its corresponding

probabilistic domain χ.

2.5.3 Dense fast projective matrices

The accelerations described thus far all rely on the spareness of the projection matrix A and require the

independence of its entries. Using the aforementioned connection between matrices and their probabilistic

domain, we consider dense and deterministic choices for A and show their usefulness.

In Chapter 5 we take A to be a ±1 four-wise independent matrix (definition 5.1.2). We show that one

can apply both A and its appropriate Φ in time O(d log(k)) for k ∈ O(d1/2−δ) for any positive constant δ.

This matches the FJLTr algorithm when k ∈ O((d log(d))1/3) but outperforms it when k ∈ O(d1/2−δ) and

k ∈ ω((d log(d))1/3).

The second construction, described in Chapter 6, is a dense orthogonal ±1 matrix which can be applied

to any vector in Rd in linear time, i.e. O(d). We term these matrices lean Walsh matrices. Since the trivial

lower bound on the running time of dimension reduction is O(d), searching for projections which require this

amount of computational effort is worthwhile. We show that lean Walsh matrices are strictly better suited

for the task of random projections than sparse matrices, i.e. exhibit a strictly larger probabilistic domain

χ. It is, however, not clear if there exists a corresponding random rotation which is also applicable in O(d))

operations.
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2.5.4 Results summary

Näıve or Slower Faster than näıve O(d log(k)) Optimal, O(d)

k in o(log d) JL, FJLT, FWI FJLTr JL + Mailman

k in ω(log d)

and o(poly(d))
JL FJLT, FWI FJLTr

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI

k in O(d1/2−δ)

and k < d

JL, FJLT, FJLTr JL concatenation

Tab. 2.1: Results summary. Schematic comparison of asymptotic running time of six projection algorithms for dif-

ferent values of k and d. The projection algorithms denoted by, FJLTr, FWI, JL concatenation and JL +

Mailman are developed in this thesis. (1) JL: a näıve implementation of the Johnson-Lindenstrauss lemma.

(2) FJLT: the fast JL transform by Ailon Chazelle [1]. (3) FJLTr: a revised version of the FJLT algorithm,

Chapter 3 and [2]. (4) FWI: a projection algorithm that uses the properties of four-wise independent

matrices. Chapter 5 and [2]. (5) JL concatenation: a concatenation of several independent projections.

Section 5.5 (6) JL + Mailman: implementation of the Mailman algorithm [35] to Achlioptas’s result, Chap-

ter 7. Except for the case where k is Ω(poly(d)) and o((d log(d))1/3) our results strictly outperform previous

algorithms.
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k × d projection matrix
Application

complexity
x ∈ χ if ‖x‖2 = 1 and:

Johnson, Lindenstrauss [3] Random k dimensional subspace O(kd)

Various Authors [32, 31, 33] i.i.d. random entries O(kd)

Ailon, Chazelle [1] Sparse i.i.d. Gaussian entries O(k3) ‖x‖∞ = O((d/k)−1/2)

Matousek [34] Sparse ±1 entries O(k2dη2) ‖x‖∞ ≤ η

General rule Any matrix ‖x‖A = O(k−1/2)

This thesis [2] 4-wise independent matrix O(d log k) ‖x‖4 = O(d−1/4)

This thesis [36] Lean Walsh Transform O(d) ‖x‖∞ = O(k−1/2d−δ)

This thesis Identity copies O(d) ‖x‖∞ = O((k log k)−1/2)

Tab. 2.2: Different distributions for k × d matrices and the set χ ⊂ Sd−1 for which they constitute a good random

projection. Fixed matrices (last four rows) are composed with a random ±1 diagonal matrix, see Section

4.2. The meaning of ‖ · ‖A is given in Definition 4.2.1.

19



3. REVISED FAST JOHNSON LINDENSTRAUSS TRANSFORM

In this chapter we review the Fast Johnson Lindenstrauss transform result by Ailon and Chazelle [1] and

improve its running time by revising it slightly. The FJLT algorithm (recaped in subsection 3.1) performs

dimensionality reduction from dimension d to dimension k in expected O(d log(d) + k3) operations (per

vector). This running time cannot be optimal because when k ∈ o(log(d)) we have dk ∈ o(d log(d) + k3)

implying that the FJLT algorithm is slower than a näıve implementation of the JL lemma. This chapter is

dedicated to revising the FJLT algorithm to use efficient versions of either Hadamard or Discrete Fourier

transforms to improve its running time to O(d log(k) + k3). Other than using more efficient transforms this

revised FJLT algorithm (FJLTr) is identical to the FJLT algorithm and its correctness does not need to be

reproved.

3.1 Review of the FJLT algorithm

The FJLT result claims that a composition of three matrices PHD exhibits the JLP for P , H, and D being:

• D: A diagonal matrix whose diagonal entries are i.i.d. over {+1,−1} uniformly.

• H: Either a Walsh Hadamard d× d Matrix or a d× d Discrete Fourier matrix.

• P : A k by d matrix whose i.i.d. entries are either zero with probability 1−q or independently normally

distributed according to N(0, q−1) with probability q.

Here q = Θ(ε3 log2(n)d−1) and we assume that q < 1. (If q ≥ 1 we set q = 1 and the claim is trivial due to

prior constructions).

Lemma 3.1.1 (Ailon, Chazelle [1]). Let Ψ = PHD be chosen according to the distribution described
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above, then Ψ exhibits the JL property. Moreover, applying Ψ to any vector x ∈ Rd requires O(d log(d) +

min{kd, log3(n)ε−2)} operations in expectation.

The running time required for applying Ψ depends on the number of nonzeroes, nnnz, in P , E(nnnz) =

kdq = kε3 log2(n). By recalling that k = Θ(log(n)/ε2) and viewing ε as a constant we get that E(nnnz) =

O(k3). Using Markov’s inequality for the random variable nnnz, Pr(nnnz > 1
δ E(nnnz)) ≤ δ. Thus, the case

where nnnz > 1
δ E(nnnz) can be added to the overall failure probability and the number of non-zeros in P

can be thought of as O(k3).1

Observe that computing Ψx = PHDx as proposed by the FJLT algorithm, i.e., P (H(Dx)), is wasteful.

Clearly, computing only the relevant coefficients, at most as many as the number of non-zeros in P , would

be better. The next two sections describe how to efficiently achieve this for both the Walsh Hadamard and

the Distraite Fourier transforms.

3.2 Trimmed Walsh Hadamard transform

The Walsh Hadamard transform of a vector x ∈ Rd is the result of the matrix-vector multiplication Hx

where H is a d × d matrix whose entries are H(i, j) = (−1)〈i,j〉. Here 〈i, j〉 means the dot product over F2

of the bit representation of i and j as binary vectors of length log(d).

The number of operations to compute a single coefficient (Hx)(i) =
∑d−1

i=0 (−1)〈i,j〉x(j), denoted by

T (d, 1), is O(d). Moreover, all d coefficients can be computed in O(d log(d)). We remind the reader that the

Walsh-Hadamard matrix (up to normalization) can be constructed recursively.

H1 =




1 1

1 −1


 , Hq =




Hq/2 Hq/2

Hq/2 −Hq/2




Claim 3.2.1. Any k′ coefficients of a d×d Hadamard transform can be computed in O(d log(k′)) operations.

Proof. Computing k′ coefficients out of a d × d Hadamard transform H can be viewed as computing the

outcome of PHx where P is k′ × d matrix containing k′ non-zeros, one per row. Define x1 and x2 to be the
1 The random variable nnnz actually concentrates much more sharply than the above bound, but here, using a Markov

inequality suffices.
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first and second halves of x. Similarly, define P1 and P2 as the left and right halves of P respectively.

PHqx =
(

P1 P2

)



Hq/2 Hq/2

Hq/2 −Hq/2







x1

x2




=P1Hq/2(x1 + x2) + P2Hq/2(x1 − x2)

(3.1)

Let P1 and P2 contain k′1 and k′2 non-zeros respectively, k′1 + k′2 = k′. Let T (d, k′) denote the number of

operations required to compute k′ coefficients out of a d × d Hadamard transform. Equation 3.1 yields the

following recurrence relation

T (d, k′) = T (d/2, k′1) + T (d/2, k′2) + d. (3.2)

The base cases are T (d, 0) = 0 and T (d, 1) = d. We use induction to show that T (d, k′) ≤ 2d log2(k′ + 1).

T (d, k) = T (d/2, k′1) + T (d/2, k′2) + d by the recurrence relation

≤ 2
d

2
log2(k

′
1 + 1) + 2

d

2
log2(k

′
2 + 1) + d by the induction assumption

≤ 2d log2(
√

2(k′1 + 1)(k′2 + 1))

≤ 2d log2(k
′
1 + k′2 + 1) for all k′1 + k′2 = k′ ≥ 1

≤ 2d log2(k
′ + 1)

The last sequence of inequalities together with the base cases also give a simple and efficient Divide and

Conquer algorithm; see also Figure 3.2.

3.3 Trimmed Discrete Fourier Transform

Since in [1] both Hadamard and Fourier transforms were considered, for completeness we also describe a

simple trimmed version of the Coley Tukey fast Discrete Fourier Transform (DFT) algorithm (Figure 3.3).

The Discrete Fourier Transform fx = DFT (x) for a vector x ∈ Rd is given by fx(i) =
∑d−1

j=0 e2π
√−1ij/dx(j).

Thus, any single coefficient fx(i) is easily computed in O(d) operations. Fast DFT algorithms compute all
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Fig. 3.1: A diagram describing the complete and trimmed Walsh Hadamard transforms.

d coefficients in O(d log(d)) operations instead of O(d2). The Coley Tukey algorithm is a generalization of

the more well known radix-2 algorithm. A sketch of the algorithm is shown in Figure 3.3.

Fig. 3.2: A sketch describing the famous Fast DFT Coley Tukey Algorithm. x is sectioned into L blocks of length L/d

each. First one performs d/L DFTs (recursively) to corresponding elements between blocks. The results are

multiplied by ”twiddle factors” and stored in a temporary arrays. Then, L DFTs of size d/L are performed

within each block. This gives a total running time of O(d log(d)) assuming L divides d. The sketch does

not show the multiplication by twiddle factors of the temporary array.
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In order to compute only k′ coefficients of DFT (x) we divide x into L blocks of size d/L and begin with

the first step of the Cooley Tukey algorithm, which performs d/L DFTs of size L between the blocks (and

multiplies them by twiddle factors). In the second step, instead of computing DFTs inside each block, each

coefficient is computed näıvely, by summation, inside its block. These two steps require O((d/L) · L log(L))

and O(k′d/L) operations respectively. By choosing k′/ log(k′) ≤ L ≤ k′ we achieve a running time of

O(d log(k′)).

Fig. 3.3: A sketch describing the trimmed DFT Coley Tukey Algorithm. If k′/ log(k′) ≤ L ≤ k′O(1) computing k′

coefficient requires only O(d log(k′)) operations.

3.4 FJLT revised

The proposed revised FJLT algorithm (FJLTr) is thus identical to the original FJLT algorithm except for

replacing the application of Ψ as P (H(Dx)) by (PH)(Dx) using the fast trimmed transforms above. Taking

k′ = k3 yields the improved running time of O(d log(k) + k3). Thus, for any k ∈ o(poly(d)) the FJLTr

algorithm outperforms the FJLT algorithm. Table 3.4 summarizes this chapter’s result.
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Näıve or Slower Faster than näıve O(d log(k))

k in ω(log d)

and o(poly(d))
JL FJLT FJLTr

k in Ω(poly(d))

and o(d log(d)1/3)
JL FJLT, FJLTr

k in ω((d log d)1/3)

and o(d1/2)
JL FJLT, FJLTr

k in Ω(d1/2)

and O(d)
JL, FJLT, FJLTr

Tab. 3.1: Results summary. Schematic comparison of asymptotic running time of three projection algorithms. (1)

JL: a näıve implementation of the Johnson-Lindenstrauss lemma.(2) FJLT: the fast JL transform by Ailon

Chazelle [1]. (3) FJLTr: the revised version of the FJLT algorithm described in this chapter.
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4. TWO STAGE PROJECTION PROCESS

In this chapter we develop a new framework for generating random projection distributions. We view

random projection as a concentration phenomenon of high dimensional random walks. This approach allows

us to analyze new constructions for random projection distributions which could not be analyzed using

existing methods. The distance from the origin, Y , achieved by d steps of a k dimensional random walk

is Y = ‖∑d
i=1 vis(i)‖2 where s(i) are Rademacher variables (i.i.d. ±1 w.p. 1/2 each) and vi ∈ Rk. In

one dimension (k = 1, and vi are scalar) the concentration of Y is given by the Hoeffding bound and

depends on the sum of squares of vi (the `2 norm of a vector holding their values). In higher dimensions the

concentration of Y depends on the spectral norm of a matrix M whose columns consist of the vectors vi.

To express random projections as random walks, consider the term Ψx =
∑d

i=1 Ψ(i)x(i) =
∑d

i=1 A(i)s(i)x(i)

where Ψ(i) = A(i)s(i) and s(i) are Rademacher variables. Clearly, the projection norm Y = ‖Ψx‖2 is equal

to the final distance from the origin of a k dimensional random walk whose i’th step is equal to A(i)x(i).

We study the concentration behavior of the random variable Y using a result by Ledoux and Talagrand [37].

Denoting by Ds a diagonal matrix such that Ds(i, i) = s(i), if Y concentrates sufficiently well around the

value ‖x‖2 we get that ADs behaves like a good random projection for x. This concentration very much

depends on both A and x. This chapter is dedicated to exploring the relation between the properties of A, x,

and the concentration of Y . Namely, for a given fixed matrix A, we seek a set χ(A) ⊂ Sd such that x ∈ χ(A)

guaranties that ADs is a good random projection for x.
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4.1 Concentration result

Let A be a fixed k × d matrix and x ∈ Sd be a fixed vector. We say that A is a good projection for x if:

Pr[|‖ADsx‖2 − 1| ≥ ε] ≤ 1/n (4.1)

for given constants n and 0 < ε < 1/2. Ds denotes a diagonal matrix whose entries are i.i.d. ±1 with

probability 1/2 each. Note that the randomness is only in the d random bits required to generate Ds. If also

Pr[|‖ADsx‖2 − 1| ≥ ε] ≤ c1e
−c2kε2

(4.2)

We say that ADs is JL with respect to x.

Theorem 4.1.1 (Ledoux, Talagrand [37] page 19). Let f be a convex function [0, 1]d → R. Let ‖f‖Lip

denote its Lipschitz constant ‖f‖Lip = supz1,z2∈[0,1]d{|f(z1) − f(z2)|/‖z1 − z2‖}. Let µ denote a median of

f for a product space distribution D, i.e. Prz∼D(f(z) ≥ µ) ≥ 1/2 and Prz∼D(f(z) ≤ µ) ≥ 1/2.

Pr
x∼D

(|f(x)− µ| > t) ≤ 4e−t2/8‖f‖2Lip (4.3)

Express Y by ADxs where Dx is a diagonal matrix holding on its diagonal the values of x, i.e. Dx(i, i) =

x(i) and s is a vector of random i.i.d. ±1. The convex function over the solid cube in Rd used is f(s) =

‖Ms‖ = Y where M = ADx. The function f is convex on the relax domain s ∈ [−1, 1]d. Moreover,

‖f‖Lip = ‖M‖2→2 by definition of the spectral norm.

Lemma 4.1.1 (Variation on Ledoux-Talagrand). For a matrix M and a random ±1 vector s. Define the

random variable Y = ‖Ms‖2. Denote by µ the median of Y and σ = ‖M‖2→2 the spectral norm of M , then:

Pr[|Y − µ| > t] < 4e−t2/8σ2
(4.4)

Remark 4.1.1. Notice that the lemma also holds for Y = ‖Ms‖p for any norm index p ≥ 1 if one defines

σ = ‖M‖2→p = supx∈Rd,‖x‖2=1 ‖Mx‖p.

The lemma asserts that ‖ADsx‖ distributes like a (sub) Gaussian around its median, with standard
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deviation 2σ. Let us first compute the expected value of Y 2 = ‖ADsx‖2 by expanding the square term.

E(Y 2) = E(‖ADsx‖22) = E




d∑

i,j=1

〈A(i), A(j)〉x(i)x(j)s(i)s(j)


 (4.5)

=
d∑

i=1

‖A(i)‖2x2(i) = ‖x‖2 = 1 (4.6)

The last equation holds if the columns of A are normalized such that E[‖A(i)‖22] = 1. From this point on we

shall assume that this is the case. To estimate the median, µ, we substitute t2 → t′ and compute:

E[(Y − µ)2] =
∫ ∞

0

Pr[(Y − µ)2] > t′]dt′

≤
∫ ∞

0

4e−t′/(8σ2)dt′ = 32σ2

Furthermore, (E[Y ])2 ≤ E[Y 2] = 1, and so E[(Y − µ)2] = E[Y 2]− 2µE[Y ] + µ2 ≥ 1 − 2µ + µ2 = (1− µ)2.

Combining, |1− µ| ≤ √
32σ. We set ε = t + |1− µ|:

Pr[|Y − 1| > ε] ≤ 4e−ε2/32σ2
, for ε > 2|1− µ| (4.7)

If we set k = 33 log(n)/ε2 (for log(n) larger than a sufficient constant) and set σ ≤ k−1/2, Equation (4.7)

meets the requirements of the JL property defined in (4.2). Moreover, since |1 − µ| ≤ √
32σ the condition

ε > 2|1− µ| is met for any constant ε. We see that σ = ‖ADx‖2→2 ≤ k−1/2 is a sufficient condition for the

JL property to hold.

4.2 χ(A) the probabilistic Image

As discussed above the value of the term σ = ‖ADx‖ plays a crucial role in the random projection concen-

tration phenomenon. We formally define ‖ADx‖2→2 as ‖x‖A below.

Definition 4.2.1. For a given matrix A ∈ Rk×d we define the vector seminorm of x ∈ Rd with respect to A

as ‖x‖A ≡ ‖ADx‖2→2 where Dx is a diagonal matrix such that Dx(i, i) = x(i).

Claim 4.2.1. Let A be a constant matrix such that no column of A has zero norm. ‖x‖A induces a proper

norm on Rd.

Proof. • Scalability: For any x and a constant c, ‖cx‖A = |c| · ‖x‖A.
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• Positive definiteness: For any x > 0 and a matrix A with no zero columns, ‖x‖A > 0. To show this we

multiply ADx from the left by a test vector

‖ADx‖22→2 ≥ ‖yT ADx‖22 =
d∑

i=1

〈yT , A(i)〉2x2(i) (4.8)

The last sum is larger than zero if y is set to A(i) for i such that |x(i)| > 0.

• Triangle inequality: For any x1 and x2 we have:

‖x1 + x2‖A = ‖ADx1 + ADx2‖2→2 ≤ ‖ADx1‖2→2 + ‖ADx2‖2→2 = ‖x1‖A + ‖x2‖A (4.9)

In the case of dense random projections, we consider only matrices A for which all column norms are

equal to 1, and thus ‖x‖A induces a proper norm on Rd. Also, recall from the previous section that a

sufficient condition on x is that ‖ADx‖ = ‖x‖A ≤ O(k−1/2). This gives a concise geometric description of

the set of vectors for which A is a good random projection. This set, denoted by χ, is the intersection of the

Euclidian unit sphere and a ball of radius k−1/2 in A-norm.

Definition 4.2.2. Let A be a column-normalized matrix. Let n and 0 < ε < 1/2 be constants and let

k = 33 log(n)/ε2.

χ(A, ε, n) ≡ Sd−1
⋂ {

x | ‖x‖A ≤ k−1/2
}

. (4.10)

Lemma 4.2.1. For any column-normalized matrix A and χ as in definition 4.2.2 the following holds:

∀x ∈ χ(A, ε, n) Pr
[∣∣∣‖ADsx‖2 − 1

∣∣∣ ≥ ε)
]
≤ 1/n. (4.11)

Proof. To see this we substitute ‖x‖2A = σ2 ≤ 1/k into Equation (4.7).

4.3 `p bounds on A-norms

We turn to bound ‖x‖A for a given A and x using more manageable terms. We use ‖x‖p to denote the

p-norm of x, ‖x‖p =
(∑d

i=1 |xi|p
)1/p

where 1 ≤ p < ∞ and ‖x‖∞ = maxd
i=1 |xi|. The dual norm index q
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is defined by the solution to 1/q + 1/p = 1. We remind the reader that ‖x‖p = supy,‖y‖q=1 xT y. For a real

k × d matrix A, the matrix norm ‖A‖p1→p2
is defined as the operator norm of A : (Rd, `p1) → (Rk, `p2)

‖A‖p1→p2
= sup

x∈Rd,‖x‖p1
=1

‖Ax‖p2
(4.12)

Lemma 4.3.1. For any dual norm indices p and q

‖x‖A ≤ ‖x‖2p‖AT ‖2→2q (4.13)

Proof. We multiply the matrix ADx from the left by a test vector y ∈ Rk.

‖x‖2A = ‖ADx‖22→2 = max
y,‖y‖2=1

‖yT ADx‖22 (4.14)

= max
y,‖y‖2=1

d∑

i=1

x2(i)(yT A(i))2 (4.15)

≤
(

d∑

i=1

x2p(i)

)1/p (
max

y,‖y‖2=1

d∑

i=1

(yT A(i))2q

)1/q

(4.16)

= ‖x‖22p‖AT ‖22→2q (4.17)

The transition from the second to the third line follows from Hölder’s inequality which states that for vectors

z1, z2 ∈ Rd,
∑d

i=1 z1(i)z2(i) ≤ ‖z1‖p‖z2‖q for dual norms p and q.

4.4 Conclusion

This chapter gave two results which together provide the skeleton on which we build from this point on. First,

a matrix A can be used to project any vector x provided ‖x‖A ≤ k−1/2. Second, ‖x‖A ≤ ‖x‖2p‖AT ‖2→2q

for any dual norms p and q. This gives a convenient relation between A and χ(A).

Theorem 4.4.1. For any column-normalized matrix A, p > 1 and 1/p + 1/q = 1,

{x ∈ Sd−1|‖x‖2p‖AT ‖2→2q ≤ k−1/2} ⊂ χ(A). (4.18)

Our framework is thus as follows: Choose a column-normalized matrix A ∈ Rk×d and a norm index q.

Compute ‖AT ‖2→2q and set η = k−1/2/‖AT ‖2→2q. Devise a randomized isometry Φ such that ‖Φx‖2p ≤ η
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w.h.p. Given the results of this chapter, such a construction guaranties that Ψ = ADsΦ exhibits the JL

property.

Note that A might consist of more than k rows which might help in reducing its operator norm. In

this case ADsΦ might still be a good random projection matrix but it does not necessarily exhibit the JL

property. This is the case, for example, in Chapter 6.
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5. FOUR-WISE INDEPENDENCE AND RANDOM PROJECTIONS

In Chapter 3 we showed that the running time of the FJLT algorithm can be reduced to O(d log(k)+ k3) by

using efficient partial fast transforms. This, however, is dominated by O(k3) when k ∈ Ω((d log(d))1/3). As

claimed in the introductory chapter and in [34], the k3 term is unavoidable if one uses sparse random i.i.d.

projection matrices. The goal of this chapter is to show that fixed dense projections can be used to improve

the running time to O(d log k) up to k ∈ O(d1/2−δ) for any positive constant δ.

We use the two stage projection scheme developed in Chapter 4, first reminding the reader of Lemmas

4.2.1 and 4.3.1. Let B be a k × d column-normalized matrix. If ‖x‖B = O(k−1/2) then the matrix BDs

exhibits the JL property with respect to x, where Ds is a diagonal random i.i.d. ±1 matrix. Second,

‖x‖B ≤ ‖BT ‖2→4‖x‖4.

The organization is as follows. First we show that a 4-wise independent, k × d, matrix B exhibits

‖BT ‖2→4 ∈ O(k−1/2d1/4) and can be applied in O(d log(k)) operations. We further devise a mapping Φ

which rotates any x ∈ Sd−1 isometrically such that ‖Φx‖4 ∈ O(d−1/4) with high probability. Applying Φ

requires O(d log d) operation which is also O(d log(k)) for all d polynomial in k. Thus, the concatenation

BΦ exhibits the JLproperty and is applicable in O(d log(d)) operations to any vector. This construction is

referred to as FWI due to the four-wise interdependence of B.

Unfortunately, our construction for B is only possible for k ∈ O(d1/2). Moreover, the mapping Φ only

succeeds with high probability when k ∈ O(d1/2−δ) for a constant positive δ. We thus improve on the FJLT

algorithm for values of k such that k ∈ O(d1/2−δ) and k ∈ ω((d log(d))1/3). This chapter’s main contribution

is given formally in Theorem 5.0.2.

Theorem 5.0.2. Let δ > 0 be some arbitrarily small constant. For any d, k satisfying k ≤ d1/2−δ there
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exists an algorithm constructing a random matrix Ψ of size k × d satisfying JLP, such that the time to

compute x 7→ Ψx for any x ∈ Rd is O(d log k). The construction uses O(d) random bits and applies to both

the Euclidean and the Manhattan cases.

5.1 Preliminaries

Definition 5.1.1. A matrix B̃ ∈ Rk×m is a code matrix if every row of B̃ is equal to some row of Hm

multiplied by
√

m/k. The normalization is chosen so that columns have Euclidean norm 1.

Definition 5.1.2. A code matrix B̃ of size k ×m is a-wise independent if, for each 1 ≤ i1 < i2 < . . . <

ia ≤ m and (b1, b2, . . . , ba) ∈ {+1,−1}a, the number of columns B̃(j) for which (B̃(j)
i1

, B̃
(j)
i2

, . . . , B̃
(j)
ia

) =

k−1/2(b1, b2, . . . , ba) is exactly m/2a.

Let B̃ be a code matrix, as defined above. The columns of B̃ can be viewed as vectors over F2 under

the transformation ((+) → 0, (−) → 1). Clearly, the set of vectors thus obtained are closed under addition,

and hence constitute a linear subspace of Fk
2 . Conversely, any linear subspace V of Fk

2 of dimension ν can

be encoded as a k × 2ν code matrix (by choosing some ordered basis of V ). We will borrow well known

constructions of subspaces from coding theory for constructing a four-wise independent code matrix.

Lemma 5.1.1. There exists a 4-wise independent code matrix of size k ×m, where m = Θ(k2).

One such family of matrices is known as binary dual BCH codes of designed distance 5. Details of the

construction can be found in [38].

The following is known as an interpolation theorem in the theory of Banach spaces. For a proof, the

reader is referred to [39].

Theorem 5.1.1. [Riesz-Thorin] Let A be a matrix such that ‖A‖p1→r1 ≤ C1 and ‖A‖p2→r2 ≤ C2 for

some norm indices p1, r1, p2, r2. Let λ be a real number in the interval [0, 1], and let p, r be such that

1/p = λ(1/p1) + (1− λ)(1/p2) and 1/r = λ(1/r1) + (1− λ)(1/r2). Then ‖A‖p→r ≤ Cλ
1 C1−λ

2 .
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Theorem 5.1.2. [Hausdorff-Young] Let H denote either a Hadamard or a Fourier operator. For norm

index 1 ≤ p ≤ 2, ‖H‖p→q ≤ d−1/p+1/2, where q is the dual norm index of p.1

5.2 Bounding ‖BT‖2→4 using four-wise independence

Since ‖BT ‖42→4 is a degree 4 polynomial in the entries of B, intuitively, it values for a 4-wise independent

matrix B should be similar to that expected for a random ±1 matrix. Lemma 5.2.1 makes this intuition

exact.

Lemma 5.2.1. Assume B is a k × d 4-wise independent matrix. Then ‖BT ‖2→4 ≤ (3d)1/4k−1/2.

Proof. For y ∈ Rk, ‖y‖2 = 1,

‖yT B‖44 = dEj∈[d][(yT B(j))4]

= dk−2
k∑

i1,i2,i3,i4=1

Ebi1 ,bi2 ,bi3 ,bi4
[yi1yi2yi3yi4bi1bi2bi3bi4 ]

= dk−2(3‖y‖42 − 2‖y‖44) ≤ 3dk−2 ,

(5.1)

where bi1 through bik
are independent random {+1,−1} variables. Let B̃ denote the k × m matrix from

Lemma 5.1.1 (we assume here that k = 2a − 1 for some integer a; This is harmless because otherwise we

can reduce onto some k′ = 2a − 1 such that k/2 ≤ k′ ≤ k and pad the output with k − k′ zeros). In order

to construct a matrix B of size k× d for k ≤ d1/2−δ, we first make sure that d is divisible by m (by at most

multiplying d by a constant factor and padding with zeros), and then take B to be d/m copies of B̃ side by

side. Clearly B remains 4-wise independent. Note that B may no longer be a code matrix, but x 7→ Bx is

still computable in time O(d log k) by performing d/m Walsh transforms on blocks of size m.

5.3 Controlling ‖x‖4 for k < d1/2−δ

We define a randomized orthogonal transformation Φ such that for any vector x ∈ Sd−1, ‖Φx‖4 = O(d−1/4),

with probability at least 1 − O(e−k) for all k < d1/2−δ. (Note: Both big-O’s hide factors exponential in
1 This can be easily obtained by using Riesz-Thorin and the fact that ‖H‖2→2 = 1 and ‖H‖1→∞ = d−1/2.
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δ). The rotation Φ is applicable to any x ∈ Sd−1 in O(d log d) operations. The basic building block is the

product HD′, where H = Hd is the Walsh-Hadamard matrix and D′ is a diagonal matrix with random i.i.d.

uniform ±1 on the diagonal. Note that this random transformation was the main ingredient in [1]. Let H(i)

denote the i’th column of H.

We are interested in the random variable X = ‖HD′x‖4. We define M as the d× d matrix with the i’th

column M (i) being xiH
(i), we let p = 4 (q = 4/3), and notice that X is the norm of the Rademacher random

variable in (Rd, `4) corresponding to M (using the notation of Chapter 4 and specifically Lemma 4.1.1). We

compute the deviation σ,

σ = ‖M‖2→4 = ‖MT ‖4/3→2

= sup
y∈`k

4/3
‖y‖4/3=1

(∑

i

x2
i (y

T H(i))2
)1/2

≤
(∑

x4
i

)1/4

sup

(∑

i

(yT H(i))4
)1/4

= ‖x‖4‖HT ‖ 4
3→4 .

(5.2)

(Note that HT = H.) By the Hausdorff-Young theorem, ‖H‖ 4
3→4 ≤ d−1/4. Hence, σ ≤ ‖x‖4d−1/4. We now

get by Theorem 4.1.1 that for all t ≥ 0,

Pr[|‖HD′x‖4 − µ| > t] ≤ 4e−t2/(8‖x‖24d−1/2) , (5.3)

where µ is the median of X.

Claim 5.3.1. µ = O(d−1/4) .
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Proof. To see the claim, notice that for each separate coordinate, E[(HD′x)4i ] = O(d−2) and then use linea-

rity of expectation to get E[‖HD′x‖44] = O(d−1). By Jensen’s inequality, E[‖HD′x‖b
4] ≤ E[‖HD′x‖44]b/4 =

O(d−b/4) for b = 1, 2, 3. Now

E[(‖HD′x‖4 − µ)4] =
∫ ∞

0

Pr[(‖HD′x‖4 − µ)4 > s]ds

≤
∫ ∞

0

4e−s1/2/(8‖x‖24d−1/2)ds

= O(d−1) .

This implies by opening the left hand side expression that −γ1d
−3/4µ − γ2d

−1/4µ3 + µ4 ≤ γ3d
−1, where

γi > 0 are global constants for i = 1, 2, 3. The statement of the claim immediately follows.

Let c be such that µ ≤ cd−1/4. We weaken inequality (5.3) using the last claim to obtain the following

convenient form:

Pr[‖HD′x‖4 > cd−1/4 + t] ≤ 4e−t2/(8‖x‖24d−1/2) . (5.4)

In order to get a desired failure probability of O(e−k) set t = c′k1/2‖x‖4d−1/4. For k < d1/2−δ this gives

t < c′d−δ/2‖x‖4. In other words, with probability 1−O(e−k) we get

‖HD′x‖4 ≤ cd−1/4 + c′d−δ/2‖x‖4 (5.5)

Now compose this r times: Take independent random diagonal {±1} matrices D1, . . . , Dr and define Φr =

HDrHDr−1 · · ·HD1. Using a union bound on the conditional failure probabilities, we easily get:

Lemma 5.3.1. [`4 reduction for k < d1/2−δ] With probability 1−O(e−k)

‖Φrx‖4 = O(d−1/4) (5.6)

for r = d1/2δe.

Note that the constant hiding in the bound (5.6) is exponential in 1/δ.

Combining the above, the random transformation Ψ = BDΦ(r) exhibits the JL property for k < d1/2−δ,

and can be applied to any vector in time O(d log d). This proves the Euclidean case of Theorem 5.0.2.
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5.4 Reducing to Manhattan Space for k < d1/2−δ

As we did for the Euclidean case, we start by studying the random variable W defined as W = ‖k1/2BDx‖1

for B as described in Section 5.2 and D a random ±1 diagonal matrix. In order to characterize the concen-

tration of W we compute the deviation σ, and estimate the median µ. According to Theorem 4.1.1, M is

set to be the k × d matrix k1/2BDx.

σ = ‖M‖2→1 = ‖MT ‖∞→2

= sup
y∈Rk,‖y‖∞=1

‖yT M‖2 = sup

(
k

d∑

i=1

x2
i (y

T B(i))2
)1/2

≤ sup
y∈Rk,‖y‖∞=1

k1/2‖x‖4‖yT B(i)‖4 = k1/2‖x‖4‖BT ‖∞→4

(5.7)

Using the tools developed in the Euclidean case, we can reduce ‖x‖4 to O(d−1/4) with probability 1 −

O(e−k) using Φr, in time O(d log d). Also we already know from Section 5.2 that ‖BT ‖2→4 = O(d1/4k−1/2).

Since ‖y‖∞ ≥ k−1/2‖y‖2 for any y ∈ Rk, we conclude that ‖BT ‖∞→4 = O(d1/4). Combining, we get

σ = O(k1/2). We now estimate the median µ of W .

In order to calculate µ we first calculate E(W ) = kE[|P |] where P is any single coordinate of k1/2BDx.

We follow (almost exactly) a proof by Matousek in [34] where he uses a quantitative version of the Central

Limit Theorem by König, Schütt, and Tomczak [40].

Lemma 5.4.1. [König-Schütt-Tomczak] Let z1 . . . zd be independent symmetric random variables with

∑d
i=1 E[z2

i ] = 1, let F (t) = Pr[
∑d

i=1 zi < t], and let ϕ(t) = 1
2π

∫ t

−∞ e−x2/2dx. Then

|F (t)− ϕ(t)| ≤ C

1 + |t|3
d∑

i=1

E[|zi|3]

for all t ∈ R and some constant C.

Clearly we can write P =
∑d

i=1 zi where zi = D′
ixi and each D′

i is a random±1. Note that
∑d

i=1 E[|zi|3] =

‖x‖33.
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Let β be the constant
∫∞
−∞ |t|dϕ(t) (the expectation of the absolute value of a Gaussian).

|E[|P |]− β| =
∣∣∣∣
∫ ∞

−∞
|t|dF (t)−

∫ ∞

−∞
|t|dϕ(t)

∣∣∣∣

≤
∫ ∞

−∞
|F (t)− ϕ(t)| dt

≤ ‖x‖33
∫ ∞

−∞

C

1 + |t|3 dt .

We claim that ‖x‖33 = O(k−1). To see this, recall that ‖x‖2 = 1, ‖x‖4 = O(d−1/4). Equivalently, ‖xT ‖2→2 = 1

and ‖xT ‖4/3→2 = O(d−1/4). By applying Riesz-Thorin, we get that ‖x‖3 = ‖xT ‖3/2→2 = O(d−1/6), hence

‖x‖33 = O(d−1/2). Since k = O(d1/2) the claim is proved.

By linearity of expectation we get E(W ) = kβ(1±O(k−1)). We now bound the distance of the median

from the expected value.

|E(W )− µ| ≤ E[|W − µ|]

=
∫ ∞

0

Pr[|W − µ| > t]dt

≤
∫ ∞

0

4e−t2/(8σ2)dt = O(k1/2)

(we used our estimate σ = O(k1/2) above.) We conclude that µ = kβ(1 + O(k−1/2)). This clearly shows

that (up to normalization) the random transformation BDΦ(r) (where r = d1/δe) has the JL property with

respect to embedding into Manhattan space. The running time is O(d log d).

5.5 JL concatenation

The previous section produced a fast random projection from dimension d to k in O(d log(k)) as long as

k ≤ d1/2−δ for any constant positive δ. It, however, fails to exhibit the JL property for larger values of k. The

only construction described thus far that exhibits the JL property for these values of k is the trivial one which

requires O(kd) operations to apply. This sudden increase in running time for a small increase in the target

dimension k is unnatural. This section resolves this problem and allows to smoothly increase the running

time as k grows. The idea described is a natural one. We claim that a concatenation of projections which

independently exhibit the JL property also exhibits the JLP. This improves our performance by allowing us
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to break the target dimension k into m sections of length k′ each and apply m fast transforms from dimension

d to dimension k′. The best results possible using the FWI construction gives a total projection running

time of O(kd1/2+δ log(d)) which asymptotically outperforms the näıve implementation for any k and d.

Lemma 5.5.1. Let Dk′,d be a distribution over k′ × d matrices which exhibits the JL property. Define the

distribution Dm
k′,d to be a vertical concatenation of m matrices chosen independently from Dk′,d normalized

by 1√
m

. The distribution Dm
k′,d over k′m× d matrices exhibits the JL property as well.

Proof. Let A be a vertical concatenation of m, k′× d, matrices A1, A2, . . . , Am such that A1, A2, . . . , Am are

chosen i.i.d. from a distribution Dk′,d which exhibits the JL property. Let yi = Aix, let Yi = ‖yi‖22 and let

Zi =
√

k′(Yi − 1). Since Dk′,d is JL we have that

Pr(Yi > 1 + 3ε) ≤ Pr(‖yi‖ > 1 + ε) (5.8)

< c1e
c2k′ε2

(5.9)

Pr(Zi > u) ≤ c1e
−c2u2

for u ≤ 3ε
√

k′/2. (5.10)

Moreover we have that E(Zi) = 0. Let us define the random variable Y = ‖Ax‖22. From the concatenation

structure we have that Y =
∑m

i=1
1
mYi.

Y − 1 =
m∑

i=1

1
m

(Yi − 1) (5.11)

=
1√
k′m

m∑

i=1

1√
m

√
k′(Yi − 1) (5.12)

=
1√
k

m∑

i=1

1√
m

Zi (5.13)

(5.14)

Lemma 5.5.2. (Matousek [34] (Lemma 2.2)) Let Z1, . . . , Zm be independent random variables, satisfying

E[Zi] = 0, V ar[Z1] = 1 and all having a uniform sub-Gaussian tail. Let α1, . . . , αm be such that
∑m

i=1 α2
i = 1,

the variable Z =
∑m

i=1 αiZi has E[Z] = 0, V ar[Z] = 1 and a sub-Gaussian tail.

The following lemma holds also if V ar[Z1] is equal to a constant other than 1. From Equation (5.8) we

have that Zi are sub-Gaussian, mean zero and constant variance. Therefore, the variable Z =
∑m

i=1
1√
m

Zi
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also distributed like a sub-Gaussian. Finally we have that
√

k(Y − 1) = Z and thus Pr(
√

k(Y − 1) > u) ≤

c1e
−c2u2

. Replacing u =
√

kε we get Pr(Y > 1 + ε) ≤ c1e
−c2kε2

which is the JL property.

Composing the result of Lemma 5.5.1 and the efficient FJLT construction gives us the best result possible

for the cases where k = Ω(d1/2−δ). We take k′ to be Θ(d1/2−δ) and perform m = k/k′ = Θ(kd−1/2+δ) inde-

pendent transforms. Since each transform can be computed in O(d log(d)) operations, the entire transform is

computable in O(kd1/2+δ log(d)). This outperforms the naive algorithm up to k = Θ(d) achieving a running

time of O(d3/2+δ log(d)).

5.6 Results summary

The current chapter described another approach in which a random projection can be obtained faster than the

FJLT algorithm using four-wise independent matrices. This construction (FWI) permitted the acceleration

to be useful for larger values of k than the FJLT algorithm permitted. The asymptotic running times of the

improvements we achieved thus far are give in Table 5.6.
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Näıve or Slower Faster than näıve O(d log(k))

k in o(log d) JL,FJLT,FWI FJLTr

k in ω(log d)

and o(poly(d))
JL FJLT, FWI FJLTr

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI

k in O(d1/2−δ)

and k < d

JL,FJLT,FJLTr JL concatenation

Tab. 5.1: Result summary. Schematic comparison of asymptotic running time of five projection algorithms. (1)

JL: a näıve implementation of the Johnson-Lindenstrauss lemma. (2) FJLT: the fast JL transform by

Ailon Chazelle [1]. (3) FJLTr: a revised version of the FJLT algorithm, Chapter 3. (4) FWI: four-wise

independent projection matrix. This chapter. (5) JL concatenation: a concatenation of several independent

projections. This chapter.
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6. TOWARDS LINEAR TIME DIMENSIONALITY REDUCTION

The trivial running time lower bound for randomly projecting vectors from dimension d to dimension k is

O(d). This is because, at the very least, each entry of the vector x ∈ Rd must be accessed. We ask ourselves

whether achieving O(d) running time is possible? Proving the contrary seems to be a hard problem. The

application bottleneck for fast JL transforms is a Fourier transform. Thus, any running time lower bound

greater than O(d) will give the same lower bound for applying Fourier transforms. This, of course, is a

longstanding open problem. Assuming that the lower bound of O(d) can be achieved, we seek a mapping

A which is applicable to any vector in O(d) operations and constitutes a good random projection to the

largest possible portion of Sd−1, i.e. exhibits the largest possible set χ(A). Recall that χ(A) denoted the set

of vectors for which A is a good random projection.

In section 6.1 we introduce a tensor product construction for dense orthogonal ±1 matrices which we

term lean Walsh. We show that they are applicable in O(d) operations to any vector x ∈ Rd. Section 6.2

gives an upper bound for operator norms of lean Walsh matrices. Using these bounds and Theorem 4.4.1

shows that they exhibit a strictly larger probabilistic domain χ(A) than sparse projections under comparable

settings.

Due to their construction, lean Walsh matrices are of size d̃ × d where d̃ = dα for some 0 < α < 1. In

order to reduce the dimension to k ≤ d̃, k = O(log(n)/ε2)), we must compose our construction with another

fast dimension reduction. This requires O(d̃ log(k)) ∈ O(d) operations and is explained in more detail in

section 6.2.1.

42



6.1 Lean Walsh transforms

The lean Walsh Transform, similar to the Walsh Transform, is a recursive tensor product matrix. It is

initialized by a constant seed matrix, A1, and constructed recursively by using Kronecker products A`′ =

A1 ⊗ A`′−1. The main difference is that the lean Walsh seeds have fewer rows than columns. We formally

define them as follows:

Definition 6.1.1. A1 is a lean Walsh seed (or simply ’seed’) if i) A1 is a rectangular matrix A1 ∈ Cr×c,

such that r < c; ii) A1 is absolute valued 1/
√

r entry-wise, i.e., |A1(i, j)| = r−1/2; iii) the rows of A1 are

orthogonal; and iv) all inner products between its different columns are equal in absolute value to a constant

ρ ≤ 1/
√

(c− 1). ρ is called the Coherence of A1.

Definition 6.1.2. A` is a lean Walsh transform, of order `, if for all `′ ≤ ` we have A′` = A1⊗A`′−1, where

⊗ stands for the Kronecker product and A1 is a seed according to definition 6.1.1.

The following are examples of seed matrices:

A′1 = 1√
3




1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




A′′1 = 1√
2




1 1 1

1 e2πi/3 e4πi/3




r′ = 3, c′ = 4, ρ′ = 1/3 r′′ = 2, c′′ = 3, ρ′′ = 1/2

(6.1)

These examples are a part of a large family of possible seeds. This family includes, amongst other construc-

tions, sub-Hadamard matrices (like A′1) or sub-Fourier matrices (like A′′1). A simple construction is given for

possible larger seeds.

Fact 6.1.1. Let F be the c× c Discrete Fourier matrix such that F (i, j) = e2π
√−1ij/c. Define A1 to be the

matrix consisting of the first r = c−1 rows of F normalized by 1/
√

r. A1 is a lean Walsh seed with coherence

1/r.

Proof. The facts that |A1(i, j)| = 1/
√

r and that the rows of A1 are orthogonal are trivial. Moreover, because

∑c
i=1 F̄ (i, j1)F (i, j2) = 0 (due to the orthogonality of the columns of F ) we have that the inner product of

two different columns of A1 must equal ρ = 1/r in absolute value.
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∣∣∣〈A(j1)
1 , A

(j2)
1 〉

∣∣∣ =
1
r

∣∣∣∣∣
r∑

i=1

F̄ (i, j1)F (i, j2)

∣∣∣∣∣ =
1
r

∣∣−F̄ (c, j1)F (c, j2)
∣∣ =

1
r

(6.2)

where F̄ (·, ·) stands for the complex conjugate of F (·, ·).

We use elementary properties of Kronecker products to characterize A` in terms of the number of rows,

r, the number of columns, c, and the coherence, ρ, of A1. The following facts hold true for A`:

Fact 6.1.2. i) A` is of size1 d̃×d, where d̃ = dα and α = log(r)/ log(c) < 1 is the skewness of A1; ii) for all i

and j, A`(i, j) ∈ ±d̃−1/2, which means that A` is column-normalized; and iii) the rows of A` are orthogonal.

Fact 6.1.3. The time complexity of applying A` to any vector z ∈ Rd is O(d).

Proof. Let z = [z1; . . . ; zc] where zi are sections of length d/c of the vector z. Using the recursive decom-

position for A` we compute A`z by first summing over the different zi according to the values of A1 and

applying to each sum the matrix A`−1. Denoting by T (d) the time to apply A` to z ∈ Rd we get that

T (d) = rT (d/c) + rd. Due to the Master Theorem, and the fact that r < c we have that T (d) = O(d). More

precisely, T (d) ≤ dcr/(c− r).

For clarity, we demonstrate Fact 6.1.3 for A′1 (Equation 6.1):

A′`z = A′`




z1

z2

z3

z4




=
1√
3




A′`−1(z1 + z2 − z3 − z4)

A′`−1(z1 − z2 + z3 − z4)

A′`−1(z1 − z2 − z3 + z4)




(6.3)

In what follows we characterize χ(A, ε, n) for a general lean Walsh transform by the parameters of its seed,

r and c. The omitted notation, A, stands for A` of the right size to be applied to x, i.e., ` = log(d)/ log(c).

Moreover, we freely use α to denote the skewness log(r)/ log(c) of the seed at hand.

1 The size of A` is r` × c`. Since the running time is linearly dependent on d, we can always pad vectors to be of length c`

without effecting the asymptotic running time. From this point on we assume w.l.o.g. that d = c` for some integer `.
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6.2 Lean Walsh operator norms

After describing lean Walsh transforms we turn our attention to exploring their probabilistic domain χ .We

remind the reader of Theorem 4.4.1 which claims that for any column-normalized matrix A and dual norms

p ≥ 1 and q

{x ∈ Sd−1|‖x‖2p‖AT ‖2→2q ≤ k−1/2} ⊂ χ(A) (6.4)

To evaluate ‖AT
` ‖2→2q we first bound the value of ‖AT

1 ‖2→2q. Denote by A1 a matrix of size c − r × c

which completes A to an orthogonal matrix. If, for example, A1 is constructed by picking a set of r rows

from a Hadamard transform Hc (normalized by
√

c/r), A1 will consist of all the rows in Hc not used by A1

(also normalized).

‖AT
1 ‖2→2q = max

x∈Rr, ‖x‖2=1
‖AT

1 x‖2q (6.5)

≤ max
x∈Rc, ‖x‖2=1

‖
(
AT

1 A
T

1

)
x‖

2q
(6.6)

= max
x∈Rc, ‖x‖2=1

√
c

r
‖Hcx‖2q (6.7)

=
√

c

r
‖H‖2→2q =

√
c

r
(6.8)

The notation
(
AT

1 A
T

1

)
stands for a horizontal concatenation of AT

1 and A
T

1 . The claim that ‖H‖2→2q = 1

for all q ≥ 1 stems from the Riesz-Thorin theorem and the fact that ‖H‖2→2 = ‖H‖2→∞ = 1.

A useful property of Kronecker products is that for q > 1, ‖B ⊗ C‖2→2q = ‖B‖2→2q‖C‖2→2q for any pair

of matrices B and C. Therefore:

‖AT
` ‖2→2q = ‖AT

1 ‖
`

2→2q <
( c

r

) 1
2 logc(d)

= d
1
2 (1−α) (6.9)

where α = log(r)/ log(c) is the skewness of the seed A1.

Lemma 6.2.1. For a lean Walsh transform, A, we have that for any p > 1 the following holds:

{x ∈ Sd | ‖x‖2p ≤ k−1/2d−
1−α

2 } ⊂ χ(A, ε, n) (6.10)

where k = O(log(n)/ε2), α = log(r)/ log(c), r is the number of rows, and c is the number of columns in the

seed of A.
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6.2.1 Controlling α and projecting to dimension k

We see that increasing α is beneficial from the theoretical stand point since it weakens the constraint on

‖x‖2p. However, the application oriented reader should keep in mind that this requires the use of a larger

seed, which subsequently increases the constant hiding in the big O notation of the running time.

Consider the seed constructions described in Fact 6.1.1 for which r = c − 1. Their skewness α =

log(r)/ log(c) approaches 1 as their size increases. Namely, for any positive constant δ there exists a constant

size seed such that 1− 2δ ≤ α < 1.

Lemma 6.2.2. For any positive constant δ > 0 there exists a lean Walsh matrix, A, such that:

{x ∈ Sd | ‖x‖∞ ≤ k−1/2d−δ} ⊂ χ(A, ε, n) (6.11)

Proof. Generate A from a seed such that its skewness α = log(r)/ log(c) ≥ 1− 2δ and substitute p = ∞ into

the statement of Lemma 6.2.1.

The constant α also determines the minimal dimension d (relative to k) for which the projection can be

completed in O(d) operations, the reason being that the vectors z = ADsx must be mapped from dimension

d̃ (d̃ = dα) to dimension k in O(d) operations. This can be done using the FWI construction from Chapter 5

([2]) serving as a random projection from dimension d̃ to dimension k. The FWI construction can be applied

in O(d̃ log(k)) operations as long as d̃ = dα ≥ k2+δ′′ for an arbitrary small δ′′. For the same choice of a seed

as in lemma 6.2.2, the condition becomes d ≥ k2+δ′′+2δ which can be achieved for d ≥ k2+δ′ for arbitrary

small δ′. Therefore, for dω(k2+δ′) one can complete the projection onto dimension k in O(dα log(k)) = O(d)

operations.

6.3 Comparison to sparse projections

Sparse random ±1 projection matrices where analyzed by Matousek in [34]. For completeness we restate his

result. Theorem 4.1 in [34] (slightly rephrased) claims the following:

Theorem 6.3.1 (Matousek 2006 [34]). let ε ∈ (0, 1/2) and η ∈ [1/
√

d, 1] be constant parameters. Set
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q = C0η
2 log(n) for a sufficiently large constant C0. Let S be a random variable such that

S =





+ 1√
q with probability q/2

− 1√
q with probability q/2

0 with probability 1− q

(6.12)

Let k be C1 log(n)/ε2 for a sufficiently large C1. Let the matrix A ∈ {− 1√
q , 0, + 1√

q}k×d contain i.i.d. copies

of S then

Pr[|‖Ax‖22 − 1| > ε] ≤ 1/n (6.13)

for any x ∈ Sd−1 such that ‖x‖∞ ≤ η.

In the terminology of this thesis we say that for such distributions {x ∈ Sd−1|‖x‖∞ ≤ η} ⊂ χ(A, ε, n).

With high probability, a matrix A chosen according the above distribution contains O(kdq) = O(k2dη2)

non-zeros (since ε is a constant log(n) = O(k)). Notice that for a linear application time we must have

O(k2dη2) = O(d) which requires ‖x‖∞ ≤ η = k−1. For any d polynomial in k this is a stronger requirement

than that posed by using lean Walsh matrices, i.e. ‖x‖∞ ≤ k−1/2d−δ.

6.4 Dimensionality reduction by sums of coordinates

It is interesting to note that another simple set of matrices can be analyzed using our framework. Consider

the d̃ × d matrix A such that A(i, j) = 1 if i ∼= j mod d̃. This matrix is simply d/d̃ copies of the identity

matrix concatenated horizontally. A is clearly column-normalized, and applicable in O(d) operations. It is

trivial to verify that ‖A‖2→2 = (d/d̃)1/2. Using the same argument as above

{x ∈ Sd−1|‖x‖∞ ≤ k−1/2(d/d̃)−1/2} ⊂ χ(A, ε, n) (6.14)

By choosing d̃ = d/ log(k) we get the constraint ‖x‖∞ ≤ (k log(k))−1/2. As above, one can project the resul-

ting vector from dimension d̃ to dimension k using the FWI construction in O(d̃ log(k)) = O(d) operation.
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6.5 Conclusions

Theoretically, the `∞ requirement achieved by identity copies is strictly better (larger) than the one achieved

by lean Walsh transforms. However, the experimental chapter shows that using lean Walsh transforms should

be preferred in practice to using identity copies. I.e., one achieves more accurate projections for a similar

`∞ bound. This hints at the fact that we should better understand the term ‖x‖A. Here, we only bound

its value by ‖x‖∞‖A‖2→2. This is problematic, for example, because ‖x‖A is not invariant to permuting the

vector x whereas ‖x‖∞‖A‖2→2 is. In other words, it would seem that the set {x ∈ Sd | ‖x‖A ≤ η} is, in fact,

much larger than the set {x ∈ Sd | ‖x‖∞‖A‖2→2 ≤ η}

In order to be able to perform general random projections in O(d) operations, one must design a linear

time preprocessing matrix Ψ which maps all vectors in Rd into χ (w.h.p). It is not known whether such

transformations exist. Achieving such Ψ would be extremely interesting from both the theoretical and the

practical standpoints. Possible choices for Ψ may include random permutations, various wavelet/wavelet-like

transforms, or any other sparse orthogonal transformation.
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k × d projection matrix
Application

complexity
x ∈ χ if ‖x‖2 = 1 and:

Johnson, Lindenstrauss [3] Random k dimensional subspace O(kd)

Various Authors [32, 31, 33] i.i.d. random entries O(kd)

Ailon, Chazelle [1] Sparse i.i.d. Gaussian entries O(k3) ‖x‖∞ = O((d/k)−1/2)

Matousek [34] Sparse ±1 entries O(k2dη2) ‖x‖∞ ≤ η

General rule Any matrix ‖x‖A = O(k−1/2)

This thesis [2] 4-wise independent matrix O(d log k) ‖x‖4 = O(d−1/4)

This thesis [36] Lean Walsh Transform O(d) ‖x‖∞ = O(k−1/2d−δ)

This thesis Identity copies O(d) ‖x‖∞ = O((k log k)−1/2)

Tab. 6.1: Different distributions for k × d matrices and the set χ ⊂ Sd−1 for which they constitute a good random

projection. Fixed matrices (last four rows) are composed with a random ±1 diagonal matrix, see Section

4.2. The meaning of ‖ · ‖A is given in Definition 4.2.1.
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7. THE MAILMAN ALGORITHM: A NOTE ON MATRIX VECTOR

MULTIPLICATION

A claim that has repeated throughout this thesis is that O(mn) operations are required to apply a general

m× n matrix to a vector x ∈ Rn. This fact was proved by Winograd in [41]. However, we claim that if the

matrix contains only a constant number of distinct values, then reading the matrix once in O(mn) steps is suf-

ficient to preprocess it such that any subsequent application to vectors requires only O(mn/ log(max{m, n}))

operations. Using this fact in conjunction with Achlioptas’s {+1,−1} distribution for random projections

allows us to apply general random projections in O(d) operations for the case where k ∈ O(log(d)). Algo-

rithms for matrix-vector multiplication over finite fields, which save a log factor, have been known for many

years. Our contribution is unique in its simplicity and in the fact that it applies also to real valued vectors.

The mailman algorithm is also shown to be useful (faster than näıve) even for small matrices.

7.1 Matrix-vector multiplication background

A classical result of Winograd ([41]) shows that general matrix-vector multiplication requires Ω(mn) opera-

tions. This matches the running time of the näıve algorithm. However, since matrix-vector multiplication

is such a common, basic operation, an enormous amount of effort has been put into exploiting the special

structure of matrices to accelerate it. For example, Fourier, Hadamard, Toeplitz, Vandermonde and others

can be applied to vectors in O(npolylog(n)) operations.

Others have focussed on matrix-matrix multiplication. For two n × n binary matrices the historical

Four Russians Algorithm [42] (modified in [43]) gives a log factor improvement over the näıve algorithm, i.e,

running time of n3/log(n). Techniques for saving log factors in real valued matrix-matrix multiplications
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were also found [44]. These methods are reported to be practically more efficient than näıve implementations.

Classic positive results, achieving a polynomial speedup, by Strassen [45] and Coppersmith and Winograd

[46] as well as lower bounds [47] for general matrix-matrix multiplications are known. These, however, do

not extend to matrix-vector multiplication.

We return to matrix-vector operations. Since every entry of the matrix, A, must be accessed at least

once, we consider a preprocessing stage. After the preprocessing stage x is given and we seek an algorithm to

produce the product Ax as fast as possible. Within this framework Williams [48] showed that an n×n binary

matrix can be preprocessed in time O(n2+ε) and subsequently applied to binary vectors in O(n2/ε log2 n).

Williams also extends his result to matrix operations over finite semirings. However, to the best of the

authors’ understanding, his technique cannot be extended to real vectors.

7.2 The Mailman algorithm

Intuitively, our algorithm multiplies A by x in a manner that brings to mind the way a mailman distributes let-

ters, first sorting the letters by address and then delivering them. Recalling the identity Ax =
∑n

i=1 A(i)x(i),

metaphorically one can think of each column A(i) as indicating one “address”, and each entry x(i) as a letter

addressed to it. To continue the metaphor, imagine that computing and adding the term A(i)x(i) to the

sum is equivalent to the effort of walking to house A(i) and delivering x(i). From this perspective, the naive

algorithm functions by delivering each letter individually to its address, regardless of how far the walk is or

if other letters are going to the same address. Actual mailmen, of course, know much better. First, they

arrange their letters according to the shortest route (which includes all houses) without moving; then they

walk the route, visiting each house regardless of how many letters should be delivered to it (possibly none).

To extend this idea to matrix-vector multiplication, our algorithm decomposes A into two matrices, U

and P , such that A = UP . P is the ”address-letter” correspondence matrix. Applying P to x is analogous to

arranging the letters. U is the matrix containing all possible columns in A. Applying U to (Px) is analogous

to walking the route. Hence, we name our algorithm after the age-old wisdom of the men and women of the

postal service.
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For simplicity, we describe the algorithm for an m × n matrix A, where m = log2(n) (w.l.o.g. assume

log2(n) is an integer) and A(i, j) ∈ {0, 1}. Later we shall generalize it to include other matrix dimensions

and possible entry values. There are precisely 2m = n possible columns in the matrix A, by construction,

since each of the m column entries can be only 0 or 1. Define the universal columns matrix, Un, as the matrix

containing each possible column {0, 1}m once. By definition, for any column A(j) there exists exactly one

index 1 ≤ i ≤ n such that A(j) = U
(i)
n . Define the n× n correspondence matrix P as P (i, j) = δ(U (i), A(j)).

Here δ stands for the Kronecker delta function. δ(U (i)
n , A(j)) = 1 if U

(i)
n = A(j) and zero otherwise.

(UnP )(i, j) =
n∑

k=1

Un(i, k)P (k, j)

=
n∑

k=1

U (k)
n (i)δ(U (k)

n , A(j))

= A(j)(i) = A(i, j)

The Mailman algorithm simply uses the associativity of matrix multiplication to compute Ax = (UP )x =

U(Px). The fact that computing Px requires O(n) operations is clear since P is a sparse matrix containing

only n non-zeros. We later show that applying Un to any vector also requires O(n) operations. Thus,

although A is of size log(n) × n, the product Ax can be computed via U(Px) while performing only O(n)

operations. This gains a log(n) factor over the näıve application, requiring O(n log(n)) operations. If the

number of rows, m, in A is more than log(n) we partition A into at most dm/ log(n)e submatrices each of

size at most log(n)× n. Since each of the submatrices can be applied in O(n) operations, the entire matrix

can be applied in O(mn/ log(n)) operations.

We now describe how to construct the correspondence matrix P and how to apply the universal column

matrix Un efficiently.

7.2.1 Preprocessing: constructing the correspondence matrix

An entry in the correspondence matrix P (i, j) is set to 1 if A(j) = U (i) otherwise P (i, j) = 0. In the next

section we construct U such that each column, i, encodes in binary the value i−1. Thus, if a column of A(j)

contains the binary representation of the value i−1, it is equal to U (i). We therefore construct P by reading
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A and setting P (i, j) to 1 if A(j) represents the value i− 1. This concludes the preprocessing stage and can

clearly be achieved in O(mn) steps. Notice that since U is fixed, P encodes all the infirmation about A.

7.2.2 Application: universal column matrices

Denote by Un the log2(n) × n matrix, which contains all strings {0, 1}log(n) as columns. Also denote by

0n and 1n the all zeros and all ones vectors of length n. Notice immediately that Un can be constructed

recursively:

U1 = ( 0 1 ) , Un =




0T
n/2 1T

n/2

Un/2 Un/2


 .

Applying Un to any vector z requires less than 4n operations, which can be shown by dividing z into its first

and second halves, z1 and z2, and computing the product Unz recursively.

Unz =




0T
n/2 1T

n/2

Un/2 Un/2







z1

z2


 =




0T
n/2z1 + 1T

n/2z2

Un/2(z1 + z2)




Computing the vector z1+z2, and the sums 0T
n/2z1 and 1T

n/2z2 requires (at most) 2n operations. Denoting by

T (n) the number of operations required for applying Un to a vector x ∈ Rn, we get the recurrence relation:

T (2) = 2, T (n) = T (n/2) + 2n ⇒ T (n) ≤ 4n.

Computing 0T
n/2z1 can of course be removed from the runtime analysis, but we keep it in anticipation of

alphabets other than {0, 1}.

7.2.3 Constant sized alphabets

A matrix A is said to be over an alphabet Σ if ∀i, j A(i, j) ∈ Σ. Such matrices can be decomposed similarly

and applied to any vector in O(mn log(|Σ|)/ log(n)) time. The definition of Un is changed such that it

encodes all possible strings over Σ = {σ1, . . . , σS}, |Σ| = S.

U1 = (σ1, . . . , σS) Un =




σ11T
n/S . . . σS1T

n/S

Un/S . . . Un/S
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The matrix Un is of size logS(n) × n and it can be applied to x ∈ Rn in O(n) time. The construction of

P also changes. P (i, j) is set to 1 iff A(j) represents the number i − 1 in base S under the transformation

σ1 → 0, . . . , σS → S−1. If the number of rows, m in A is larger than logS(n), we divide A it into dm/ logS(n)e

sections of size at most logS(n)× n. The total running time therefore becomes O(mn log(S)/ log(n)).

7.2.4 Saving a log(m) factor

If the number of rows, m, in A is larger than the number of columns, n, we can achieve an application

running time of O(mn/ log(m)). Assume that A is of size m × n = log(m). We have that A = PT UT
m,

where P is the correspondence matrix for AT as explained above. It is left to show that computing UT x for

x ∈ Rlog(m) requires O(m) operations. Denote by x1 the first element of x and by x2:n the remaining n− 1

elements.

UT
mx =




0m/2 UT
m/2

1m/2 UT
m/2







x1

x2:n


 =




0m/2x1 + UT
m/2x2:n

1m/2x1 + UT
m/2x2:n




Clearly, computing UT
mx requires computing UT

m/2x2:n and an additional O(m) operations which gives a total

running time of O(m). If the number of columns n of A is more than log(m), we partition A vertically to at

most dn/ log me submatrices of size m× log m. Since each submatrix is applicable in O(m) operations, the

total running time of applying A to a vector x ∈ Rn is O(mn/ log(m)).

Remark 7.2.1 (Matrix operations over semirings). Suppose we supply Σ with an associative and commuta-

tive addition operation (+), and a multiplication operation (·) that distributes over (+). If both A and x are

chosen from Σ the matrix vector multiplication over the semiring {Σ, +, ·} can be performed using the same

algorithm. This is, of course, not a new result. However, it includes all other log-factor-saving results.

7.3 Dimensionality reduction using the Mailman algorithm

In the dimensionality reduction setup one is given n points {x1, . . . , xn} in Rd and is asked to embed

them into Rk such that all distances between points are preserved up to distortion ε and k ¿ d. As seen

throughout this manuscript, this can be achieved by multiplying each vector xi by a k × d real matrix for
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k = Θ(log(n)/ε2). The two previous chapters were dedicated to crafting different JL distributions for A

such that it still admits a fast transform. We recall the result of Achlioptas.

Lemma 7.3.1 (Achlioptas [33]). A k × d matrix A such that A(i, j) are i.i.d and

A(i, j) =





1√
k

w.p 1/2

− 1√
k

w.p 1/2
(7.1)

exhibits the JL property.

Clearly a naive application of A to each vector requires O(mn) operations. However, using the mailman

algorithm to apply Achlioptas’s matrix, one can apply A to each vector in O(dk/log(d)) operations. Moreover,

k = O(log(n)/ε2). For a constant ε and n polynomial in d, k = O(log(n)) = O(log(d)) and applying A to xi

requires only O(n/ε2) = O(n) operations. This result matches the lower bound for general dimensionality

reduction. Notice that the running time dependence on ε is 1/ε2 instead of log(1/ε), as in [2], which makes

this latter result actually much slower for most practical purposes.

Experiments

Here we compare the running time of applying a log(n) × n , {0, 1} matrix A to a vector of floating point

variables x ∈ Rn using three methods. The first is a näıve implementation in C: this simply consists of two

nested loops ordered with respect to memory allocation to minimize cache faults. The second is an optimized

matrix vector code: we test ourselves against LAPACK which uses BLAS subroutines [49, 50]. The third is,

of course, the mailman algorithm, not including the O(mn) preprocessing stage.

Although the complexity of the first two methods is O(n log(n)) and that of the mailman algorithm is

O(n), we do not seem to get a log(n) speedup. This is because the memory access pattern in applying P is

problematic with respect cache usage. The reader should bare in mind that these results might depend on

memory vs. CPU specifications. The experiments were conducted on an Xeon Quad core 2.33GHz machine

running Linux Ubuntu with 8G of RAM and a Bus speed of 1333MHz. Similar results were obtained using

other, less powerful, machines as well. As seen in figure 7.1, the mailman algorithm operates faster than the
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Fig. 7.1: Running time for multiplying an m× 2m ±1 matrix to a double precision vector. m is given on the x-axis.

The y-axis gives the running time for achieving the multiplication using three different algorithms. (1)

Naive: matrix multiplication implemented as two nested for-loops written in C and ordered correctly with

respect to memory access. (2) LAPACK: a general purpose matrix multiplication implementation which is

machine optimized. (3) Mailman: the mailman algorithm as described above. The left figure is a plot of the

3 running times on an absolute scale, the time scale is such that applying the maximal sized matrix naively

requires 1 unit of time. The right figure plots the application time relative to the naive algorithm for each

matrix size.

näıve algorithm even for 5× 32 matrices. It also outperforms the LAPACK procedure for most matrix sizes.

The machine specific optimized code (LAPACK) is superior when the matrix row allocation size approaches

the memory page size. A machine specific optimized mailman algorithm might take advantage of the same

phenomenon as well.

7.4 Concluding remark

It has been known for a long time that a log factor can be saved in matrix-vector multiplication when the

matrix and the vector are over constant size alphabets. In this chapter we described an algorithm that

achieves this while also dealing with real-valued vectors. As such, the idea by itself is neither revolutionary

nor complicated. It is interesting to note though, that this simple idea gives the first random projection
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algorithm which matches the lower bound for running time. Even if only in the case where k ∈ O(log(d)).

Table 7.4 summarizes the best known asymptotic rannind times for applying random projections updated

with the results of this chapter.

Näıve or Slower Faster then näıve O(d log(k)) Optimal, O(d)

k in o(log d) JL, FJLT FJLTr, FWI JL + Mailman

k in ω(log d)

and o(poly(d))
JL FJLT FJLTr, FWI

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI

k in O(d1/2−δ)

and k < d

JL, FJLT, FJLTr JL concatenation

Tab. 7.1: Result summary. Schematic comparison of asymptotic running time of six projection algorithms. 1) JL: a

näıve implementation of Johnson-Lindenstrauss. 2) FJLT: the fast JL transform by Ailon Chazelle [1]. 3)

FJLTr: a revised version of the FJLT algorithm, Chapter 3 and [2]. 4) FWI: A new two stage projection

process, chapter 5 and [2]. 5) JL concatenation: a concatenation of several independent projections. 6) JL

+ Mailman: implementation of the Mailman algorithm [35] to Achlioptas’s result. Note that k ∈ O(log d)

when the number of projected vectors n is polynomial in their dimension d.
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8. APPLICATIONS AND EXPERIMENTS

Random linear dimensionality reduction has supplied us not only with interesting theoretical results but

also with useful practical tools. Experimental papers which use random projections deal with: information

retrieval for text documents and images [51], learning Gaussian mixture models [52], data mining and PCA

[53] and [27]to name just a few. Although many consider the usage of random projections, they do not consi-

der the differences between different projection algorithms: the quality of length preservation and the speed

of computation. Since this manuscript studies the accuracy and efficiency of different projection methods,

we now compare between them experimentally. We also experimentally show that random projections are

beneficial for fast matrix rank-k approximation.

8.1 Accuracy of projection

In this chapter we will refer to the different constructions by the following names:

• Random-projection: a random k dimensional subspace of Rd chosen uniformly at random.

• Random-Gaussian: each entry is drawn i.i.d. from the Gaussian distribution with standard deviation

k−1/2, Ψ(i, j) ∼ N(0, k−1/2).

• Plus-minus-one: a matrix whose entries are drawn i.i.d. such that:

Ψ(i, j) =





1√
k

w.p 1/2

− 1√
k

w.p 1/2
(8.1)

• Sub-Hadamard: a matrix containing k rows (not necessarily the first) out of a d×d complete Hadamard

transform. This family of matrices contains also four-wise independent matrices as in Chapter 5.

A(i, j) = Hd(g(i), j). (8.2)
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For Hd a d × d Hadamard transform, i ≤ k and g : {1, . . . , k} → {1, . . . , d}. The function g can be

either random or deterministic.

• Lean-Walsh: a lean Walsh matrix with a seed of size 3× 4 as shown in Chapter 6.

A1 =
1√
3




1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




, A` = A1 ⊗A`−1

• Identity-copies: Ψ(i, j) = 1 if i = j mod k and zero otherwise.

Notice that the latter three constructions are potentially deterministic. Therefore, constructing vectors for

which they fail as length preserving projections is trivial using, for example, their eigenvectors. We therefore

compose each of the above constrictions with a random permutation and a random ±1 diagonal matrix.

These are both isometric transformations which can be applied to any vector x ∈ Rd in linear (O(d)) time.

In this scenario, it is unclear which vectors we should compare these constructions on. Randomly chosen

vectors from Sd−1, for example, are a poor choice since all the methods would behave essentially identical.

Indeed, a random vector from Sd−1 can be viewed as a unit vector which has been randomly rotated in Rd.

Therefor, any projection matrix, fixed or not, will behave similarly and according to the original result by

Johnson and Lindenstrauss.

To measure our performance against a challenging set of input vectors, we first look at the error term of

the projection. Assume the projection matrix A consists of columns A(i) such that E[‖A(i)‖22 = 1]. This is

the case for all of the above. Let us compute the expected value of ζ = (‖ADsx‖22−‖x‖22)2, which measures

the squared error of the projection.

E[ζ] = E[(‖ADsx‖22 − ‖x‖22)2] (8.3)

= E[(xT DsA
T ADsx− xT x)2] (8.4)

= E[(xT Ds(AT A− I)Dsx)2] (8.5)

= E[(
∑

i 6=j

〈A(i), A(j)〉s(i)s(j)x(i)x(j))2] (8.6)

= E[
∑

i1 6=j1

∑

i2 6=j2

〈A(i1), A(j1)〉s(i1)s(j1)x(i1)x(j1)〈A(i2), A(j2)〉s(i2)s(j2)x(i2)x(j2)] (8.7)
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The term 〈A(i), A(j)〉 stands for the inner product between columns i and j. If we open the sum and take

the expectation over the s(i) we get that the only non-zero contributions occur when i1 = i2 and j1 = j2 or

when i1 = j2 and j1 = i2 and so:

E[ζ] = 2
∑

i 6=j

〈A(i), A(j)〉2x2(i)x2(j) (8.8)

Notice now that E[ζ] is a convex function in the variables y(i) = x2(i). Therefore, E[ζ] assumes its maximal

value on an extremal point of the polytope defined by y(i) ≥ 0,
∑d

i=1 y(i) = 1. The maximal value for ζ is

achieved by y(i1) = y(i2) = 1/2 where 〈A(i1), A(i2)〉 assumes the maximal inner product between any pair of

columns in A. Assume now that for all i, y(i) ≤ 1/m for some integer m (‖x‖∞ ≤ 1/
√

m). The expected

distortion is again maximized on extremal points of the polytope by vectors y which contain m entries of

value 1/m and the rest are all zeros. In order for the input to be as challenging as possible, we consider

only such sparse vectors. In what follows m denotes the sparsity of the input vector x, i.e. the number of

non-zeros of value 1/
√

m. Figures 8.1, 8.2, 8.3, 8.4 show the results of the first experiment. Each of the

projection methods was used to project n = 1000 sparse unit vectors from dimension d = 5000 to dimension

k = 500. To demonstrate the distribution of projection norms, for each method, the results were sorted such

that the hight of the plot line in location i gives the i’th smallest value of ‖Ψx‖.

As expected, increasing the value of m, and thereby forcing ‖x‖∞ ≤ 1/
√

m, reduces the expected distor-

tion. It can be seen from the plots that even for m being rather small, for example 32, the distribution of

projection norms behave very similarly for all the above methods, not including Identity-copies. Remarkably

though, even Identity-copies perform rather well when m grows larger.

8.2 Application speed

In what follows we evaluate and compare the running time of applying different transforms. The application

running time is measured as a function of the original dimension d and the target dimension k. These are the

only important parameters since the the considered algorithms’ running time is independent of the vectors’

or matrices’ entry values.
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Fig. 8.1: Accuracy of projection for six projection methods as a function of m, the number of non-zeros of value

1/
√

m in the input vectors. When m = 1 (left) all deterministic matrices exhibit zero distortion since their

column norms are equal to 1. When m = 2 (right) all constructions might exhibit a distortion equal to their

coherence.
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Fig. 8.2: Small values of m give rise to better average behavior by deterministic matrices, but worse worst-case

behavior. This stems from the fact that their average coherence is smaller but their maximum coherence is

larger.
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Fig. 8.3: When m grows the behavior of deterministic matrices and dense random ones becomes indistinguishable,

with the exception of Identity-copies.
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Fig. 8.4: Large values of m allow all methods including Identity-copies to be used equally reliably.

8.2.1 Comparison of dense matrix multiplication and fast transforms

We start with comparing the running time of applying a complete Hadamard transform to a vector of length

d as apposed to multiplying it by a dense k by d matrix. Applying a dense k×d stored matrix to a vector in

Rd requires O(kd) operations whereas computing the Hadamard transform requires O(d log(d)) operations.
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Fig. 8.5: Running time of applying dense stored matrices compared to applying a complete d×d Hadamard transform.

The x-axis gives the number of rows in the dense matrix whose application time is given by the solid line. On

the y-axis running time values are normalized such that applying a complete Hadamard Transform requires

1 unit of time, indicated by the dashed line.

Theoretically, if k is logarithmic in d the two methods should be comparable. Figure 8.5 shows the running

time of applying a k × d matrix as a function of k. The horizontal line gives the running time of applying a

complete Hadamard transform. We chose to compare ourselves to Hadamard transforms instead of Fourier

transforms since they are real valued and exhibit better memory access patterns. We see in Figure 8.5

that the computational cost of applying a complete Hadamard transform is significantly lower than that of

applying a k × d matrix even for small values of k. Note that the Hadamard transform used is a simple

recursive function which is not optimized in any way and includes allocating an array of length d in memory.

The matrix multiplication uses the optimized LAPACK toolbox used by Matlab. The values of k and d used

in this experiment are limited by the amount of space needed to store dense matrices.

8.2.2 Dependance on the target dimension

After establishing that the use of dense matrices is significantly slower than using fast transforms, we turn

to compare those. We start by examining the application running time dependance of sub-Hadamard, Lean-
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Fig. 8.6: Running time of applying Sub-Hadamard, Lean-Walsh and Identity-copies k × d matrices. k ranges from 1

to 10, 000 and d = 105 (left) d = 5 · 106 (right).

Walsh and Identity-Copies matrices on their target dimension k. Applying sub-Hadamard matrices requires

O(d log k) operations, the logarithmic dependance in k can be seen in Figure 8.6. The application time of

Lean-Walsh and Identity-Copies should, however, be independent of k. The slight dependence on k which

is seen in Figure 8.6 is due to two facts. One, small values of k allow for partial applications of recursive

calls during the computation of lean Walsh transforms. Two, memory allocation and management issues

still depend on the length of the output, for example, the time required to allocate (and initialize) the result

vector clearly depends on its length.

8.2.3 Dependance on the original dimension

Here we examine the running time for applying Sub-Hadamard, Lean-Walsh, and Identity-copies for a fixed

target dimension k and varying original dimension d. The results in Figure 8.7 do not seem linear because the

application time required to perform sub-Hadamard transforms and lean Walsh transform depends on the

proximity of the original dimension to a round power of 2 or 4 respectively. The running time is, nonetheless,

linearly dependent on d. The results are normalized such that applying Identity-Copies to the maximal value

of k and d requires 1 unit of time.
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Fig. 8.7: Running time of applying three k × d matrices: Sub-Hadamard, lean Walsh and Identity-copies. Here, the

original dimension ranges between d = 105 to d = 5 · 106. The target dimension is fixed to k = 100 (left)

and k = 1000 (right). All values are normalized such that applying Identity-copies to d = 5 · 106 requires 1

unit of time.

We see that, across the board, there is a clear order of application efficiency. Most efficient are, of course,

Identity copies. Lean-Walsh are slower to apply and least efficient are Sub-Hadamard matrices. The reader

should bare in mind that computing complete Hadamard or Fourier transforms is a much heavier operation

than all of the above by a large factor. Needless to say, application of dense random matrices is prohibitively

heavy for most of the matrix dimensions tested above.

8.3 Rank-k approximations

In many algorithms in data mining, signal processing, physical simulations (and many others) a key step is

computing a rank deficient approximation of a large matrix M . The matrix M is usually assumed to be the

addition of a rank deficient matrix and a matrix of entry-wise i.i.d. noise. More formally we seek a matrix

Mr that minimizes ‖M −Mr‖2 under the constraint that Mr is rank r. Finding Mr exactly is possible using

the Singular Value Decomposition (SVD) of M . An SVD of a matrix M is a decomposition of it into three
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matrices U , S, and V such that M = USV T , U and V are orthonormal and S is a diagonal matrix holding

on the diagonal the singular values of M , S(i, i) = σi, σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0. It is a well known fact

that the best low rank approximation of M is Mr = UrSrV
T
r , here Ur and Vr denote the first r columns of

U and V and Sr contains σ1 . . . σr. Directly computing the SVD of a matrix requires iteratively applying

M to candidate singular vectors. These methods include the Power-Method and iterative methods such as

Lanczos. These are time-wise prohibitive if the size of M is large.

Since finding Mr exactly and deterministically is prohibitive, randomized approximation algorithms were

explored for this problem. The idea in all of the following algorithms is similar. Randomly generate a matrix

Mk by multiplying M from the left by a random matrix R such that the matrix Mk = RM is much smaller

than M . Decompose Mk exactly and use its SVD to approximate that of M . The crux is to show that a

proper choice of distribution for R guaranties (w.h.p.) that the singular values and right singular vectors

of RM are close to those of M . The definition of ”closeness” and the distributions over R vary. It is clear

that k must be at least as large as r, the desired rank. However, it has been the focus of much research as

to what values of k relative to r guarantee what results.

One possible distribution for R is a matrix that encodes a sub-sampling (and possibly scaling) of k rows

from M . This method, pioneered by Frieze Kannan and Vempala in [13] was later refined and improved by

Kannan, Vempala, Mahoney, Muthukrishnan, and Drineas in a series of papers [14, 15, 16]. The strongest

result in this line of work was given recently by Rudelson and Vershinin [54]. From this point on, we refer

to the method described in [54] as random sampling. For completeness we recall the relevant theorem.

Theorem 8.3.1 (Rudelson, Vershinin [54]). Let M be a d×n matrix with numerical rank r = ‖M‖2fro/‖M‖22.

Let ε, δ ∈ (0, 1) and let k ≤ d be an integer such that:

k ≥ C
r

ε4δ
log

( r

ε4δ

)
(8.9)

Consider the k × m matrix Mk which consists of k normalized rows of M , picked independently with re-

placement with probabilities proportional to their squared euclidian norms. Then, with probability at least

1− 2e−c/δ the following holds; For a positive integer `, let P` be the orthogonal projection onto the top ` left
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singular vectors of Mk then:

‖M −MP`‖2 ≤ σ`+1(M) + ε‖M‖2 (8.10)

Remark 8.3.1 (Rudelson, Vershinin [54]). The numerical rank r = r(M) = ‖M‖2fro/‖M‖22 in Theorem

8.3.1 is a relaxation of the exact notion of rank. Indeed, one always has r(M) ≤ rank(M). But as opposed

to the exact rank, the numerical rank is stable under small perturbations of the matrix M . In particular, the

numerical rank of M tends to be low when M is close to a low rank matrix, or when M is sufficiently sparse.

Another idea, natural to this manuscript, is to use random projections for this task. Such algorithms

are given by Sarlos [17], Drineas, Mahoney, Muthukrishnan [23] and Tygert, Martinsson, Rokhlin, Woolfe,

and Liberty [20]. In a sense, a random projection of a matrix M can be viewed as simply sampling an

orthogonally rotated version ΦM of the original matrix M . This reduces random projections to random

sampling. In what follows we claim that although a random projection of a matrix is more computationally

expensive than random sampling, it is not redundant. It serves as an important preconditioning step to the

sampling algorithm which improves its accuracy. Thus, when computationally possible, one should prefer

random projection to random sampling.

Our measure for accuracy is motivated by learning algorithms such as kernel methods and Latent Semantic

Indexing (LSI). In these applications the data matrix M is assumed to be low rank. For kernel methods

M is the d × d Kernel matrix and for LSI M is the d × n document-word frequency matrix. The r right

singular vectors of M are thus assumed (by the model) to span the part of Rd which includes the information

about the data and does not include artifacts arising from noise. The definition of noise is specific to the

data model but a common assumption, especially in signal processing, is that the noise is additive i.i.d. and

Gaussian distributed. Moreover, it is assumed that all singular values of the noise matrix are lower than the

smallest non-zero singular value of M .

In the experiment described below we set the data matrix to D = UUT where U is a d × r orthogonal

matrix. D, therefore is a symmetric matrix with r singular values equal to 1. We also define the noise matrix

N to be a d×d random Gaussian matrix, N(i, j) ∼ N(0, 1/
√

d). The entry-wise standard deviation of 1/
√

d

is required to have E(‖N‖2) = O(1) (for noise distribution other than Gaussian the reader is referred to
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[55]). Finally, we denote by M the matrix M = D + σN .

Using the matrix M we are interested in producing a d×k orthogonal matrix V which numerically spans

the right singular space of D i.e. the columns of the orthogonal d× r matrix U . We measure the accuracy

of the two algorithms by the portion of U that is captured by V . A vector u ∈ Rd is perfectly spanned by

a subspace V if ‖uT V ‖ = ‖u‖ (for any vector 0 ≤ ‖uT V ‖ ≤ ‖u‖). The quality of spanning all r columns in

U can be measured by q = ‖UT V ‖Fro/
√

r. The coefficient q ∈ [0, 1] measures the quality of the algorithms’

output.

Remark 8.3.2. The experiment is set up in a way which allows us not to store the entire matrix M in

memory in any point. Rather, we generate RD directly from (RU)UT and generate N on the fly to calculate

RN . This is crucial since working directly with M stored on disk would have generated a large number of

memory page faults, requiring an excessive amount of time. This, however, is irrelevant for the accuracy

results stated below.

Remark 8.3.3. Although the running time of randomly projecting M is much longer than that of randomly

sampling it, the application time of both methods is not compared for two reasons. First, as stated above, we

do not work with the matrix M directly and so the running time measured would have been heavily skewed.

Second, usually the computational bottleneck of these method is that of computing the exact decomposition of

the projected matrix, RM . Thus, the accuracy of the output is usually a more important factor.

Remark 8.3.4. Due to the size of M , one cannot calculate its true rank-k approximation. We therefore

measure our success by the accuracy of spanning U . This is justified by the assumption of the model that U

and the singular space of M are close.

Remark 8.3.5. The choice of the Gaussian noise matrix N , N(i, j) ∼ N(0, 1/
√

d), only guaranties that

E(‖N‖2) ≤ c for some constant c. It is important to notice that it does not imply ‖N‖2 ≤ λr = 1 as would

be required by the model. Moreover, for Gaussian i.i.d. entries E(‖N‖2) is larger than 1 and experimentally

takes a value close to 2. Since M = D + σN , the coefficient c will be implicitly included in the value for σ.

Figure 8.8 compares the two algorithms’ results for a random orthogonal matrix U . Since the distribution
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for U is rotationally invariant, the results of sampling M directly should be comparable to those of sampling

a rotated version of it. The random projection matrix used was the Lean-Walsh matrix as above. Figure 8.8

shows the results obtained for r = 10, d = 10, 000 and d = 20, 000 and σ = 0.05 and σ = 0.1. The results of

the two approaches are comparable as expected.

The difference between the methods becomes apparent when the distribution of U is not isotropic. In

the next experiment we devise a different matrix U . The second version of U is such that most of its row

norms are small and a few are large.1 This can be achieved in many ways. In the following experiment,

U was chosen as follows. First, all d × r entrees were assigned i.i.d random Gaussian entrees. Second,

each row was multiplied by the square of a random Gaussian variable. Finally, U is orthogonalized using a

Graham-Schmidt procedure. The results are shown in Figure 8.9.

In all of the above experiments r, the rank of U , was fixed. Figure 8.10 shows the effect of increasing

the value of r. As expected, the number of sampled rows or the projection dimension required to achieve a

certain accuracy increases as well. Note that the plot look similar since our measure of quality is normalized

with respect to the rank. The advantage to random projection is still evident.

8.4 Conclusion

This chapter dealt with practical issues regarding random projections. First we saw that the projection

accuracy of different projection distributions is essentially identical unless the projected vectors are extremely

sparse. This led us to prefer one projection over another according to its application speed which was reviewed

in the second section. The third section was dedicated to affirming the usefulness of random projections for

performing matrix Singular Value Decomposition.

1 The definition of ”most” and ”few” is somewhat loose.

69



10 20 40 60 80 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d = 10000, r = 20, sigma = 0.05

Random projection
Random sampling

10 20 40 60 80 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d = 10000, r = 20, sigma = 0.10

Random projection
Random sampling

10 20 40 60 80 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d = 20000, r = 20, sigma = 0.05

Random projection
Random sampling

10 20 40 60 80 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d = 20000, r = 20, sigma = 0.10

Random projection
Random sampling

Fig. 8.8: Four plots describing the rank-k approximation of d × d matrices, d = 10, 000 or d = 20, 000 as indicated.

On the x axis the reduced dimension of the matrix: either the sample size in the case of random sampling or

the target dimension in the case of random projections. The y axis indicates the quality of approximation

q. The approximated matrix is M = UUT + σN . Where U is a random d × r partial basis for Rd and

N(i, j) ∼ N(0, 1/
√

d) i.i.d. Since U is chosen according to an isotropic distribution the two approaches

perform comparably.
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Fig. 8.9: Four plots describing the rank-k approximation of d × d matrices, d = 10, 000 or d = 20, 000 as indicated.

On the x axis the reduced dimension of the matrix: either the sample size in the case of random sampling or

the target dimension in the case of random projections. The y axis indicates the quality of approximation

q. The approximated matrix is M = UUT + σN , where U is a column orthogonal d × r matrix and

N(i, j) ∼ N(0, 1/
√

d) i.i.d. The choice of U here is such that its row norms vary like square gaussians.

This is not an isotropic phenomenon in Rd and thus the difference in accuracy between the two algorithms’

performance.
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Fig. 8.10: Rank-k approximation of d × d matrices, d = 5000 as indicated. On the x axis the reduced dimension of

the matrix: either the sample size in the case of random sampling or the target dimension in the case of

random projections. The y axis indicates the quality of approximation q. The approximated matrix is

M = UUT + σN . Where U is a column orthogonal d× r matrix and N(i, j) ∼ N(0, 1/
√

d) i.i.d. The value

of r is increases from left to right and top down from 10 to 20 to 30 to 40.
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