Threading Machine Generated Email

Nir Ailon
Technion & Yahoo! Research
Techion, Haifa 32000, Israel
nailon@yahoo-inc.com

Edo Liberty
Yahoo! Research
MATAM, Haifa, 31905, Israel
edo@yahoo-inc.com

ABSTRACT

Viewing email messages as parts of a sequence or a thread is
a convenient way to quickly understand their context. Cur-
rent threading techniques rely on purely syntactic methods,
matching sender information, subject line, and reply /forward
prefixes. As such, they are mostly limited to personal con-
versations. In contrast, machine-generated email, which
amount, as per our experiments, to more than 60% of the
overall email traffic, requires a different kind of threading
that should reflect how a sequence of emails is caused by
a few related user actions. For example, purchasing goods
from an online store will result in a receipt or a confirma-
tion message, which may be followed, possibly after a few
days, by a shipment notification message from an express
shipping service. In today’s mail systems, they will not be
a part of the same thread, while we believe they should.
In this paper, we focus on this type of threading that we
coin “causal threading”. We demonstrate that, by analyzing
recurring patterns over hundreds of millions of mail users,
we can infer a causality relation between these two indi-
vidual messages. In addition, by observing multiple causal
relations over common messages, we can generate “causal
threads” over a sequence of messages. The four key stages
of our approach consist of: (1) identifying messages that are
instances of the same email type or “template” (generated by
the same machine process on the sender side) (2) building a
causal graph, in which nodes correspond to email templates
and edges indicate potential causal relations (3) learning a
causal relation prediction function, and (4) automatically
“threading” the incoming email stream. We present detailed
experimental results obtained by analyzing the inboxes of
12.5 million Yahoo! Mail users, who voluntarily opted-in for
such research. Supervised editorial judgments show that
we can identify more than 70% (recall rate) of all “causal
threads” at a precision level of 90%. In addition, for a search
scenario we show that we achieve a precision close to 80%
at 90% recall. We believe that supporting causal threads in

Permission to make digital or hard copies of all or part o thviork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Zohar S. Karnin
Yahoo! Research
MATAM, Haifa, 31905, Israel
zkarnin@yahoo-inc.com

Yoelle Maarek
Yahoo! Research
MATAM, Haifa, 31905, Israel
yoelle@ymail.com

email clients opens new grounds for improving both email
search and browsing experiences.

General Terms

Information Systems

Categories and Subject Descriptors

H.4.3 [Information Systems Applications|: Communi-
cations Applications—FElectronic Email

Keywords

Email Threading, User Experience, Algorithms, Models, Fre-
quent sets and patterns

1. INTRODUCTION

Web mail has become one of the largest sources of user
generated content today, significantly bigger than the Web.
The volume of email going through Web mail services such as
Windows Live Hotmail (recently re-branded as Outlook.com),
Yahoo! Mail and Gmail, today’s largest email providers [3],
keep growing. Some analysts even predict that the number
of email accounts will increase from 3.1 billion in 2011 to
nearly 4.1 billion by 2015, [7].

Even if personal communications seem to increasingly move
away from mail toward social media such as Facebook or
instant messaging applications, especially with the younger
generations [4, 15], email retains its value as an asynchronous
method of communication with commercial entities or orga-
nizations. One key characteristics of these entities is that
they regularly and automatically generate messages and send
them to individual users.

Machine-generated messages dominate email traffic, as we
have verified on Yahoo! mail, and detail later. It is also
clear that the volume of machine-generated email will keep
growing. Among these machine-generated messages, while
some are of critical importance like an e-ticket, a car rental
reservation, a bill to pay, or a new password, others are
almost spammy, like hotel newsletters, or obsolete mailing
list subscriptions. Most users do not take the time to clean
up their inboxes, never define a single folder [10], and have
to turn to the usual search and browse mechanisms when
tracking important messages. One convenient mechanism
to navigate one’s inbox is “threads” or “conversations” that
visually link related messages.

The task of email threading consists of identifying se-
quences (threads) of messages related to a single logical
conversation, event or action. The most common type of
email thread is a group of email messages that have been
exchanged by a common list of senders and recipients via
the mail reply/forward mechanisms. They can be extracted
by purely syntactic methods, through the analysis of the
senders and recipients in the mail headers and more im-
portantly by observing the shared subject lines. Indeed,
in these “syntactic threads” the subject lines are similar
modulo the addition of the prefixes ‘Re:’ for reply and
‘Fw:’ for forward, possibly multiple times. Other thread-
ing header field based mechanisms were defined in RFCs
822 [5] and 2822 [13]. These suggest email clients should en-
dow forwarded or replied messages with a special “In-Reply-
To” field header and include the original message identifier.
Clearly when such fields exist threading becomes straight-
forward.

This, however, happens almost solely for personal (indi-
vidual or multi-party) conversations. Automated messages
that are caused by a same action will not be identified as
a thread. This is because separate email messages in these
threads have different subject lines and content. In many
cases, they do not even the share the same sender.

We argue here that it is critical to offer some kind of
threading mechanism dedicated to machine-generated email
simply because already today it represents the majority of
the volume of email traffic. Indeed, we have analyzed the
inbound (non-spam) traffic of Yahoo! mail over a period of
one month, simply counting the number of messages orig-
inating from a same sender. We verified that more than
60% of the overall traffic originated from mass senders in
multiple domains (manually classified via editors) such as
social (facebook, linked in, etc.), commerce (ebay, amazon,
etc.), finance, shopping, travel, etc. as illustrated in Fig-
ure 1. We also sampled® the bodies and subject lines of the
mass senders’ messages and verified they were clearly au-
tomatically generated, as expected. Indeed each of us can
easily recognize in their inboxes these messages derived from
a same boilerplate, where only user specific information such
as name, address, date, purchase good, confirmation num-
ber, etc. differ. In the same Figure 1, the categories labeled
“Personal”, “Other”, “Miscellaneous”, and “Unknown” con-
tain mostly personal conversations.

Given the mass volume of these machine-generate email
messages and the fact that we can only expect it to grow
in the future, we argue here that it is critical to help users
naivgate it in a more convenient way. One first step in this
direction is to define and offer a new type of threading that
takes advantage of this mass volume in order to provide a
new type of threading abstraction. We introduce in this pa-
per the notion of “causal threading”, which is a specific type
of thread dedicated to machine-generated email messages.

We define a causal thread as a sequence of messages that
originate from a same cause and are thus logically linked.
Consider the following example of a user who clicked on a “I
forgot my password” button on a site she is registered to.
She might first get an email message entitled “change your
password” with a link taking her to a dedicated “change

LAll email studies reported here that involved looking at
subject lines or bodies were conducted exclusively on the
inboxes of users who had voluntarily opted in for such re-
search.

B Personal

BSocial

DORetail

DO Entertainment

O Jobs

O Finance

O Coupons

O Travel

OEducation

O Consumer Packaged Goods
O Small Business and B2B
O Telecommunications
OOther

Figure 1: Distribution of emalil traffic per domain
over a month of Yahoo! mail traffic.

your password” page on the site, and then a second mes-
sage entitled “your password has been changed” contain-
ing the new password and informing her that her password
has been successfully changed. Clearly these messages are
strongly related, as they pertain to one action that spans
several stages, yet today’s threading mechanisms will not
group them together as they are not seen as part of a same
conversation. Moreover, most such machine-generated mes-
sages are one directional, they are inbound messaged often
without a return channel®. Yet, we argue that these mes-
sages are part of a same logical thread as the second message
is an automatic result of the action taken on the first mes-
sage. In other words, as the second message can be traced
back to the first message as its “cause”, we want to link them
into the same causal thread. Consider now this more com-
plex example, in which a user purchased an electronic device
from an online mass retailer. He will first get from the re-
tailer a message that the order was placed, then possibly a
message from the delivery service with the tracking number,
and another one confirming delivery. Finally he might even
get another message from the retailer thanking him and in-
cluding instructions for returning the device if not satisfied.
All these messages would not belong to the same syntactic
thread. Indeed, not only do they not share the same subject
lines (as in the previous example) but also involve different
senders that were not part of a same conversation at any
time. We propose here to group them in the same causal
thread that will link them in a logical order to the source or
cause of the thread.

Our approach is based on the intuition that since these
messages are machine generated and sent over and over,
modulo minor user-specific variations, to large volume of
users we should be able to observe causality patterns be-
tween them.

We propose to first identify, over very large amounts of
email data, these similar messages that share a common
sender and variations of subject lines. We refer to these
as email templates, and will define them more formally later
on. Note that for performance we do not, at this stage,
consider the body of messages.

Given these email templates that represent an abstraction
of machine-generated mail, we propose to learn causality

In fact, many of such automated messages explicitly ask
the recipient not to respond.

relations offline over a very large corpus of email data. Our
process consists of three offline stages and one online stage:

1. We first learn email templates over a very large repre-
sentative sample of email data and devise an efficient
procedure that associates any new incoming message
with its template, as well as return the list of variables
instantiated by the message. This stage is detailed
in Section 2.

2. We then learn, offline, a “causal graph” over email tem-
plates, as explained in Section 3. Given the causal
graph, one can estimate the likelihood that one mes-
sage follows another.

3. In addition, we learn a “causality prediction function”
that takes as input a pair of email messages, produces a
list of features that rely on the causal graph, and out-
puts a confidence score to whether the first message
caused the second. This function is critical to decid-
ing whether the second message should follow the first
one in the same thread. This step relies on a super-
vised data set. The features produced in the step are
detailed in Section 4.

4. Given the causality prediction function, we thread the
incoming emails, in an online manner, by appending
a newly received email to its most likely predecessor
(i.e., assigning the new email to the same thread as its
chosen predecessor) or decide that it is the beginning
of a new thread when all candidate predecessors are
given an insufficient score. We describe this process in
Section 5.

The unsupervised offline process needs to be conducted on
a regular basis to account for the arrival of new mass senders
on the market, or template updates as service providers
keep changing their infrastructures. The supervised phase
of learning the confidence function need not be updated so
often as it is a function of features that are independent of
the exact templates. Once the templates, causal graph and
confidence function are learned, actual threading can be con-
ducted online. The causal threading process serves the in-
bound message stream. It associates each incoming message,
at arrival time, with a thread identifier, while maximizing
a utility function parametrized by the confidence score, as
detailed in Section 5.

The contributions of our work are three-fold: We intro-
duce the notion of “email template” for machine-generated
email and define a new mechanism for identifying them ef-
ficiently. We propose a method for efficiently learning re-
lations between these templates, over millions of users’ in-
boxes, so as to infer causality. We introduce the notion of
“causal threading” and propose an efficient mechanism for
dynamically assembling causal threads as messages are de-
livered to the email system.

2. EMAIL TEMPLATES

By analyzing inbound traffic it is possible to identify these
near similar messages from a same sender, and separate the
boilerplate from the variables parts. The idea is to find fre-
quent subsequences of words in email subject lines shared
by many messages originating from a same sender. For
example, an email sent by “usps.com” whose subject line

is “Your package number 2049862-56 is on its way” will
be rare if not unique. But, the regular expression “Your
package number * is on its way” , where the wild-card
character “*¥” can match any number of words or characters,
will match a great number of subject lines in messages sent
by “usps.com”.

Following the above intuition, each machine-generated mes-
sage can be mapped into a tuple formed by a static template
and a list of variables. For example, consider the message
e sent by “usps.com” whose subject line is “Your package
number 2049862-56 is on its way’. The template identi-
fier 7(e) would be formed by concatenating the sender name
and the regular expression matching best a great number of
subject lines, namely “usps.com: Your package number *
is on its way” and vars(e) would be a list containing a sin-
gle element: “2049862-56"".

Given a stream of messages, it is an interesting com-
putational task to identify the templates and extract the
variables. We refer to this process as templating. Note
that the proposed threading introduced in this paper is in-
dependent from the templating process, and should work
in a similar manner with any other templating technique.
The templating technique we apply here is rather simple
yet effective. Templates are extracted for the most frequent
senders by analyzing the subject lines of the messages orig-
inating from that sender. The probability that the sub-
ject line of a message from “usps.com” matches the regu-
lar expression “Your package number * is on its way” is
higher than some small constant. Obtaining these regular
expressions from raw data is standard practice in data min-
ing. See [9, 2, 1] for examples of efficient techniques for
association rule mining.

In our system, we found that removing long numbers,
unique identifiers, proper names, and all other non frequent
words (those whose probability is below some small con-
stant) almost always results in the exact template. There
is some subtlety in identifying either overspecified or under-
specified templates but this goes beyond the scope of this
paper.

In what follows, we assume that given any machine-generated
mail e, one can efficiently compute both a template identifier
7(e), and a list of variable values® vars(e).

3. LEARNING THE CAUSALITY GRAPH

The input to the system is a set of N anonymized users
{1,...,N}. For each user, i, we are given a set of n; in-
bound messages {e}, ..., eﬁli}, collected between time tpegin
and tenq. For clarity, e§ denotes the j’th email in user i’s in-
box. The inbound email streams are chronologically sorted,
namely, t(e,) < t(e},) for all i and ji < j2. We denote by
7(e}), vars(e}) and t(e}) the template, variables, and arrival
time of email j to user 4, respectively. We use 7 to denote
the space of templates occuring in our data (see Section 2
for details on discovering the templates). Many messages
do not fit into any template, for example, personal email.
These can be ignored since they are irrelevant in the con-
text of automated mail threading. From this point on, our
notation assumes that all messages in the system match a
valid template.

3We note that in practice, given a set 7 of templates, one
can construct in linear time, a trie-like database that would
support these types of queries in constant time.

Let A = tend —tbegin denote the length of the time window
in which data is collected. For each® 7 € T, define \(7) to
be the average number of times template 7 was observed in
a single time unit:

i€ [N], jelni, r(el) =1}
NA ’

We posit that the number of appearances of a template T per
time unit in a stream is distributed Poisson with parameter
A(7). This means that the probability of observing template
7 at least k times within an interval of § units is estimated
by Poiss(A(7)8, k) = e~ (X\()8)* /k!.

In order to identify statistical relations between the ap-
pearance of two distinct templates 7, 7caus € T, we define
a window size parameter §. We then count the conditional
frequency of Tcaus given 7 as follows:

0(7—7 TC&US) = |{(i7j17j2)

Ay = @A)

i€ [N], 51 < jo,
t(ef,) < t(el,) + 6 < tena,

7(e,) = Teans, T(€},) = TH '

In words, C(7, Teaus) counts the number of times templates T
and Tcaus appeared within § time units in one user’s stream,
where Tcaus appears before 7. In order to infer a potential
causal connection 7 — Tcaus (read: 7 was caused by Tcaus),
we compare the prior probability of observing 7 in an arbi-
trary window of length § to the probability of observing 7
in a window of length at most ¢ following an appearance of
Tcaus-

Our directed, weighted causal graph G = (Vr, E7, W :
Er — R") is constructed as follows. Its nodes correspond
to templates V- = T. The weight function is in fact defined
for any pair of vertices:

Wor (7, Toans) = Pr[r appears in the —window after Tcaus]

Pr[r appears in a §—window]

_ C(7, Teans) /C(7)
- 1— ef>\(‘r)6 ’

C(r) = |{(i,3) + i € IN], t(e},) + 0 < tena, 7(e5,) =7} -

In words, Wy (7, Tcaus) is the ratio between the number of
times the pair of templates 7 and Tcaus co-appeared in a
window of length 6 and the expected number of times 7
would appear after Tcaus assuming an independence between
the appearance of 7 and of Tcaus (the null hypothesis). We
kept only arcs 7 — Tcaus for which the weight W1 (7, Tcaus) >
1. For scalability reasons, we also restricted the out degree
of each vertex to be at most 20.

3.1 Causality Graph: Construction and Inter-
pretation

We implemented the algorithm described above using email
streams from 12.5 million users, over a time span of A = 2
months. We took the window interval parameter § to be 17
days. The set of templates, 7, was limited to a set of 11646
templates.

4We abuse notations and refer to 7 both as a function and
a template.

To remove noise factors for infrequent templates, we used
a smoothing factor for the weight ratio calculation. Specifi-
cally, in the calculation of W7 (7, Tcaus), we have artificially
added a constant number of appearances of Tcaus followed
by a time window of length ¢ in which 7 appeared exactly
E[number of appearnaces of 7 in a §—window] many times.
See Figure 2 for an excerpt from the resulting causal graph.

overstock.com:
“Overstock.com password
reset request.”

PayPal.com:
“You submitted an order in the
amount of * usd to overstock.com.”

payless.com
“Order confirmation”

C=193
w=12,098
A\
. overstock.com:
payless.com overstock.com: “Your overstock.com
Your order is shipped] “Order confirmation” N S
order has shipped.
C=1,742
w=6,446

Figure 2: A snippet of the learned causal graph.
Note that, for example, shipping notices tend to fol-
low order confirmations. An interesting insight is
that users who intend to purchase online often forget
their password and thus a password reset precedes
the purchase. This is a common structure across
many vendors.

Although the causal graph is not the only ingredient in the
final threading algorithm (see Section 4 below), some inter-
esting facts can already be observed from it. If we consider
the semantic meaning of templates we can identify template
types which repeat across many senders. These include all
password change confirmations, payment due notices, ship-
ping alerts, service begin/end confirmation, etc. By aggre-
gating statistical behavior on the type level we gain a lot of
insights into the global flow of machine generated messages.
See Figure 3 for examples for such insights.

In what follows, we assume the learned graph is fixed,
and denote it by G+ = (Vr, E7, W), where V- C T, W :
E7 — R™ denotes the arc weights, as described above.

4. PREDICTING CAUSALITY

While the end goal is to thread a sequence of email mes-
sages, a crucial building block is the ability to evaluate the
likelihood that one email is caused by another. The causality
relation of a pair of messages cannot be derived solely from
the causality relation between their templates. Clearly, a
purchase confirmation and a shipment notice a year apart
are not related. We assert that the likelihood that a message
e; is caused by the message e; is a function F' of a list of
features of the (ordered) tuple (ej,e;). In what follows we
describe these features along with some insights. The func-
tion F' is learned in a supervised manner; the exact learning
process is explained in Section 6.

Shipping
Notification

Utility bill

payment
due '

Payment
received

Insurance
payment
due

Service
cancelation

Figure 3: We present here the transition probability
graph between types. The figure shows a very small
portion of this graph in a classic automaton-like lay-
out. Taking utility bill payments as an example, we
see that 44% of the times they are followed by a con-
firmation of the payment being received. Yet, in
35% of the cases, a second payment notification is
followed.

We note that for every feature described below, two fea-
tures are actually created; one for an ordered pair (e;,e;)
and another for the same pair reversed (ej, ;). The moti-
vation is that a causal connection between a pair of email
types is anti-symmetric while a spurious relation is in many
cases symmetric.

4.1 Time Difference Features

Every arc a in the causality graph corresponds to an or-
dered pair of templates that tend to appear in temporal
proximity. We endow each arc with the empirical mean
Usimeaife (@) and standard deviation otimedig(a) of the time
difference between the appearance of the first and the sec-
ond in the pair. When considering threading e; and e; with
the corresponding arc a = (7(e;),7(e;)), we include the fea-
ture

[t(ei) —t(ej) — peimeaist(a)]
Utimcdiff(a)

This measures the deviation of the arrival time difference
between e; and e; from its expected value.

To further sharpen this feature, we created another cleaner
version thereof in which the calculation of fitimeaist(a) and
Otimediff (@) excluded the top and bottom 10 percentiles of
the observed time differences. This cleanup was designed to
reduce the effect of the following scenario occurring in the
causality graph creation step. Consider a user who changed
her password twice within two weeks. Changing a password
usually includes a thread of two messages with templates in
the spirit of ‘how to change your password’ and ‘your pass-
word has been changed’. These two messages tend to arrive
at very close time intervals. Forgetful users who change their
password, say, twice in two weeks, are considered outliers for
the purpose of computing the time difference. Our cleanup
method is likely to avoid such noise.

In addition to the time difference information, we also
computed edge weights as described in Section 3, using 4

different values of the time interval parameter 6. The dif-
ferent values were 4 minutes, 1 hour, 1 day and 17 days.
The rationale for computing the different weight variants
was that causality relations between templates happens at
varying time resolutions. Note that we do not create a new
graph for the different values of §. The set of arcs is still de-
termined by § = 17 days (as explained in Sections 3 and 3.1).
We simply endow the arcs with multiple weights.

4.2 Variable Match Features

A variable match may be very significant when determin-
ing the causality relation between two emails. For exam-
ple, in template pairs of the type: ‘order #number# con-
firmation’ and ‘shipment for order #number#’, a match
in the variable ‘#number#’ is very significant. On the other
hand, there are cases where a variable match is not as signifi-
cant. Consider the two templates: ‘the itinerary of your
flight from #locationl# to #location2# and ‘changes

in your flight from #locationl# to #location2#’. A match

in only one of the location variables does not mean that
the two emails are connected. It is not unlikely for the two
emails to discuss different flights while ‘#locationi#’ is sim-
ply the user’s city of residence.

We introduce variable match features into threading deci-
sion making as follows. Consider an arc a = (71, 72) in the
causality graph, and assume that templates 71 and 7 are
endowed with non-empty variable lists.

In the causality graph learning step, given an instance of
71 and T2 appearing within time interval ¢, the corresponding
variable match pattern is a bipartite graph with the variables
of 71 on the left, the variables of 72 on the right, and an
edge between two variables if their value is identical in the
two corresponding emails. For each possible variable match
pattern M, we compute a weight that is defined as Wy (a),
except that only occurrences of 71,72 with variable match
pattern M are counted.

The feature we output for messages e1, e2 with templates
71, T2 is the weight of the corresponding variable match pat-
tern. Additionally, we provide a binary feature indicating
whether the variable match pattern contains at least one
variable match.

4.2.1 Matching Variablesto Sender Domain Names

An additional type of match can occur between the vari-
ables of the template corresponding to one email and the
domain of the sender of the other. Here, an example where
this connection is meaningful for our purpose. One message
from ‘racingbuy.com’ with subject Your order confirma-
tion’, the other email from ‘paypal.com’ with subject ‘Your
purchase from racing buy’. The corresponding feature we
introduced in the system is a textual measure of similarity
between the sender domain name of one email and a vari-
able of the other. In case more than one variable exists, the
maximal similarity measure is chosen as the feature.

4.3 Periodicity Features

We say that a template is periodic if its instances appear
periodically in users’ inbound mailboxes. Common examples
include: daily quotes, weekly newsletter or monthly bills. In
such cases, a false causality arc might be created due to spu-
rious relationships. In statistics, two events have a spurious
relationship when neither causes the other, but both are
caused by a third event. In our case, the third event is e.g.

the beginning of a month. We elaborate on spurious rela-
tionships and the problem they present in Section A. We add
features indicating periodicity as follows. For each template
7 we compute both the average and the standard deviation
of the time difference between its consecutive appearances in
users’ email streams. Denote these statistics by period_av ()
and period_std(7). For each causality graph arc (71, 72), we
add log(period_av(7;)) and log(period std(7;)) for ¢ = 1,2
as features, totaling 4 numerical features. Note that we
use logarithms because the important information is the ra-
tio between the standard deviation and the mean, which is
captured by difference of logarithms, which in turn, can be
captured by a linear classifier.

5. SERVING AN INBOUND MAIL STREAM:

THREADING

After a template graph is created offline and the causality
prediction function is learned, the system is ready to provide
online threading service to the email stream. The task is to
process each of the user’s incoming emails one at a time and
decide whether it continues an existing thread or starts a
new one. Fix a user, and let {e1,eq,...} denote the stream
of messages arriving into her inbox®.

We now think of the stream {e1,es, ...} of inbound mes-
sages as a vertex set Vg of a sequentially revealed graph.
There is also a special vertex eg € Ve which corresponds to
no email. In this notation, the goal is to endow Vg with a
set of arcs Ee. When node e; is revealed the algorithm must
output a single arc (e;, e;) for some 0 < j < 4. We think of e;
as being the parent of e; and denote it by e; = par(e;). The
choice must meet the following conditions. Either j = 0 in
which case we say that e; starts a new thread. If j > 0
then it must be the case where (7(e;),7(e;)) € E7 and
0 < t(e;) —t(e;) < 6 where 0 is the same window size param-
eter used in Section 3. In this case we say that e; continues
a thread by being appended to e; = par(e;).

We refer to the process of selecting the arc (e;, par(e;))
upon arrival of e; as threading. Note that there may be
cases where par(e;;) = par(e;,) > 0 for some i; # 2. This
means that we are allowing threads to split. There is a
good reason for allowing splitting, an example being that of
piecemeal shopping cart delivery: A user purchases a cart-
load of goods from an aggregate vendor. The vendor sends
a confirmation and receipt message for the entire purchase.
Then the products are processed and shipped by separate
sub-vendors. Each of those will result in a separate thread
of email notifications. Naturally, those threads continue (or
are caused by) the original online purchase.

5.1 Optimal Log-Likelihood Threading

Let (e, e;) be a pair of email messages. We abuse nota-
tions and denote by F'(e;, e;) the score given by the function
F (as defined in Section 4) when given as input the features
extracted from (e;,e;). We consider F'(e;, e;) as an esti-
mated probability for e; being the parent of e;. Define the
score of a threading output at step n, i.e. after handling n
emails, as

Z —log (F (es, par(e;))) .

i€[n]:par(e;)#eo

5Since in this stage we deal with only one user we omit the
email superscript indicating the user index.

By our construction, maximizing the score is equivalent to
maximizing the log-likelihood of the chosen threading given
a pairwise independence statistical model on email messages.
Moreover, the following greedy threading algorithm always
ensures a maximal score. Upon arrival of e;, choose par(e;)
to be

par(e;) = argmaxgc;; F(esej) (5.1)

We define F(e;,e0) as the probability of e; being the first
member in its thread, which is equal to

[T (0= Fesses))

0<j<i

assuming pairwise independence. Note that had we not al-
lowed threads to split, this greedy online step would not
have ensured optimality. Another important note is that
eventually our threading process does not completely follow
the maximum log-likelihood model, but rather appends the
newly arrived message to an existing thread only when the
probability corresponding to the best candidate predecessor
exceeds some threshold (a parameter of the model). The
main reason for using a threshold-based threading rather
than the maximum log-likelihood is that the regime of the
problem dictates a need for very large precision rates; a
requirement that is not necessarily provided by the log-
likelihood model yet is provided by the latter model.

6. EXPERIMENTSAND RESULTS
6.1 Labeled Data

We obtained editorially annotated thread information for
a dataset consisting of 10,606 examples. An example is an
inbound email e along with a set of email messages e1, ..., em
received prior to e in the same mailbox which consists of can-
didate causes of e. We refer to e as the target email message,
and to e1,...,em as candidate email messages.

The editorial examples were randomly collected from the
Yahoo! inbound mail stream only from users who voluntarily
opted-in specifically to allow such research to be performed.
From each such user, only a handful of machine-generated
messages that matched our templates were picked. More
specifically, for a randomly chosen message e, the set of can-
didate messages taken from that user are those suspected of
causing e, namely, those for which (r(e),7(e;)) € E7. For
each message (either target or candidate), only the following
information was made available to Yahoo! employed editors:
sender, obfuscated subject line, and delivery time. Sub-
ject line obfuscation garbled identifiable information such
as: names, numbers, dates, places, etc. (appearing as tem-
plate variables). For each target message, the editors were
asked to indicate which (if any) of the candidate messages
was the cause of the target message as previously defined.
The instructions that were given to editors are listed below.

We collected a total of 10, 606 such examples, with a total
of 13,701 candidate email messages. In other words, each
target email message had an average number of roughly 1.3
candidates. Since “No preceding email” was also an option,
each instance gave rise to an average of roughly 2.3 options
to choose from. The small number of candidates is critical
for modern email services to be able to make this choice at
delivery time, for each and every inbound message. Out of
the 10, 606 instances 4, 504 labels indicated a thread contin-

Instructions given to editors to label data:

You are given a target (input) email message and a handful of
other email messages that arrived shortly before it. Please
mark at most one message that is causally related to the
target (input) email message or naturally precedes it and
was caused by a common action.

1. If more than one preceding email exists mark the most
recent one.

2. If no causally related preceding email exists mark ‘No
preceding email’.

3. If there is no way to make a valid judgment, e.g.,
foreign language, missing information, etc. mark ‘No
Judgment’ (NJ).

target
. . Time
From Subject line
Stamp
chegg.com | your returned chegg book
has been processed Gpm 5/24
candidates
. . Time
Subject 1
From ubject line Difference
chegg.com | returning your chegg text- | 8 hours prior
book
No preceding email
NJ

Table 1: A simple editorial example. The editors
were asked to indicate whether the target email
should or should not be appended to the candidate
email to create (or continue) a thread.

uation, 4800 were indicated to be the first in their thread
and 1302 were not identified (the option “NJ” was chosen).

6.2 Editorial Data Creation

The straightforward way to create the editorial data is to
sample a set of email messages and for each sampled mes-
sage e, output the following instance: The email message
e is the target email message and the candidates ci,...,cy
are all of the email messages in the same inbox, received in
the appropriate time window, for which the arc (7(e), 7(c;))
appears in the causality graph.

This sample is problematic due to the following reason.
The number of candidates per email averages at 6.05 mean-
ing that even if all of the instances were positive, the number
of positive pairs is only a sixth of the data. We sampled 200
instances without the mentioned filtering and found that 39
(19.5%) were positive meaning that the estimated percent-
age of positive examples is slightly more than 3%. Due to
this skewness, it is not practical to obtain sufficiently many
editorially labeled positive examples and we must use some
unsupervised initial filtering. An added bonus of the quick
filtering process is that the drop in the average number of
instances (from 6.05 to 1.3) translates into a more efficient
classifier, which is very important in a large scale system
such as an email service.

Our unsupervised filtering is done as follows: A possible
candidate ¢ for an email message e is removed if either the

target
From Subject line Time
Stamp
your invoice for ebay pur-
hases apple iphone 3gs
bay. ¢ ppie 1P &5 | 7pm 4/9
ehay-com 8gb black smartphone pm 4/
170730882108
candidates
. . Time
Subject 1
From ubject ne Difference
updates for your purchase .
ebay.com from thegeex apr 07 12 1 hour prior
your ebay item sold apple
ebay.com iphone 3gs 8gb black smart- | 1 day prior
phone 170730882108
ebav.com ebay invoice notification for 4 davs prior
¥ saturday march 31 2012 ys p
re details about item
members jgdsne02 sent a message
ebav.com about comcast arris tg262 | 5 days prior
enay: docsis 3 modem wireless
210038603616
No preceding email
NJ

Table 2: An editorial example where there are a
number of possible candidate emails. Here, the tar-
get email should continue the thread ending with the
second candidate email. This example also shows
that simply threading emails by sender and time dif-
ference cannot succeed.

weight of the corresponding arc (7(e),7(c)) is smaller than
12 or the ratio between its weight and that of the inverse
arc (7(c),7(e)) is smaller than 3. To assess the cost of this
processing to the recall, we sampled 200 instances without
the mentioned filtering and found (via manual labeling of
editors) that in 24 of these instances, the correct answer was
removed in the unsupervised filtering stage. It follows that
our preprocessing stage yields an approximate multiplicative
penalty of 0.88 to the recall rate. Notice that the precision
can also be affected by this filtering. This may occur when
the true candidate was filtered yet the classifier predicted a
different parent. Though theoretically possible, none of the
200 labeled examples emitted such an error, meaning that
the penalty for the precision is negligible.

6.3 ThelLearning Model

We divided our labeled data into training, validation and
test portions. Their respective sizes were set to 60, 20 and 20
percent (of instances). The trained model is a real function
mapping between pairs of email messages (a target e and a
candidate €’) and a confidence score. The higher the confi-
dence is, the stronger our belief that e’ is the actual parent
of e in the same causal thread. Specifically, given a new
email message e and a candidate parent €', we compute the
vector valued feature extraction function described in Sec-
tion 4 f(e,e’) = (f1, f2,...), and compose the result with a
classifier given by a learning system (described below).

Notice that the editors did not provide labels per a pair

of target e and candidate €', but rather a choice of one or
no candidate from a list. To use this information for learn-
ing, each instance of target e and candidates ey, ..., e, was
converted into m pairs (e, e1),..., (e, em). If an editor chose
e; as the actual parent of e, then (e, e;) was taken as a pos-
itive instance, and (e, e1),..., (e,ei—1), (e, €i+1),..., (e, em)
were taken as negative ones. If the editor marked no parent
(e.g. that e begins a new thread) then all m pairs were taken
as negative instances. We trained an AD tree classifier [6].
We also considered other classifiers such as logistic regres-
sion; while their results are comparable, AD trees performed
slightly better.

Since our conversion method produced a skewed data set
of significantly more negative examples than positive ones,
we introduced a parameter o1 > 0 and gave each positive
instance a weight of a1 - m where m is the number of can-
didate for that instance. The intuition for the m factor is
two-fold. First, it results in a (roughly) balanced weight of
positive and negative examples. Second, a candidate that
tends to have a lot of competition (i.e. many other candi-
dates) would intuitively require a higher score to be chosen
by the classifier than a candidate that tends to have zero or
little competition. We also distinguished between two types
of negative instances. The first type results from an instance
in which the new email began a new thread (none of the can-
didates was chosen as the actual parent). The second type
is a pair (e, e’) of target e and a candidate €’ distinct from
the actual candidate e” the editor marked. The latter ex-
ample should intuitively have a smaller weight as it could be
the case that a candidate €’ is a moderately fine choice for
a parent of e but a better candidate was found. Negative
examples of the latter type received a weight of as, where
as > 0 is another tuning parameter, while the first type was
given a unit weight.

The testing and validation were performed as follows. De-
note the learned function mapping a feature vector to a con-
fidence by h. Given a target e and candidates e1,...,em

we computed h(f(e,e1)),...,h(f(e,em)) and identified e* =

argmax,c(., . 1 h(f(e,e’)). We also introduced another

threshold parameter 3 > 0. If the confidence h(f(e, e*)) was
greater than 3, we predicted a causal relation, i.e. that e*
was the actual parent of e. Otherwise we predicted that e
began a new thread. A correct prediction for an instance is
one where we predict the same parent option as the editor.
We measured the performance by computing the precision-
recall plot for the actual positive examples, i.e. the examples
in which the editorials marked that e did not begin a new
thread.

The parameters a1, a2, where chosen to optimize the
Fb.5 measure w.r.t. the stated precision-recall over the val-
idation set. We used Fp.5 rather than the F} score since in
our setting, low recall is more acceptable than low precision.
Once we determined the parameters, we ran the test on the
test portion of the data with various values of 3 to obtain
the precision-recall plots in figure 4.

6.4 Faseline: Causal Graph Independent Fea-
ures

To measure the amount of information hiding in the causal
graph, we compared our results to the following baseline.
For each pair of messages, we omit all features that depended
on the causal graph in any way. Specifically, we left only
two features; the domain similarity and time difference. We

1
0.9
0.8
0.7
0.6
0.5
0.4

0.3 =m-Full feature set
0.2

0.1 =#=0nly non graph features
0 . . " " " "
05 055 06 065 07 075 08 085 09 0395 1

Figure 4: Precision (on the z-axis) versus recall (y-
axis) curves for the threading process and baseline.
As can be seen from the plot, features extracted
from the template causality graph are extremely
helpful. From a practical standpoint, such results
can already be presented to users with ~ 90% pre-
cision at ~ 80% recall. Notice that due to the pre-
liminary filtering of candidates, the true recall is a
product of 0.88

mention that this baseline still somewhat depends on the
graph because the graph edge set was used in the first place
for selecting editorial instances. Nevertheless, the algorithm
using the complete set of features is significantly superior
to the baseline as seen in figure 4. Specifically, by using
the additional graph related features we increase (absolutely,
not relatively) the recall rate by 15%-20%. Moreover, this is
achieved in the range of the precision values, which is large
enough to be presented to users.

7. RELATED WORK

Our work intersects several lines of research. The first
typically known as association rule mining (see for example
[1, 8]) refers to the problem of identifying statistical depen-
dence between sets of items appearing in logical shopping
carts. Such rules allow the vendor to apply sophisticated
pricing and discounting strategies. Our work differs from
this line of work in that no logical shopping cart exists here.
The stream of inbound emails for a user, for our purpose,
is an infinite object revealed over time. The association
rules we mine have a temporal nature in that we search for
repetitive patterns over relatively small time windows. Ad-
ditionally, the rules are not symmetric in the sense that the
relation ‘caused by’ is anti-symmetric as opposed to ‘corre-
lated with’, which is the relation of interest in the case of
logical shopping carts.

Another relevant line of research is that of identifying se-
mantic threads based on statistical text similarity [16, 11,
12, 17]. This problem has been studied both in the context
of email and newsgroups, where threading can be offered to
the end user as a valuable feature for navigating through a
large corpus.

Yeh et. al [17], in addition to using semantic tools to iden-
tify threads, report their study on identifying threads using
payloads planted in a protocol used by a propietary mail
client. Such information allows very precise thread iden-
tification, but the approach is limited to identification of

threads in which all parties use this proprietary protocol.

Our work is different in multiple ways. First, our threads
define logical connections between inbound messages only,
whereas semantic threading uses bidirectional information
towards identifying so called conversations between two (or
more) parties. Outbound messages are not used in our sce-
nario, and often do not exist. Additionally, we seek to pre-
dict association rules to within almost the same precision as
the trivial tag based thread prediction, while maintaining a
reasonable recall rate.

To the best of our knowledge, this is the first work, deal-
ing with causal threading of automated email messages. The
only previous work we can compare ourselves to is that on
threading of personal email messages, in other words, of con-
versations. The comparison is difficult because the problems
are almost completely different. We still make the following
note of comparison. In both [11] and [12], a single mes-
sage e was given to a threading algorithm as “query”, and
the algorithm outputted a ranked list of messages suspected
as belonging to the same thread as e. Both [11] and [12]
evaluate their system over a set of query messages known a
priori to belong to a thread of size more than one. Hence
it was known (by experiment design) that e was associated
to another message, the question was only which. Assuming
the first message on the retrieved list was taken as the sug-
gested related message, the algorithm in [12] succeeded in
around 35% of the times. The algorithm in [11] claimed pre-
cision of 71% using a similar evaluation method (note that
the datasets were different). It is difficult to compare these
result with ours, because our algorithm was measured also
against messages that were not associated with any other
message by way of threading. Quoted from [11]: “Of course,
these figures are for messages that are known to have a par-
ent message. An operational system would need not only
to distinguish among potential parents, but also to detect
whether or not the message had a parent at all”. Such de-
tection is performed by neither [11] nor [12]. Nevertheless,
our proposed system clearly outperforms these benchmarks.

8. CONCLUSION

In this paper, we introduced a method for building a new
type of thread, coined “causal thread”, specially adapted to
machine-generated email. Our approach leverages the fact
that machine-generate messages are typically sent by mass
senders to a very large number of users. By automatically
learning causality patterns, offline, across millions of users,
we could develop mechanisms that allow to identify causal
threads at delivery time.

It is important to stress that our solution is fully scalable
and can be adopted by large scale email service providers.
First, our threading procedure is very efficient and can be
integrated into the email delivery pipeline without causing
delays or bottlenecks. Second, the entire process is language
independent. This is crucial for large email providers since
they typically support numerous different languages. The
only seemingly language-dependent portion of our process
is the editorial judgment. Bear in mind, however, that the
features used to predict causality are language independent.
Moreover, the exact same kind of training data is natu-
rally generated by users when they, for example, indicate
a threading mistake.

Furthermore, our process identifies non trivial threads
spanning different senders, possibly over long periods of time.

This, while still correctly dealing with interleaving threads,
which occur, for example, when a user makes multiple inde-
pendent purchases almost at the same time, possibly from
the same vendor.

Finally, we achieve high threading precision, while deliv-
ering a reasonable recall rate. This is crucial for a positive
user experience while browsing email. For the email search
scenario, our system allows extremely high recall rate (al-
most 90%) while maintaining a precision of close to 80%.

9. REFERENCES

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N.
Swami. Mining association rules between sets of items
in large databases. In SIGMOD Conference, pages
207-216, 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast
algorithms for mining association rules in large
databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94,
pages 487-499, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc.

[3] Mark Brownlow. Email and web mail statistics. Email
Marketing Reports, October 2011.
http://www.email-marketing-reports.com/
metrics/email-statistics.htm.

[4] comScore Inc. The 2010 us digital year in review.
comScore Whitepaper, February 2011.
http://www.comscore.com/Press_Events/
Presentations_Whitepapers/2011/2010_US_
Digital_Year_in_Review.

[5] D. Crocker. Standard for the format off arpa internet
text messages, August 1982.

[6] Yoav Freund and Llew Mason. The alternating
decision tree learning algorithm. In ICML, pages
124-133, 1999.

[7] The Radicati Group. Email statistics report,
2011-2015, May 2011.
http://www.radicati.com/?p=7269.

[8] Jochen Hipp, Ulrich Giintzer, and Gholamreza
Nakhaeizadeh. Algorithms for association rule mining
- a general survey and comparison. SIGKDD
Ezplorations, 2(1):58-64, 2000.

[9] Ruoming Jin and Gagan Agrawal. An algorithm for
in-core frequent itemset mining on streaming data. In
Proceedings of the Fifth IEEE International
Conference on Data Mining, ICDM ’05, pages
210-217, Washington, DC, USA, 2005. IEEE
Computer Society.

[10] Yehuda Koren, Edo Liberty, Yoelle Maarek, and
Roman Sandler. Automatically tagging email by
leveraging other users’ folders. In KDD, pages
913-921, 2011.

[11] David D. Lewis and Kimberly A. Knowles. Threading
electronic mail: a preliminary study. Inf. Process.
Manage., 33:209-217, March 1997.

[12] Einat Minkov, William W. Cohen, and Andrew Y. Ng.
Contextual search and name disambiguation in email
using graphs. In Proceedings of the 29th annual
international ACM SIGIR conference, SIGIR, *06,
pages 27-34. ACM, 2006.

[13] Ed. P. Resnick. Internet message format, 2001.

[14] George Rebane and Judea Pearl. The recovery of
causal poly-trees from statistical data. Int. J. Approx.
Reasoning, pages 1-1, 1988.

[15] Alexia Tsotsis. Comscore says you don’t got mail:
Web email usage declines, 59% among teens.
TechCrunch, Feb 2011.

[16] Yi-Chia Wang, Mahesh Joshi, William Cohen, and
Carolyn Rosé. Recovering implicit thread structure in
newsgroup style conversations. In Proceedings of the
2nd International Conference on Weblogs and Social
Media (ICWSM II), 2008.

[17] Jen-Yuan Yeh and Aaron Harnly. Email thread
reassembly using similarity matching. In Proceedings
of Collaboration, Electronic messaging, Anti-Abuse
and Spam Conference (CEAS), 2006.

APPENDIX
A. SPURIOUSRELATIONSHIPS

The goal we set out to achieve in this reseasrch was to
identify strong causality between emails. By this we mean
that we are interested in identifying threads of inbound auto-
matically generated messages, emanating from a single event
driven by the user. The method used for identifying these
causal relations are purely statistical. A well known prob-
lem with this approach [14] is the following. Consider three
events X,Y and Z and the following two cases: (i), event X
causes Z (ii), event Y causes both X and Z. In the second
case X and Z are not related by a causal relationship but
rather by a spurious relationship. If Y is not observed, then
both cases are indistinguishable, because the pair (X, Z) ap-
pears to be statistically dependent. Thus, a false causality
relation might be inferred.

The main source of false causality in our data are monthly
recurring emails. Credit card companies usually send a re-
port to the cardholder on the same day monthly (e.g. ev-
ery first of the month). Many users hold cards from more
than one credit card company, and many hold cards from
the same two major credit card companies. Hence, it may
appear that one credit card statement causes the other. In
reality these emails are both caused by an unobserved event,
namely, the beginning of the month. It is easy to eliminate
these false effects by identifying monthly recurring emails,
and forcing them not to continue threads. (Starting threads
is still allowed and useful: Often a “thank you for your pay-
ment” template appears shortly after the bill arrives and
continues the thread.)

A slightly different type of statistical phenomenon one
should be aware of is known as frequent item sets. This
problem is well known among data miners who analyze pur-
chase data at supermarkets (either traditional or online).
The idea there is to identify pairs (or tuples) of items that
are bought together in the same cart with some noticeable
statistical significance. This allows the store to apply so-
phisticated pricing and discounting strategies. We refer the
reader to the survey [1, 8]. For the purpose of this work, we
do not view pairs of frequent actions as threads. Consider
the following example: Users who order streaming movies
from online providers are more likely to place an online or-
der for pizza (from a different vendor) shortly thereafter.
Everyone would agree that the relationship between the ac-
tion of ordering the movie and ordering the pizza should not
be considered causal for the purpose of threading the corre-

sponding emails. We have noticed that the weight assigned
to such connections in our data, albeit high with strong sta-
tistical significance, is well below that of arcs corresponding
to actual thread connections. Careful thresholding of arc
weights in G7 typically eliminates this problem.

