
SMART TOOLS FOR JAVA CARDS

Isabelle Attali
Denis Caromel
Carine Courbis
Ludovic Henrio
and Henrik Nilsson
INRIA – CNRS – I3S – UNSA

First.Last@sophia.inria.fr

Abstract

This article describes a Java Card programming environment which
to a large extent is generated from formal specifications of the syntax
and semantics of Java Card, the JCRE (Java Card Runtime Environ-
ment), and the Java Card APIs. The resulting environment consists of
a set of tightly integrated and somewhat smart tools, such as a Java
specific structure editor and a simulator which allows an application to
be tested before being downloaded to a card. Furthermore, the simula-
tor analyses the applet in question in order to find out the structure of
the accepted commands. This information is then used to automatically
adapt the GUI of the simulator.

Keywords: Java Card, programming environment, formal specification, simulation

1. INTRODUCTION

This paper describes a programming environment for Java Card1 [7]
applications which is being developed within the OASIS project2 at
INRIA Sophia Antipolis.

The Java Card environment is developed within Centaur [2], a generic,
interactive programming environment generator. It makes it possible to
create programming tools such as structure editors, compilers, inter-
preters based on formal specifications of the syntax and semantics of
the language in question. These are then integrated into a graphical
programming environment which also can provide viewers for important
structures such as stacks, heaps, and objects during interpretation. Cen-
taur thus allows sophisticated tools to be developed quickly at a high

1

2

Java Card
Editor

Applets

APDU Format
Extractor

CAD
Simulator

Java Card
Simulator

Figure 1 Programming environment architecture.

level of abstraction. Furthermore, having access to the formal semantics
provides the potential for proving interesting properties about applica-
tions within the same framework, and since the semantics is executable
it can be tested and debugged which is important if it is to be used
as the basis for proofs. Proving properties is of key importance in this
context since security often is a prime concern in applications involving
smart cards. However, this article focuses on the basic aspects of our
programming environment, such as editing, testing, and debugging.

The rest of this article is organised as follows. In the next section,
we present the architecture of our environment and explain how it is
generated from various formal specifications. The following sections each
discuss one major part of the Java Card environment in greater detail, il-
lustrating through a running example (see the appendix for the complete
source code). Finally, we discuss related work and present conclusions.

2. OVERVIEW

2.1. THE ENVIRONMENT

Our Java Card environment is made up of two parts: a structure ed-
itor and a simulator for testing applets. The simulator in turn consists
of three parts: the APDU (Application Protocol Data Unit) format ex-
tractor, the CAD (Card Access Device) simulator, and the Java Card
simulator. Figure 1 shows the architecture and figure 2 the interfaces of
the different parts of the environment. Both parts of the environment
understand normal text files, so it is easy to import existing code, to
replace the editor with some standard editor like Emacs, or to use the
structure editor on its own. Compilation to byte code and functionality
related to loading applets onto physical cards is outside of the scope of
this work, but existing free or proprietary tools could easily be interfaced
from the environment.

Smart Tools for Java Cards 3

Figure 2 Windows of the different tools comprising the environment. Top left cor-
ner: the structure editor window. Lower half: the window for constructing and send-
ing generic APDUs (New APDU), the menu for selecting applet-specific commands
(Extracted Commands), and a window for constructing and sending an APDU for
a selected, applet-specific command (Purse PURSE DEPOSIT). Top right corner: the
APDU log and a window showing a failed regression test. The command and APDU
log windows all belong to the CAD simulator. Finally, in the centre: the window for
setting interpretation parameters belonging to the Java Card simulator.

4

The editor is Java Card specific. Thus the developer is assured that
the written code is free from syntax errors and respects the Java Card
subset of Java. Moreover, the editor facilitates development of Java Card
code by displaying context-sensitive menus containing all valid syntactic
constructs for any selected part of the source code. This feature is useful
for people beginning to write Java Card applications, for example smart
card developers used to writing assembler code. But it can also be useful
for experienced programmers, who could enter the skeleton of a complete
if-statement with a single selection from a menu.

An important aspect of the environment is that it enables the devel-
oper to test and debug an applet on a work station. It is not necessary
to download it to a real Java Card, or having access to a card reader.
This is achieved by providing simulators for the Java Card and the CAD.
This should in itself cut down the time for the test-debug-change cycle
significantly. In addition, our environment makes it easy to study the
communication between the applet and the CAD in terms of sent and
received APDUs, as well as the inner workings of the applet itself. The
simulation environment also provides a facility to extract APDU formats
from applet source code.

2.2. TOOL GENERATION

All the above mentioned tools were created using the Centaur system.
Figure 3 illustrates the relationships between the developed specifica-
tions on the one hand, and the generated tools on the other.

To obtain the structure editor, we have specified a Java Card parser
and a pretty printer or unparser. The parser specification defines the
concrete and abstract syntax of the Java Card language as well as tree
building functions. It is written using the Metal formalism which per-
mits the concrete and abstract syntax to be specified simultaneously.
This specification is then used to automatically generate a parser. The
parser is responsible for translating Java Card source (text) into an ab-
stract syntax tree which is how Java Card applets are represented inside
the environment. The PPML specification is then used to translate an
abstract syntax tree back to text, e.g. for display purposes within the
editor, or for storing the Java Card program in a file.

The central part of the Java Card simulator is the dynamic semantics
of Java Card, specified in Natural Semantics using Typol [6]. Typol
is the language used to specify semantics in Centaur. It is a typed,
declarative logic language with backtracking, unification and pattern
matching mechanisms (see section 5 for an example). The Java Card
semantics is specified on the level of the abstract syntax, and thus it

Smart Tools for Java Cards 5

Concrete syntax
(Metal)

Abstract syntax
(Metal)

Unparsing spec.
(PPML)

Dynamic semantics
(Typol)

Java Card
Editor

APDU Format
Extractor

Java Card
Simulator

Format analysis
(Typol)

Figure 3 The relation between specifications and generated tools.

too needs to refer to the Java Card abstract syntax specification. For
studying the behaviour of an applet during execution, it is possible to
view important runtime structures. These structures are represented as
trees internally. Thus PPML is used to specify the unparser.

The APDU format extractor also works on the abstract syntax tree
of a Java Card applet. In addition, it uses data structures specific to
the analysis task, which are again specified using Metal and PPML. The
extractor itself is written in Typol.

3. THE JAVA CARD STRUCTURE EDITOR

Firstly the features of the editor are described. Then we explain how
to write a Java Card program and we introduce the example used as
Ariadne’s thread in the next sections.

Our editor is dedicated to the Java Card language. It prevents the de-
veloper from making errors w.r.t. the general Java syntax (e.g. a semi-
colon or a brace missing), but also from making errors related to the
specificities of Java Card (e.g. using the char, long, double, float prim-
itive types, multidimensional arrays, or the synchronized, volatile,
transient keywords) [4]. These latter errors would otherwise only be
discovered when converting class files into CAP (Converted Applet Pro-
gram) files since standard Java compilers are used to compile Java Card
programs. Anyone who uses our editor will only encounter errors re-

6

lated to the static semantics (e.g. undefined variables, type errors) when
compiling, and no errors at all during the conversion stage.

Applets are stored as plain Java Card text files. This makes it easy to
import existing Java Card applications into our environment, or to use
traditional text editors for development should that be desired.

Internally, the applet being edited is represented as an abstract syn-
tax tree. Syntax colouring is made possible by specifying different styles
(font, size, colour) in the unparsing rules. Note that, unlike a conven-
tional text editor like Emacs which does not do a proper parsing, we are
sure that the colours will always be correct. Moreover the formatting
scheme (i.e. indentations, where the braces are set) is the same for all
the Java Card programs ensuring consistency regardless of author.

The editor provides two ways for writing source code: free text editing
or syntax-directed editing. In the first mode, the editor behaves like
a normal text editor, but the written part is parsed when this mode
is exited. Thus, only syntactically correct program fragments can be
inserted into the abstract syntax tree. The other mode facilitates the
development by displaying all the valid syntactic constructs that can
replace the selected part of the code in a context-sensitive menu. When
any of these constructs is selected, its structure replaces the selected
part and only the placeholders need to be filled in by the developer
(a placeholder starts with a dollar sign). If the placeholder is for an
identifier, the completion mechanism can be used to avoid writing the
full name of an identifier which occurs somewhere else in the program.

When starting writing a Java Card program from scratch, a menu
allows either an applet pattern or a class pattern to be inserted into the
empty editor window; see figure 4. If the developer chooses the applet
pattern in the menu, the skeleton of an applet is displayed. This skeleton
contains the structures of the applet constructor and the main methods
i.e. process, install, select, deselect and getShareableInterface-

Object. The install method already contains the creation of the applet
object and the registration call to the JCRE. Thus, the developer has
only to fill in the placeholders.

Figure 5 shows a menu of the available block statements and the result
of selecting and inserting the if-pattern into an applet being developed.
This is a simple purse applet, which we are using as a running example
in the rest of the article. The complete program can be found in the
appendix. The services provided by this applet are deposits, withdrawals,
and balance checkings. See Chen [3] for an introduction to how to write
Java Card applets. Finally, also note that comments are handled. They
are seen as decorations in the abstract syntax tree and correctly handled
by the pretty printer (in green on lavender background).

Smart Tools for Java Cards 7

Figure 4 Menu displayed when starting writing a new Java Card program and the
syntax-coloured applet skeleton which results when the developer chooses Applet from
the menu.

Figure 5 Menu showing the various block statements and the result of selecting and
inserting the if-then-pattern during development of the Purse applet.

8

CLA INS P1 P2 Lc data Le

CLA Command class
INS Instruction
P1 Parameter 1
P2 Parameter 2
Lc Length of data field (optional)
data Application-specific data (optional)
Le Length of data field in response (optional)

(a) Command APDU

data Sw1 Sw2

data Application-specific data (optional)
Sw1, Sw2 Status words indicating command result

(b) Response APDU

Figure 6 The general layout of APDUs.

4. THE CAD SIMULATOR

The CAD simulator gives the user the possibility to interactively test
applets. It provides a graphical user interface which allows both generic
an application-specific APDUs to be constructed and sent to the Java
Card simulator. It also allows the returned response APDUs to be in-
spected. An APDU log records all sent and and received APDUs, a ses-
sion. The CAD simulator allows sessions to be stored and later re-used
in order to undertake regression testing.

While the basic APDU layout and some commands are standardised
(figure 6), any particular application necessitates the definition of ap-
plication specific commands. Since an APDU is just a byte sequence, it
would in principle be enough if the CAD simulator simply allowed arbi-
trary byte sequences to be assembled and sent. But that would clearly
be rather inconvenient for the user under normal circumstances. It is far
easier to just specify the contents of an APDU and let the simulation
environment take care of the packing (and unpacking) details.

However, this means that the CAD simulator needs to be told about
the details of application specific APDUs, such as what command names
there are, the command number for each one, the names and types of

Smart Tools for Java Cards 9

any arguments (in the data field), etc. To make it possible to use the
CAD simulator without first having to provide a separate specification
of the application specific APDU formats, we have developed a tool, the
APDU format extractor, which extracts this information from an applet
by static analysis. The extraction scheme works reasonably well since a
Java Card applet usually is written in a very stylized way (there is always
a method process which does the initial command decoding, the basic
layout of the APDUs is standardised, etc.). Thus a developer typically
just has to write the applet code, or indeed, get code from somewhere
else, and the CAD interface will automatically adapt itself to the applet
(or applets) in question. The results from an analysis can be saved to
avoid having to re-analyse known applets.

Figure 7 shows a somewhat simplified structure of the applet descrip-
tions returned by the format extractor. For the purpose of the CAD
simulator, an applet is described by its name and AID (applet ID, for
selecting the applet), and descriptions of the accepted commands and
their associated formats. The format extractor works by symbolically
executing the applet code, keeping track of data dependences and con-
stant and variable names in the process. When the extractor encounters
a conditional statement where the CLA and INS part of an APDU is
compared to some (symbolic) constant, this establishes the existence of
a command whose name is given by the name of the constant in question.
The code in the corresponding branch of the conditional is then executed
symbolically in order to figure out the format for that particular com-
mand. For example, when an instruction reading from the data part of
the APDU buffer is encountered, the name of the variable in which this
value is stored is used to provide a name for the corresponding APDU
argument, whose length and position are also inferred from the instruc-
tion in question. Response APDUs are analysed in a similar way. Figure
8 gives an example which schematically illustrates the principle behind
the extraction process. See Henrio [5] for further details.

It could happen that the analysis carried out by the format extractor
fails due to an applet not being sufficiently stylized. In that case the user
can create the applet description manually by using an editor.

The CAD simulator also allows standard applet installation and se-
lection APDUs to be sent, as well as arbitrary APDUs assembled from
scratch. The latter is useful for sending non-conforming APDUs in order
to test that an applet handles invalid commands correctly, for instance.
Furthermore, there is an option to simulate card withdrawal, which op-
tionally can be combined with saving the state of the running card. The
card simulator can be initialized from such a saved state.

10

Applet

Name AID Commands

[Command]

Name CLA INS Lc Arguments Le Response

[Argument]

Name Position Length

Figure 7 The structure of an applet description. Square brackets indicate a list.

When applied to the Purse example, the extractor determines that
the name of the applet is Purse, and that this applet accepts three com-
mands: PURSE DEPOSIT, PURSE WITHDRAW, and PURSE BALANCE CHECK with
instruction numbers 1, 2, and 3 respectively. PURSE DEPOSIT is found
to have one short (2-byte) argument amountOfDeposit at position 5,
and PURSE WITHDRAW is similarly found to have one short argument
amountOfWithdraw at position 5. Finally, the extractor determines that
all commands return a short result purseTotal, i.e. the resulting bal-
ance.

The result of the analysis is sent to the CAD simulator which opens a
window which allows one of the three identified commands to be sent to
the applet; see figure 9. Once one of these commands has been selected
(by clicking on it), a second window pops up which allows any parameters
to be filled in prior to sending the complete APDU to the applet. The
window also shows the full details of the sent command APDU and,
eventually, the received response APDU in the form of byte strings.
Figure 10 shows the result once a deposit of 101 Euros has been made to
an empty purse. Note that the resulting balance is 101 (0x0065) Euros.
The figure also shows the APDU log which keeps track of all sent and
received APDUs and allows them to be examined.

5. THE JAVA CARD SIMULATOR

The central part of the Java Card simulator is an executable speci-
fication of the dynamic semantics of the Java Card language [7]. It is
expressed in Natural Semantics, small-step style, using Typol. Thus the

Smart Tools for Java Cards 11

Command

Name CLA INS Arguments

’’SendValue’’ 0xE5 0x50 Argument

Name Position Length

’’Value’’ 5 2

public class MyApplet extends Applet

{

final static byte SendValue = 0x50;

final static byte My_CLA = 0xE5;

...

public void process(APDU apdu) throws ISOException

{

byte[] buffer = apdu.getBuffer();

if (buffer[0] == My_CLA)

if (buffer[1] == SendValue) {

apdu.setIncomingAndReceive();

short Value = Util.getShort(buffer, 5);

}

...

}

}

Figure 8 Illustration of the extraction process.

Figure 9 The CAD simulator command selection window.

12

Figure 10 The CAD simulator command send window and the APDU log. The for-
mer allows a selected application-specific commands to be constructed and sent. Its
appearance is similar to the window for sending generic APDUs, but many of the
APDU fields are fixed since they are given by the selected command, and there is one
field for each argument rather than a single, generic, data field. The APDU log shows
all sent and received APDUs with explaining comments. The log window also allows
sessions to be saved and re-used for regression testing.

semantic rules express the stepwise transformation of the abstract syn-
tax tree of an applet into the final result. The semantic specification is
derived from a Java specification also developed within our group [1].
Almost the entire Java semantics has been re-used without changes to
make it easy to profit from further developments of it (or vice versa).
Java Card specificities are handled by a few extra modules. Furthermore,
executable specifications of Java Card APIs (i.e. specifications of Java
Card classes such as AID, APDU, APDUException, Applet, JCSystem) as
well as of the JCRE (Java Card Runtime Environment, i.e. the ‘operat-
ing system’) have been added [4].

Figure 11 shows some Typol rules from our Java Card semantics.
They are concerned with giving the semantics of an if-statement. The
first rule says that an if-statement where the condition is not yet in
normal form, is to be rewritten to an if-statement where the condition
has been evaluated one step further by the rule evaluateExpression.
The two following rules state that an if-statement where the condition
is in normal form (i.e. true or false), should be replaced by either the
then-branch or the else-branch depending on the condition.

It should be pointed out that the current semantics is incomplete in
some respects. For example, it is a dynamic semantics which currently
does not perform static type checking. As a consequence, overloading

Smart Tools for Java Cards 13

If_EvaluateExpression:

evaluateExpression(ObjL1, ClVarL1, Env1, OThId, ObjId1, Mode

|- Expr1 ->

ObjL1_1, ClVarL1_1, Env1_1, Expr1_1, InstL2,

ThStatus) &

appendtree(InstL2, insts[if(Expr1_1, Stat1, Stat2).InstL1], InstL3)

ObjL1, ClVarL1, OThId

|- clr(ObjId1, Mode, MethName, Env1,

insts[if(Expr1, Stat1, Stat2).InstL1])

-> ObjL1_1,

ClVarL1_1,

clr(ObjId1, Mode, MethName, Env1_1, InstL3),

ThStatus ;

provided diff(Expr1, true()) & diff(Expr1, false());

If_False:

ObjL, ClVarL, _

|- clr(ObjId, Mode, MethName, Env,

insts[if(false(), _, ElseStatement).InstL])

-> ObjL,

ClVarL,

clr(ObjId, Mode, MethName, Env, insts[ElseStatement.InstL]),

executing() ;

If_True:

ObjL, ClVarL, _

|- clr(ObjId, Mode, MethName, Env,

insts[if(true(), ThenStatement, _).InstL])

-> ObjL,

ClVarL,

clr(ObjId, Mode, MethName, Env, insts[ThenStatement.InstL]),

executing() ;

Figure 11 Excerpts from the Java Card dynamic semantics specification.

14

resolution is not handled completely accurately. Another point is that
the modelling of control-flow is incomplete in some cases. However, since
Java Card applets tend to be small and fairly simple, the current limi-
tations have as yet not caused any major problems.

The formalisation of the JCRE covers the basic aspects of the run-
time system such as loading and registration of applets, selection and
deselection of applets, and the primitives necessary for communication
with the environment, i.e. the CAD simulator in our case. There is also
support for saving and loading the state of a running card. This is used
to simulate card insertion and withdrawal, but it is also useful for de-
bugging or if one simply would like to take a pause and continue from
where one left off at some later point.

When it comes to the APIs, there are two basic approaches. One
possibility is to describe them in Java, somehow making use of built-
in primitives where necessary. The API classes would then be loaded
into the simulation environment prior to the loading of any applets. The
other approach is to describe the semantics of the API classes and their
methods directly in Typol. Basically, this means that there is a set of
hard-coded rules for each method which describes what happens when
the method in question is invoked. We have chosen the latter approach
for three reasons:

It is much more efficient.

Having the semantics of important methods directly available as
Typol rules hopefully makes it easier to prove properties about the
specification as well as individual applets.

It is natural and simple to let the API methods be the built-in
primitives. Otherwise, it would be necessary to provide access to
primitives by some other means, in which case many of the API
methods would not do more than invoke such a primitive anyway.

The specification of the Java Card APIs is not as yet complete. For
example, the mechanisms for atomic transactions and object sharing, as
well as the related API methods, are currently not in place.

During simulation, the developer can follow the execution in detail at
a selectable speed through a graphical user interface. It is also possible to
stop (interactively or by setting breakpoints), single step, and continue.
The breakpoint and single stepping facilities currently work at the level
of the semantic rules, not at the level of the Java Card source code. This
is suitable for debugging the Java Card specification, or for a user who
would like to learn about the semantics of Java card, but it is not ideal

Smart Tools for Java Cards 15

Figure 12 The Java Card simulator during execution of the Purse applet.

for debugging applications. Improved debugging support in this respect
is something which we plan to look into.

Other features include textual browsers for inspection of variables and
objects. Our Java environment [1] provides a dynamic, graphical view
of the created object structures which would be useful also for the Java
Card environment. This functionality could easily be carried over.

Figure 12 shows the Java Card simulator executing the Purse applet
just after having received an APDU requesting the deposit of 100 Euro.
The large window is the main Typol debug window which shows the
current rule. It is equipped with buttons for controlling the execution.
The small window shows the value of the variable commandAPDU which
has been selected in the main window. The shown value is the received
command APDU: note the value 0x0064 = 100 in the APDU’s data field.

6. RELATED WORK

Sun has developed free tools around Java Card: a converter (available
since November 1999) and a simulator. The latter allows Java Card ap-
plet code to be simulated, but unfortunately it has no debugging facilities
such as breakpoints, step by step execution, or variable value inspection.
Thus it works as a black box taking a file of command APDUs as input
(byte sequences in textual format) and giving back a file of response
APDUs as output. Moreover, all the tests cannot be performed since it
is not possible to simulate card withdrawal or power failure.

There are also commercial Java Card development kits, for instance
Odyssey labTM from Bull, CyberflexTM from Schlumberger, GemXpresso
RADTM from Gemplus, Sm@rtCafé ProfessionalTM from Gieseke & De-
vrient, GalatICTM from Oberthur Card Systems. These kits contain a

16

card reader, cards, and software tools (a converter, a loader, a tool to
test applets on the card, and sometimes a simulator).

Our aim is obviously not to compete with these smart card manufac-
turers, but to propose new methods for creating development environ-
ments with innovative functionality. Furthermore, we are not currently
in a position to make a fair comparison between these tools and ours
since we have only seen commercial demonstrations and hand-outs. How-
ever, as far as we know, the commercial environments are not Java Card
specific since they are meant to be integrated into development environ-
ments for ordinary Java such as J++TM or Symantec CaféTM). Thus it
would seem that a developer using any of these available tools would not
know for sure whether the application being developed conforms to the
Java Card subset until an attempt is made to convert the compiled code
into a CAP file. In contrast, our editor makes it impossible3 to write
code which does not conform to the Java Card subset.

In our environment, we have put a lot of effort into making it easy to
simulate and test the behaviour of Java cards at the APDU level. While
communication at the APDU level and the associated code to interpret
APDU commands and dispatch on them is the current standard for
writing Java Card applets, and will continue to be the standard for the
foreseeable future in legacy contexts, it has been proposed that higher-
level protocols would be more appropriate for new developments. For
example, Vandewalle and Vétillard [8] propose a design framework where
a card application is viewed as a remote object. Its methods are invoked
through a proxy object executing on the CAD. Behind the scenes, a
special protocol called DMI (Direct Method Invocation), built on top of
the APDU standard, handles the communication. (This is all similar to
how Java’s RMI works.) This framework has been implemented in the
GemXpresso RAD environment by Gemplus.

Since DMI is still based on APDUs, this and similar protocols could
be incorporated directly on top of what we have. This might have ad-
vantages since the simulation would be sufficiently detailed to make it
possible to simulate events such as card withdrawal or power failure. On
the other hand, since the aim of such protocols is to hide the low-level
communication details, it might make more sense to simulate such pro-
tocols directly. It would not be difficult to adapt our environment in this
way, but one should probably still keep the simulation capability at the
APDU level as well for those who needs or prefers this.

Smart Tools for Java Cards 17

7. CONCLUSIONS AND FUTURE WORK

This article described a Java Card programming environment which
to a large extent has been generated from formal specifications of the
syntax and semantics of Java Card. Through this approach, we were able
to develop a set of tightly integrated tools with useful and novel function-
ality, such as the APDU format extraction, at a high level of abstraction.
The main features of the environment from a user perspective are:

Java Card-specific structure editor.

CAD simulator which makes it easy to send and receive APDUs.

Automatic extraction of the APDU formats from applet source
code and automatic adaptation of the user interface of the CAD
simulator accordingly.

Semantics-based Java Card simulator with facilities for monitoring
the execution and important data structures.

This makes the environment useful for applet developers, applet testers,
and people wanting to learn about the Java Card semantics.

Furthermore, the fact that a formal, dynamic Java Card semantics is
the basis of the simulator, means that it has been possible to test and de-
bug this formalisation. This is important since a correct formalisation of
the language semantics is a prerequisite for proving properties about pro-
grams and analyses concerning dynamic properties of programs, some-
thing we believe is particularly important in the context of typical smart
card applications. For example, in the framework of Java cards with sev-
eral applications, we are starting some work on static analysis of object
sharing between applications. One outcome of this research could be a
facility for statically detecting sharing violations or the absence of such
violations. Since a violation will cause an exception, it would clearly be
reassuring to know that this cannot happen.

The current semantics is still missing a few features. This should be
addressed. We would also like to further improve the debugging support,
for instance by making it possible to set breakpoints, single step, etc.
at the Java Card source level. We also aim to integrate capability for
graphical object structure browsing along the lines found in Attali et al.
[1]. Finally, it is planned to move towards a SmartTools4-based solution,
SmartTools being the 100 % Java successor to Centaur.

Acknowledgments

This work was partially financed by Bull.

Henrik Nilsson was supported by a post doctoral grant from the Wenner-Gren Foun-

18

dations, Stockholm, Sweden.

The authors would like to thank Valérie Pascual for helping out with Centaur.

Appendix A 19

Appendix: Source code for the Purse applet

/***

* Purse Class

***/

import javacard.framework.*;

class Purse extends Applet {

protected final static byte PURSE_OP_CLA = (byte) 0xD0;

protected final static byte PURSE_DEPOSIT = (byte) 0x01;

protected final static byte PURSE_WITHDRAW = (byte) 0x02;

protected final static byte PURSE_BALANCE_CHECK = (byte) 0x03;

private final static short PURSE_MAX = (short) 0x7FFF;

private short purseTotal;

protected Purse() {

purseTotal = (short) 0;

}

public static void install(byte[] bArray, short bOffset, byte bLength)

throws ISOException {

Purse myPurse = new Purse();

myPurse.register();

}

public boolean select() {

return true;

}

public void process(APDU apdu) throws ISOException {

byte[] buffer = apdu.getBuffer();

if (buffer[0] == PURSE_OP_CLA) {

if (buffer[1] == PURSE_DEPOSIT)

purseDeposit(apdu, buffer);

else

if (buffer[1] == PURSE_WITHDRAW)

purseWithdraw(apdu, buffer);

else if (buffer[1] == PURSE_BALANCE_CHECK)

purseBalanceCheck(apdu, buffer);

} else if (selectingApplet()) {

/* Do nothing. */

}

}

/*********************** Private Methods ****************************/

private void purseDeposit(APDU apdu, byte[] buffer) {

int Lc = apdu.setIncomingAndReceive();

short Le;

short amountOfDeposit = Util.getShort(buffer, (short) 5);

short temporaryPurseTotal = (short) (amountOfDeposit + purseTotal);

if (amountOfDeposit > 0 && temporaryPurseTotal <= PURSE_MAX) {

purseTotal = temporaryPurseTotal;

Util.setShort(buffer, (short) 0, purseTotal);

apdu.setOutgoingAndSend((short) 0, (short) 2);

}

}

private void purseWithdraw(APDU apdu, byte[] buffer) {

int Lc = apdu.setIncomingAndReceive();

short Le;

short amountOfWithdraw = Util.getShort(buffer, (short) 5);

short temporaryPurseTotal = (short) (purseTotal - amountOfWithdraw);

if (amountOfWithdraw > 0 && temporaryPurseTotal >= 0) {

20

purseTotal = temporaryPurseTotal;

Util.setShort(buffer, (short) 0, purseTotal);

apdu.setOutgoingAndSend((short) 0, (short) 2);

}

}

private void purseBalanceCheck(APDU apdu, byte[] buffer) {

Util.setShort(buffer, (short) 0, purseTotal);

apdu.setOutgoingAndSend((short) 0, (short) 2);

}

}

Notes

1. Java and Java Card are trademarks of Sun Microsystems Inc. All other trademarks
mentioned are proprietary of their respective owners.

2. http://www-sop.inria.fr/oasis

3. There is currently one minor exception. The developer can invoke a command from a
menu to check for that case.

4. http://www-sop.inria.fr/oasis/SmartTools

References

[1] Isabelle Attali, Denis Caromel, and Marjorie Russo. A formal and
executable semantics for Java. In Proceedings of Formal Underpin-
nings of Java, an OOPSLA’98 Workshop, Vancouver, Canada, Oc-
tober 1998. Technical Report, Princeton University.
http://www.inria.fr/oasis/personnel/Marjorie.Russo/

Rapports/OopslaWorkshop98.ps.gz

[2] Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet In-
cerpi, Gilles Kahn, Bernard Lang, and Valérie Pascual. Centaur: the
system. In Proceedings of SIGSOFT’88, Third Annual Symposium on
Software Development Environments (SDE3), Boston, USA, 1988.

[3] Zhiqun Chen. How to write a Java Card applet: A developer’s guide.
Java World, July 1999.
http://www.javaworld.com/javaworld/jw-07-1999/

jw-07-javacard_p.html

[4] Carine Courbis. Simulation d’applications Java Card. Rapport du
DEA d’Informatique de Lyon (DIL),
ftp://ftp-sop.inria.fr/oasis/publications/1998/

CarineCourbisStageDEA0798.pdf, July 1998.

[5] Ludovic Henrio. Tests interactifs d’applications Java Card. Rapport
de stage d’option scientifique de l’école Polytechnique,
ftp://ftp-sop.inria.fr/oasis/publications/1999/

LudovicHenrioStageX0699.pdf, September 1999.

Appendix A 21

[6] Gilles Kahn. Natural semantics. In Proceedings of Symposium on
Theoretical Aspects of Computer Science, volume 247 of Lecture
Notes in Computer Science, Passau, Germany, 1987.

[7] Sun Microsystems. Java Card 2.1 platform.
http://java.sun.com/products/javacard/javacard21.html,
1999.

[8] Jean-Jacques Vandewalle and Eric Vétillard. Developing smart card-
based application using Java Card. In Proceedings of CARDIS’98,
1998.
http://www.gemplus.com/smart/r_d/publications/art1.htm

