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ABSTRACT
Functional Reactive Programming (FRP) is a framework
for reactive programming in a functional setting. FRP has
been applied to a number of domains, such as graphical an-
imation, graphical user interfaces, robotics, and computer
vision. Recently, we have been interested in applying FRP-
like principles to hybrid modeling and simulation of physical
systems. As a step in that direction, we have extended an
existing FRP implementation, Yampa, in two new ways that
make it possible to express certain models in a very natural
way, and reduces the amount of work needed to put model-
ing equations into a suitable form for simulation. First, we
have added Dirac impulses that allow certain types of dis-
continuities to be handled in an easy yet rigorous manner.
Second, we have adapted automatic differentiation to the
setting of Yampa, and generalized it to work correctly with
Dirac impulses. This allows derivatives of piecewise contin-
uous signals to be well-defined at all points. This paper re-
views the basic ideas behind automatic differentiation, in
particular Jerzy Karczmarczuk’s elegant version for a lazy
functional language with overloading, and then considers the
integration with Yampa and the addition of Dirac impulses.
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1. INTRODUCTION
Consider a highly simplified model of a bouncing ball as

shown in figure 1(a). It is dropped from an initial height
y0 and falls toward the floor at y = 0 under the influence
of the gravitational force −mg, where m is the mass of the
ball. For simplicity’s sake, we want to model the ball as if
it were a point mass. Moreover, we do not want to model
the physics of the interaction when the ball hits the floor
in any great detail. Instead we assume that the impact is
fully elastic and that it occurs instantaneously. Under these
assumptions, the velocity of the ball will simply change sign
whenever it bounces off the floor. Figure 1(b) shows the
position y and velocity ẏ as functions of time when a ball
modeled in this fashion is released from y0 = 1 m.

This is an example of a hybrid model ; that is, a model
having both continuous and discrete aspects. The behavior
of the falling ball is described continuously through New-
ton’s laws of motion, whereas the instantaneous interaction
between the ball and the floor are isolated events occurring
at discrete points in time. While the present model is trivial,
the kind of modeling simplifications it exemplifies are very
common in practice, and a major reason for why models of
physical systems often become hybrid models.

Hybrid models are described by a set of systems of dif-
ferential equations. Each individual system of equations de-
scribes the continuous behavior of the modeled system in a
particular mode of operation by relating time-varying, con-
tinuous variables and their time derivatives. Discrete aspects
of the behavior are expressed by switching among the modes
of operation, governed by predicates specifying switching
events and suitable initial conditions for the continuous state
variables of the mode being activated. Hybrid automata [7]
are one way to formalize these notions. These models can
then be used in different ways, but evaluation of the behav-
ior over time through simulation based on numerical inte-
gration is the most common application.

Explicit mode switching is not always the most intuitive
and clear way to describe a hybrid model. In the example of
the bouncing ball, most modeling languages require a mode
switch when the ball bounces off the floor. The initial con-
dition of the new mode will have the same position for the
ball (on the floor) but negate the velocity of the ball so that
it is moving up. In systems like this one where the sole pur-
pose of mode switching is an abrupt change in one of the
state variables, explicit switching leads to an unnecessarily
complicated description of the system.

In cases like these, Dirac impulses [19, 6] offer an alterna-
tive way to account for abrupt changes in continuous vari-
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Figure 1: Idealized bouncing ball

ables. Informally, a Dirac impulse can be understood as an
infinitely high and narrow impulse whose area is finite. This
is exactly what is needed to model the force of interaction
between the ball and the floor in this case in which the in-
teraction is assumed to take place instantaneously. This idea
has obviously been considered in the modeling community,
but does not yet seem to be available in any mainstream
systems for hybrid modeling and simulation [12].

As will become clear, mode switching also has serious im-
plications for another aspect of many simulation systems:
differentiation. It is often necessary compute derivatives of
various functions in a model. One reason is the use of sophis-
ticated numerical integration methods that solve non-linear
equations at each time step. The need also arises when one
time-varying quantity in a model is the time derivative of
another, and the causality, i.e., the direction of data flow,
in a particular mode of operation is such that the former
needs to be computed from the latter through differentia-
tion, rather than the latter from the former through numer-
ical integration.

Either way, automatic differentiation [2] is a key technique
for computing derivatives for this kind of applications. It is
an algebraic method based on computing the value of a func-
tion along with the derivative of that function with respect
to some specific variable at the same point. Thus, unlike
symbolic differentiation, one does not obtain a closed, sep-
arate expression for the derivative. In return, the method
is quite general and capable of differentiating functions ex-
pressed using arbitrary programming language constructs,
such as conditionals and iteration.

Naturally automatic differentiation only yields correct re-
sults if the function being differentiated is continuously dif-
ferentiable at the point of differentiation. If we consider time
derivatives of variables in the continuous part of a model, it
should be clear that we have a problem in a hybrid setting
since each mode switch can introduce arbitrary discontinu-
ities in a variable and its derivatives. That is, the variables
are only piecewise continuous, and we cannot trust the re-
sults of automatic differentiation at all points in time.

However, the theory of Dirac impulses was developed pre-
cisely to deal with problems associated with discontinuities.
Specifically, the unit impulse can be seen as the derivative
of the unit step function. Thus, could we not again turn to
Dirac impulses to remedy the situation?

In this paper, we will show that this indeed is possible.
Moreover, we will show that a lazy functional language like
Haskell allows a rather elegant and general solution. The de-
velopment is carried out in the context of Yampa [13, 8], a
recent member in the family of languages based on the ideas
of Functional Reactive Programming (FRP). FRP, in vari-
ous incarnations, has been applied to a number of domains,
such as graphical animation [4], graphical user interfaces
[3], robotics [17, 16], and computer vision [18]. Recently, we
in the Yale Haskell group have been interested in apply-
ing FRP-like principles to hybrid modeling and simulation
of physical systems, where our ultimate goal is a system in
which models can be expressed through non-directed equa-
tions, so called non-causal (or object oriented 1) modeling [5,
1, 14]. The work presented here is a step in that direction,
even if Yampa only allows causal modeling.

The rest of the paper is organized as follows. Sections
2 and 3 review the basic ideas behind automatic differen-
tiation, in particular Jerzy Karczmarczuk’s elegant version
for a lazy functional language with overloading [10], and
the fundamental concepts of Yampa. Piecewise continuous,
time-varying variables are known as signals in Yampa, and
as a first step in the actual development, section 4 spe-
cializes Karczmarczuk’s method to computing time deriva-
tives of signals and considers the interplay between this and
Yampa’s facilities for numerical integration. Sections 5 and 6
then pave the way for a correct treatment of discontinuities
in signals by moving to generalized signals, where a signal
no longer is regarded as a function of time, but as a gen-
eralized function or distribution, such as a Dirac impulse.

1Not to be confused with object-oriented programming lan-
guages. Concepts like classes and inheritance may be part
of an object-oriented modeling language, but methods and
imperative variables are not.



The automatic differentiation machinery is then adapted to
work on generalized signals. The final step in the develop-
ment is taken in section 7, which considers the integration of
generalized signals into Yampa. The end result is a unified
framework in which impulses are available for the benefit of
the modeler, and in which generalized automatic differentia-
tion guarantees correct results for time derivatives of signals
at all points.

2. AUTOMATIC DIFFERENTIATION
Automatic differentiation [2] is the technique of choice for

computing derivatives in many application areas. Its advan-
tages include the ability to differentiate arbitrary program
code (as long as the code implements differentiable func-
tions), exact results within the limitations of floating point
arithmetic, and good performance. In contrast, symbolic dif-
ferentiation has much more limited applicability, and when
applicable often yields unwieldy results and thus bad per-
formance. Numeric differentiation is fraught with problems
stemming from the fact that it does not yield exact results.
Automatic differentiation is a purely algebraic method, and
the key idea is to augment every computation in a code frag-
ment so that derivatives with respect to a chosen variable
are computed along with the main result. This is also the
main drawback of the method: unlike symbolic differentia-
tion, the end result is not a separate, self-contained expres-
sion for the derivative that can be used to compute the value
of the derivative at arbitrary points. Instead, the value of the
derivative is obtained in conjunction with the value of the
function at whichever point the latter is evaluated.

The following example illustrates the basic idea. Consider
the code fragment

z1 = x + y

z2 = x * z1

If we assume that the code fragment that assigned some
values to x and y has been augmented so that the deriva-
tives of these variables with respect to some common chosen
variable of differentiation is available in the variables x’ and
y’ respectively, then the above code fragment can be aug-
mented to compute the derivatives of z1 and z2 with respect
to that same variable of differentiation as follows:

z1 = x + y

z1’ = x’ + y’

z2 = x * z1

z2’ = x’ * z1 + x * z1’

Methods for automatic differentiation can be quite a bit
more involved, especially for multi-variate cases, but the ba-
sic approach outlined above is enough for our purposes.

The next question is how to actually go about augment-
ing a program. One possibility is to employ source-to-source
transformations. Another is to overload arithmetic opera-
tors and functions so that they compute derivatives along
with the main result. Jerzy Karczmarczuk has described a
particularly elegant formulation for a lazy functional lan-
guage with overloading, where lazy evaluation is exploited
to, conceptually, compute derivatives of all orders, not just
the first one [10]. That is the approach we are going to use.

First, we need a numeric domain for our differential alge-
bra. Elements in this domain represent values of continuous
functions at some point along with derivatives of all orders
at that same point :

data C = C Double C

valC (C a _) = a

derC (C _ x’) = x’

Note that the name C (suggesting continuous) is used both
for the type itself and for the value constructor. Elements of
type C are pairs, where the first field, here of type Double2,
represents the value of some function, and the second, re-
cursively of type C, represents the first derivative. But that
means the derivative can be differentiated yielding the sec-
ond derivative, again of type C, and so on. Thus the repre-
sentation includes all derivatives, to be computed lazily.

The value of the constant zero is 0 everywhere, and so is
its derivative. The representation of zero in C is thus:

zeroC :: C

zeroC = C 0.0 zeroC

zeroC can be used to define a function that computes the
representation of arbitrary constants, which in turn defines
the meaning in C of Haskell’s overloaded numerical literals:

constC :: Double -> C

constC a = C a zeroC

The derivative of the variable of differentiation with respect
to itself is always 1, and the representation of its value in C

at some arbitrary point is thus given by:

dVarC :: Double -> C

dVarC a = C a (constC 1.0)

The definitions of arithmetic operators are straightforward:

instance Num C where

(C a x’) + (C b y’) = C (a + b) (x’ + y’)

x@(C a x’) * y@(C b y’) =

C (a * b) (x’ * y + x * y’)

Note that these definitions are recursive since the overloaded
operators + and * are used at type C for computing the
derivative of the result. Further operators and mathematical
functions like sin and cos can be defined with equal ease.

As an illustration, suppose we have y = t2 + k and that
we want to compute y, ẏ, and ÿ for t = 2 and k = 1. This
can be done by simply transliterating these equations into
Haskell:

k = constC 1

t = dVarC 2

y = t * t + k

We now have:

valC y = 5

valC (derC y) = 4

valC (derC (derC y)) = 2

3. YAMPA
This section gives a short introduction to Yampa, a lan-

guage embedded in Haskell for describing reactive, hybrid
systems [13, 8]. A fundamental notion in Yampa is that
of signals. A signal is, conceptually, a function of time, or,

2In a more thorough implementation, C would be parame-
terized w.r.t the numerical carrier type.



Figure 2: System of interconnected signal functions

with varying structure

equivalently, a time-varying value (sometimes called fluent).
Thus, intuitively, for some suitable type Time representing
continuous time:

Signalα ≈ Time→ α

However, signals are not first class entities in Yampa: they
only exist indirectly through the notion of signal functions
introduced below. Moreover, an executable Yampa imple-
mentation can only approximate this conceptual signal model
since continuous-time signals necessarily are evaluated for
only a discrete set of sample points.

Conceptually, the domain of a signal can either be contin-
uous or discrete. In the former case, the signal is defined at
every point in time. In the latter case, the signal is a partial
function, only defined at discrete points in time associated
with the occurrence of some event. In Yampa, we have cho-
sen to blur this distinction. The notion of discrete-time sig-
nals is captured by lifting the range of of continuous-time
signals using an option type called Event. This type has two
constructors: NoEvent, representing the absence of a value;
and Event, representing the presence of a value:

data Event a = NoEvent | Event a

A discrete-time signal carrying elements of type A can thus
be thought of as a function of type Signal(EventA).

The next important Yampa notion is that of signal func-
tions. A signal function is a pure function that maps an in-
put signal onto a output signal. By changing the perspective
slightly, a signal function can also be seen as a time-indexed
instantaneous mapping from signal values to signal values. If
the mapping in fact is time-invariant, the signal function is
said to be stateless, otherwise it is said to be stateful. Unlike
signals, signal functions are first class entities in Yampa.
The type of a signal function mapping a signal of type α
onto a signal of type β is written SFαβ. Intuitively, we have

SFαβ ≈ Signalα → Signalβ

If more than one input or output signal are needed, tuples
are used for α or β since a continuous signal of tuples is
isomorphic to a tuple of continuous signals.

A Yampa system consists of a number of interconnected
signal functions, operating on the system input and pro-
ducing the system output. The signal functions operate in
parallel, sensing a common rate of time flow.

The structure of a Yampa system may evolve over time.
For example, signal functions can be added or deleted; see
figure 2. These structural changes are known as mode switches.
The first class status of signal functions in combination with
powerful switching constructs make Yampa an unusually
flexible language for describing hybrid systems [13].

Yampa’s signal functions are an instance of the arrow
framework proposed by Hughes [9]. Two central combina-
tors from that framework are arr, which lifts an ordinary
function to a stateless signal function, and <<<, which com-
poses two signal functions:

arr :: (a -> b) -> SF a b

(<<<) :: SF b c -> SF a b -> SF a c

Yampa also provides a combination of the two, the arrow-
compose combinator:

(^<<) :: (b -> c) -> SF a b -> SF a c

Through the use of these and related plumbing combinators,
arbitrary signal function networks can be expressed.

Paterson’s syntactic sugar for arrows [15] effectively al-
lows signals to be named, despite signals not being first class
values. This eliminates a substantial amount of plumbing,
resulting in much more legible code. In fact, the plumbing
combinators will rarely be used in the examples in this pa-
per. In this syntax, an expression denoting a signal function
has the form:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
patn <- sfexpn -< expn

returnA -< exp

The keyword proc is analogous to the λ in λ-expressions, pat
and pati are patterns binding signal variables pointwise by
matching on instantaneous signal values, exp and exp i are
expressions defining instantaneous signal values, and sfexp i

are expressions denoting signal functions. The idea is that
the signal being defined pointwise by each exp i is fed into the
corresponding signal function sfexpi, whose output is bound
pointwise in pati. The overall input to the signal function de-
noted by the proc-expression is bound by pat, and its output
signal is defined by the expression exp. The signal variables
bound in the patterns may occur in the signal value expres-
sions, but not in the signal function expressions (sfexp i). If
the optional keyword rec is used, then signal variables may
occur in expressions that textually precedes the definition of
the variable, allowing recursive definitions (feedback loops).
Finally,

let pat = exp

is shorthand for

pat <- arr id -< exp

allowing easy binding of instantaneous values.
To illustrate Yampa and the arrow notation, we provide

a bouncing ball model according to the specification given
in the introduction. The following are the most important
Yampa primitives used in the model:

integral :: SF Double Double

edge :: SF Bool (Event ())

switch :: SF a (b, Event c) -> (c -> SF a b)

-> SF a b

The signal function integral integrates its input. edge
is a signal function that generates an event whenever the
input signal goes from False to True. The signal function



switch switches from one subordinate signal function into
another when a switching event occurs. Its first argument is
the signal function that initially is active. It outputs a pair of
signals. The first defines the overall output while the initial
signal function is active. The second signal carries the event
that will cause the switch to take place. Once the switch-
ing event occurs, switch applies its second argument to the
value tagged to the event and switches into the resulting
signal function.

The code for the model is as follows. It does not use any
of the new facilities described in this paper.

bouncing ::

Position -> SF () (Position, Velocity)

bouncing y0 = bouncing’ y0 0.0

where

bouncing’ y0 yd0 =

switch (bouncing0 y0 yd0) $ \(y, yd) ->

bouncing’ y (-yd)

bouncing0 y0 yd0 = proc () -> do

yd <- (yd0 +) ^<< integral -< -9.81

y <- (y0 +) ^<< integral -< yd

hit <- edge -< y <= 0

returnA -< ((y, yd), hit ‘tag‘ (y, yd))

Here, bouncing0 realizes the physics of a falling ball and
detects the collision event. The event is tagged with the
values of the state variables, i.e. the height above the floor
and the velocity, at the point of impact, enabling the switch
to pass the state on to the subsequent mode. In this case,
we switch back into the same mode, using the same height
(to ensure continuity in position) but negating the velocity
to obtain the initial value for the state variables in the new
mode.

4. INTEGRATING AUTOMATIC DIFFER-
ENTIATION INTO YAMPA

We now turn to computing time derivatives of signals in
Yampa through automatic differentiation. In Yampa, signals
are only evaluated for the current time, and as signals are
not first class entities, this is done implicitly. Since we are
only interested in time derivatives of signals, there is no thus
need for the function dVarC from section 2: as long as signal
functions that are sources of time-varying signals construct
their output correctly in the domain C, signals can be added,
multiplied, or transformed in other ways using operations on
C, and differentiation will just work.

Since the signal function integral is the main source of
continuous time-varying signals, we will focus on that. The
output signal y(t) obtained by applying integral to an in-
put signal x(t) is defined by:3

y(t) =

� t

0

x(τ) dτ (1)

According to the fundamental theorem of calculus, the deriva-
tive of y(t) is simply x(t). Thus, all we need to do to achieve
our goal, is to define a version integralC of integral that
works on signals of type C and that ensures that the deriva-
tive of the output signal is equal to the input signal.

3Time is local time, measured from the time at which a
signal function is switched in, i.e., applied to its input signal.
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mẍ = 0
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Figure 3: Breaking pendulum

Like in other simulation systems or synchronous data flow
languages, signals in Yampa are represented by streams of
instantaneous signal values and signal functions are state-
ful stream processors. A signal function is implemented as
a function that maps the time difference since the previ-
ous sample time and the current instantaneous input value
to a pair of a new signal function (a kind of continuation,
carrying any state) and an instantaneous output value:4

data SF a b = SF (DTime -> a -> (SF a b, b))

The signal function integralC is defined as follows:

integralC :: SF C C

integralC = SF tf0

where

q0 = 0.0

tf0 _ x0 = (igrlAuxC q0 x0, C q0 x0)

igrlAuxC q_prev x_prev = SF tf

where

tf dt x = (igrlAuxC q x, C q x)

where

q = q_prev + dt * valC x_prev

Note that the output value, e.g. C q x after the first step,
is defined so that the instantaneous value of the derivative
x is the instantaneous input value, as required by the fun-
damental theorem of calculus. Also note that the value part
q of the output does not depend on the current input value,
only on the previous one. This is crucial to make recur-
sive equations involving integrals well-defined. For illustra-
tive purposes, the employed integration method is simple
Euler integration. A more sophisticated approach such as a
Runge-Kutta method could be used. Since we have access to
derivatives of arbitrary order, another possibility would be
to use Taylor methods [11]. However, it is unclear if variable
step-size methods could be used in the Yampa setting.

To illustrate automatic differentiation in the context of
Yampa, consider modeling the pendulum in figure 3. It con-
sists of a mass m attached to the end of a stiff, massless rod
l, fixed to some supporting structure at the other end, where
an external torque u also can be applied. The angle φ gives
the deviation of the rod from the plumb line. At some time
the rod could break causing the mass to fall freely. Thus the
system has two modes, described by the equations given in
the figure along with initial conditions.

4This is a simplified account; see [13] for details.



The most interesting aspect of the model for our purposes
is that the state of the system is best described by differ-
ent variables in the two modes: in the non-broken case by
the angle of deviation φ and its derivative φ̇; in the broken
mode by the position and velocity of the mass in Cartesian
co-ordinates. However, in a simulation, we may be inter-
ested in the latter information regardless of the mode, e.g.
to ensure continuity when the pendulum breaks. Comput-
ing the Cartesian position given the angle of deviation is
easy enough using basic trigonometry, whereas computing
the velocity is most naturally achieved by simply differenti-
ating the position. The automatic differentiation machinery
allows the user to do the latter directly. Without it, the user
would either have had to calculate the derivatives symbol-
ically by hand, or he would have had to reformulate the
model to use Cartesian state also in the non-broken mode.

To develop a Yampa model for the non-broken mode, we
first have to determine the state variables and the causality,
or data flow direction, and rework the model equations into
causal (directed) form, where the state variables are com-

puted by integration. As was noted above, φ and φ̇ are our
state variables in this mode. If we consider the dot notation
more as a way to name variables rather than a differentiation
operator, we obtain:

φ =
π

4
+

�
φ̇ dt

φ̇ =

�
φ̈ dt

φ̈ =
u − mgl sin(φ)

ml2

x = l sin(φ)

y = −l cos(φ)

ẋ =
d

dt
x

ẏ =
d

dt
y

We can now obtain a Yampa model for the non-broken
mode by transliterating these equations into Haskell, em-
ploying the syntactic sugar for arrows. Despite some syntac-
tic noise, the one-to-one correspondence should be obvious.

nonBroken :: SF Torque (Position2, Velocity2)

nonBroken = proc u -> do

rec

phi <- (pi/4 +) ^<< integralC -< phid

phid <- integralC -< phidd

let

phidd = (u - m*g*l*sin phi) / m*l*l

x = l * sin phi

y = -l * cos phi

xd = derC x

yd = derC y

returnA -< ((x, y), (xd, yd))

Figure 4 shows the simulation results with no externally
applied torque and the pendulum breaking after 9 s.

5. DISTRIBUTION THEORY
There are many functions that do not have derivatives

in the classical sense. For example, consider the unit step
function (or Heaviside step function) H(t):

H(t) = � 0 if t < 0
1 if t ≥ 0

(2)

The derivative of H(t) in the usual sense simply is not well-
defined at t = 0.
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Figure 4: Simulation of the breaking pendulum

Nevertheless, if we consider a sequence fn(t) of ever nar-
rower and taller impulses whose area is exactly 1, for exam-
ple like in figure 5(a) with τ = 0, it should be clear that the
sequence of functions Hn(t) defined by

Hn(t) =

� t

−∞

fn(τ)dτ (3)

will become better and better approximations of H(t) as
n → ∞. Thus it is, according to the fundamental theorem
of calculus, intuitively appealing to think of the limit of a
function sequence like fn(t) as the derivative of the unit step
function. This limit is called the (Dirac) delta “function”
(despite not being a function in the usual sense) or unit
impulse, and is denoted by δ(t). In a similar way, the limit
of a sequence of functions like those shown in figure 5(b)
is an intuitive way to understand the derivative δ′(t) of the
unit impulse.

When drawing diagrams, it is conventional to represent
impulses with an arrow, as in figure 5(a). As impulses can
be scaled, the height of the arrow represents the area or
strength of the impulse. Similarly, as shown in figure 5(b),
we will draw the impulse derivative using a double-headed
arrow, whose height corresponds to the strength of the dif-
ferentiated impulse. The second impulse derivative will be
drawn as a triple-headed arrow.

By analyzing the limits of operations on sequences of func-
tions that tend to the unit impulse, properties that should
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δ′(t− τ) as the limits of function sequences

hold for reasons of consistency emerge. For example:� b

a

δ(t) dt = � 1 if 0 ∈ (a, b)
0 if 0 6∈ [a, b]

(4)

More generally, given any function φ(t) continuous at the
origin, a central property is that�

∞

−∞

δ(t)φ(t) dt = φ(0) (5)

The theory of distributions or generalized functions [19, 6]
is a rigorous formalization of the ideas outlined above. The
key step is to consider functions that map a certain class of
functions to numbers (i.e., a kind of higher-order functions),
instead of functions that map numbers to numbers. This
allows a consistent theory to be developed in which every
distribution has a derivative that is also a distribution.

Formally, a distribution is a linear and continuous func-
tional. A functional is a function that maps so called test
functions, infinitely differentiable functions that vanish out-
side a finite interval, to numbers. The application of a func-
tional T to a test function φ is conventionally written 〈T,φ〉
or sometimes 〈T (t), φ(t)〉. Two functionals S and T are de-
fined to be equal if

〈S,φ〉 = 〈T,φ〉 (6)

for every test function φ. A functional T is linear if

〈T, c1φ1 + c2φ2〉 = c1〈T,φ1〉 + c2〈T,φ2〉 (7)

Continuity is analogous to the usual notion of continuity,
but in terms of limits of sequences of test functions instead
of limits of sequences of numbers.

Every locally integrable function f induces a distribution
Tf through the following definition:

〈Tf , φ〉 =

�
∞

−∞

f(t)φ(t) dt (8)

Such distributions are said to be regular. Now, the unit im-
pulse is not a function in the usual sense, so (8) is not ap-
plicable. But (5) shows what to expect in the limit for a
sequence of functions tending to the impulse. Thus, for rea-
sons of consistency, the delta distribution is defined as

〈δ, φ〉 = φ(0) (9)

Differentiation is defined through

〈T ′, φ〉 = −〈T,φ′〉 (10)

Thus, in particular, we have that the impulse derivative is

〈δ′, φ〉 = −〈δ, φ′〉 = −φ′(0) (11)

or in general

〈δ(k), φ〉 = (−1)k〈δ, φ(k)〉 = (−1)kφ(k)(0) (12)

Shifting is defined by

〈T (t − τ), φ(t)〉 = 〈T (t), φ(t + τ)〉 (13)

Unfortunately, the theory of distributions does not gener-
alize the theory of classical functions in every respect. For
example, it is not possible to define the product of two dis-
tributions in general. However, it is possible to define mul-
tiplication with a C∞ (infinitely differentiable) function:

〈gT, φ〉 = 〈T, gφ〉 (14)

provided g ∈ C∞.

6. GENERALIZED SIGNALS
In this section, we will see how the theory of distributions

allows us to apply automatic differentiation to signals in a
hybrid simulation setting. Note that we are not trying to
develop a generalized differential algebra independently of
that setting. The present development focus on the easier
problem where discontinuities ultimately stem from mode
switching or explicit impulses.5

Let us first see how the theory of distributions helps us
differentiate piecewise continuous functions.

f(t) = � t2 if t < 1
−(2 − t)2 if t ≥ 1

f ′(t) = � 2t if t < 1
4 − 2t if t ≥ 1

− 2δ(t − 1)

f ′′(t) = � 2 if t < 1
−2 if t ≥ 1

− 2δ′(t− 1)

f ′′′(t) = −4δ(t − 1) − 2δ′′(t− 1)

Figure 6 shows these (generalized) functions graphically.
Note how the derivatives are described by the sum of, on the
one hand, a classical function, and, on the other, impulses
(and impulse derivatives) to account for discontinuities (and
impulses) in the differentiated function.

Turning to our original problem, differentiation of piece-
wise continuous signals in Yampa (and, in turn, their deriva-
tives), it should now be clear that we can address this if we
conceptually regard signals not as functions of time, but as
generalized functions of time of the following form:

S(t) = s(t) +
m�

i=0

n�

j=1

aijδ
(i)(t − τj) (15)

5As suggested by one of the anonymous reviewers, it may
be possible to develop such a generalized differential algebra.
That would allow functions like abs that introduce disconti-
nuities to be handled properly. Currently functions like abs
should not be used. Substitutes, defined in terms of switch-
ing, are provided, but those substitutes are consequently
stateful signal functions as opposed to pure functions in a
differential algebra.
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Figure 6: Differentiation of generalized functions

where s(t) is a regular signal (piecewise continuous function)
and m is the order of the highest impulse derivative. We
call this a generalized signal. τj , j ∈ [1, n] are the points in
time at which the generalized signal or its derivatives have
discontinuities.

At the implementation level, what we need to represent is
samples of generalized signals. Let ∆ be the set of points of
discontinuity:

∆ = { τj | j ∈ [1, n] } (16)

Let St be the representation of a sample of a generalized
signal S as defined by (15) at time t. For sample times t /∈ ∆
we have

St = s(t) (17)

For t = τj ∈ ∆ we choose to represent the sample by a pair
of the left limit of the regular part s at t, together with a
list of the strengths of those impulses and impulse derivatives
that are non-zero at t, where the nth list element represents
the strength of the impulse derivative of order n:

St = (s(t−), [a0j , a1j , . . . , amj ]) (18)

What about the right limit and representing discontinuities?
We will return to that question shortly.

Underlying this representation is an assumption that ∆
includes a point for every theoretical point of discontinu-
ity, and that this point is sufficiently close to its theoretical
value. Ensuring this is a hard but separate problem that
has received widespread attention in the hybrid modeling
and simulation literature.

For automatic differentiation, as described earlier, the rep-
resentation of a sample must include the value of the signal
as well as the values of the derivatives of the signal at the
sample point. We choose to keep the regular part and the
impulse part of a sample separate, allowing us to reuse the
the type C introduced in section 2, and giving us an easy
way to test for the absence of impulses.The following type
G represents a sample of a generalized signal:

data G = G C I

data C = C Double C

data I = NI | I [Double] I

C is exactly as before; the C-part of G represents the value or
left limit of the regular part s and its derivatives according
to (17) or (18). Since we assume that ∆ includes all points of
discontinuity, these derivatives are well-defined. The I-part
accounts for the impulses and impulse derivatives. It is either
NI for “no impulse” in case (17) applies, or it is a finite list
of impulse strengths as defined in (18) together with a value
of type I representing the impulse part of the derivative of
the entire generalized signal at the sample point. It turns
out to be useful to maintain the invariant that the list of
impulse strengths never end with zero. Unlike C, I should
not be considered to have a meaning separate from G. This is
because differentiation of the regular part can require further
impulses to be added to the impulse part.

As an added benefit of explicitly including the value of
the derivative in the representation, we get a way to repre-
sent points of discontinuity; i.e. points where the right limit
is different from the left limit. We exploit the fact that a
discontinuity gives rise to an impulse in the derivative of a
signal, and take such an impulse to be the representation of
a discontinuity. The right limit can thus be computed from
the left limit by adding the strength of any impulse in the
derivative.

Two basic selectors for I are strengthI and derI:

strengthI :: I -> Double

strengthI NI = zeroStrength

strengthI (I [] _) = zeroStrength

strengthI (I (a:_) _) = a

derI :: I -> I

derI NI = NI

derI (I _ i’) = i’

Note that derI yields the impulse part of the derivative of
the generalized signal sample of which a particular entity of
type I is part.
stepI and impulseI computes the impulse parts for a step

and an impulse at the point of discontinuity:

stepI :: Double -> I

stepI a | isZeroStrength a = NI

| otherwise = I [] (impulseI a)

impulseI :: Double -> I

impulseI a | isZeroStrength a = NI

| otherwise = impAux [a]

where

impAux as = I as (impAux (zeroStrength:as))

Addition of impulse parts is straightforward since distri-
butions are linear:

addI :: I -> I -> I

addI i NI = i

addI NI j = j

addI (I as i’) (I bs j’) =

I (addI’ as bs) (addI i’ j’)

where

addI’ as [] = as

addI’ [] bs = bs

addI’ (a:as) (b:bs) =

consStrengths (a + b) (addI’ as bs)



consStrengths is a list constructor that maintains the in-
variant that lists of impulse strengths should not end in zero
(recall that the list of impluse strengths is finite).
discI computes the impulse part at a point of disconti-

nuity given the left and right limits:

discI :: C -> C -> I

discI (C a x’) (C b y’) =

stepI (b - a) ‘addI‘ (I [] (discI x’ y’))

The product of a C∞ function and an impulse or im-
pulse derivative is considerably more interesting. At first,
one might think that multiplication just amounts to a point-
wise scaling. But a closer study of equations (12) and (14)
reveals that that is only true if the C∞ function is a con-
stant ; i.e., when its derivatives are identically zero.

Let us study the product of a function f(t) ∈ C∞ and

δ(n)(t− τ). Our goal is to find the strengths of the resulting
impulses and impulse derivatives at point τ , enabling us
to construct a correct representation of the sample of the
product signal at that point. The following derivation is just
a straightforward application of equations (7) to (14):

〈f(t)δ(n)(t − τ), φ(t)〉

= (−1)n[f(τ)φ(τ)](n)

= (−1)n

n�

k=0

�
n

k � f (k)(τ)φ(n−k)(τ)

= (−1)n

n�

k=0

�
n

k � f (k)(τ)(−1)(k−n)〈δ(n−k)(t− τ), φ(t)〉

=
n�

k=0

(−1)k

�
n

k � f (k)(τ)〈δ(n−k)(t − τ), φ(t)〉 (19)

Thus, multiplying a C∞ function f by an impulse deriva-
tive of order n shifted by τ , results in a sum of impulse
derivatives of order 0 to n, all shifted by the same amount,
where the strength for the impulse derivative of order n− k
is (−1)k � n

k � f (k)(τ).
There is a technical problem. The derivation above as-

sumes that f is a C∞ function; i.e., neither f nor its deriva-
tives have any discontinuities. In our implementation, the
role of f is played by some signal, and since the implemen-
tation is sampled, that implies that we only know whether
a signal is C∞ or not in the immediate neighborhood of the
current sample point. Everywhere else, the signal could be
arbitrarily ill behaved: there is no recollection of the past,
and the future is unknown. However, intuitively, since only
the behavior of a C∞ function at the point of the impulse
is relevant for the result, and since an impulse is identically
zero everywhere else, the behavior of the signal elsewhere
should not matter. But we have not yet proved this formally.

We now know how to obtain the impulse strengths for the
product of a C∞ function and arbitrary impulse derivatives.
Thanks to linearity, we can thus multiply the impulse part of
a generalized signal with a C∞ function. But in our setting,
we also need to construct the impulse part of the derivative
of the product, and we would like to do that using only the
impulse part of the generalized signal.

Let us denote the regular part of a generalized signal S
by ∼ S and the impulse part by ↑ S. Thus

S = ∼ S + ↑ S (20)

It is easy to show that the derivative of a product of a func-
tion f ∈ C∞ and a distribution S can be rewritten in the
expected way:

[f(t)S(t)]′ = f(t)S′(t) + f ′(t)S(t) (21)

The impulse part of the derivative of the product can then
be obtained as follows:

↑ [f(t)S(t)]′

= ↑ [f(t)S′(t) + f ′(t)S(t)]

= ↑ [f(t)S′(t)] + ↑ [f ′(t)S(t)]

= ↑ [f(t)(∼ S′(t) + ↑ S′(t))] + ↑ [f ′(t)(∼ S(t) + ↑ S(t))]

= ↑ [f(t) ∼ S′(t)� ��� �
no impulses

] + ↑ [f(t) ↑ S′(t)]

+↑ [f ′(t) ∼ S(t)� ��� �
no impulses

] + ↑ [f ′(t) ↑ S(t)]

= ↑ [ f(t) ↑ S′(t)� ��� �
only impulses

] + ↑ [ f ′(t) ↑ S(t)� ��� �
only impulses

]

= f(t) ↑ S′(t) + f ′(t) ↑ S(t) (22)

Now we are at long last in a position to define the product
of a sample of a C∞ signal and the impulse part of a sample
of a generalized signal.

mulCI :: C -> I -> I

mulCI _ NI = NI

mulCI x@(C _ x’) i@(I as i’) =

I (mciAux x as) (addI (mulCI x i’)

(mulCI x’ i))

where

mciAux x as = loop1 pascal as

where

loop1 _ [] = []

loop1 (ps:pss) aas@(a:as) =

consStrengths (loop2 1 ps x aas)

(loop1 pss as)

loop2 _ _ _ [] = 0

loop2 sign (p:ps) (C b x’) (a:as) =

sign * fromIntegral p * a * b

+ loop2 (negate sign) ps x’ as

pascal :: [[Int]]

pascal = (repeat 1) : map (scanl1 (+)) pascal

mciAux computes the impulse part of the value of the prod-
uct according to (19), whereas the impulse part of the deriva-
tive of the product is computed by invoking mulCI recur-
sively according to (22). The summation ordering in mciAux

has been optimized for reasons of efficiency. pascal is a ver-
sion of Pascal’s triangle that provides binomial coefficients
in an order suitable for mciAux. The following equality holds:

pascal!!m!!n =

�
m + n

n � (23)

Let us finally define some operations on G. leftLimit and
rightLimit are the left and right limits of a signal at the
current point. The left limit is simply a projection by (17)
and (18). The right limit is the same as the left limit if there
are no impulses at the point in question. Otherwise it is



computed from the left limit by adding the strength of any
impulse in the first derivative, as explained before.

leftLimit :: G -> C

leftLimit (G x _) = x

rightLimit :: G -> C

rightLimit (G x NI) = x

rightLimit (G (C a x’) (I _ i’)) =

C (a + strengthI i’) (rightLimit (G x’ i’))

We want to allow the user to explicitly introduce impulses.
Since events and impulses share the property that they both
occur at a specific point in time, and since Yampa has a rich
sub-language for events, it seems natural to do this through
a function mapping events to impulses. We chose to let the
value tagged to the event specify the strength of the resulting
impulse.

impulse :: Event C -> G

impulse e = G 0.0 i

where

i = case e of

NoEvent -> NI

(Event x) -> impulseI (valC x)

Defining arithmetic operators like + and * on G is straight-
forward. The corresponding operators on C are used for the
regular part and operations such as addI and mulCI for
the impulse part. For multiplication, four cases are distin-
guished. The first two cover the cases where at least one
of the factors and all its derivatives are free from impulses
at the point in question. The third concerns the case where
two regular signals that do not have regular derivatives are
multiplied. This is defined by multiplying left and right lim-
its separately, and using discI to compute an impulse part
that accounts for any resulting discontinuities. The last case
is an error case. However, it would be possible to generalize
multiplication a bit further. For example, it is possible to
define the product of a coinciding step and impulse.

instance Num G where

(G x i) + (G y j) = G (x + y) (i ‘addI‘ j)

(G x NI) * (G y j) = G (x * y) (x ‘mulCI‘ j)

(G x i) * (G y NI) = G (x * y) (y ‘mulCI‘ i)

u * v | isRegular u && isRegular v =

G lluv (discI lluv rluv)

| otherwise = error "Illegal mult."

where

lluv = leftLimit u * leftLimit v

rluv = rightLimit u * rightLimit v

7. INTEGRATING GENERALIZED
SIGNALS INTO YAMPA

In this section, we will see how to fit generalized signals
and the associated generalized automatic differentiation ma-
chinery into Yampa. Again, integration is one of the fun-
damental capabilities that needs to be adapted. The main
novelty compared with the development in section 4 is in-
tegration of impulses and impulse derivatives. As the anti-
derivative of an impulse is a step, integration across an im-
pulse should cause a jump in the value of the integral, the
size of which is given by the strength of the impulse. The sig-
nal function integralG integrates generalized signals (com-
pare the implementation of integralC in section 4):

integralG :: SF G G

integralG = SF tf0

where

q0 = 0.0

tf0 _ ~u@(G x0 i0) =

(igrlAuxG (q0 + strengthI i0)

(rightLimit u),

G (C q0 x0) (integrateI i0))

igrlAuxG q_prev x_prev = SF tf

where

tf dt ~u@(G x i) =

(igrlAuxG (q + strengthI i)

(rightLimit u),

G (C q x) (integrateI i))

where

q = q_prev + dt * valC x_prev

integrateI :: I -> I

integrateI NI = NI

integrateI i@(I [] _) = I [] i

integrateI i@(I (_:as) _) = I as i

The (recursive) calls to igrlAuxG are fairly straightfor-
ward. For example, consider the code fragment

igrlAuxG (q + strengthI i) (rightLimit u)

The strength of any impulse on the input is added to the
internal integral state causing the desired jump (strengthI
yields 0 if there is no impulse). Note that the right limit of
the input is used for passing on what will be the previous
value of the regular part of the input at the next step.

The construction of the output value is more subtle. For
example, consider the fragment

G (C q x) (integrateI i)

If there is no impulse, the auxiliary function integrateI

yields NI, and the value of the output signal and its deriva-
tives at this point is simply given by the regular part C q x,
where q is the value of the integral and x is the regular part
of the input. This is exactly as for integralC in section 4. If
there is an impulse, then C q x denotes the left limit of the
output, and integrateI accounts for the jump by putting
the input impulse into the derivative of the impulse part
of the output. This is how a step is represented, and the
right limit will thus have the correct value. Finally, any im-
pulse derivatives in the input has to be integrated by putting
their anti-derivatives into the output. This is accomplished
by simply reducing the order of all impulse derivatives by
one, which in our representation amounts to a simple tail
operation (in integrateI) on the list of impulse strengths.

There is one crucial difference in the behavior of integralG
compared with integralC (and integral). Recall that the
output of integralC at any point in time only depends on
inputs at earlier points in time. Recursive equations like the
following (in arrow notation) are thus well defined:

x <- integralC -< x + 1

(In this particular case, the result is an exponentially grow-
ing signal as one would expect.)

In the same way, the left limit of the output of integralG
has carefully been defined to only depend on earlier input
values. In contrast, the impulse part of the output, and thus
also the right limit of the output, by necessity depends on



the impulse part of the input at the same point in time.
Thus integralG cannot be used in a recursive equation like
the one above: the result would be bottom.

However, the ability to write recursive definitions is ab-
solutely critical, especially in a modeling context since any
interesting system of differential equations gives rise to a set
of recursive definitions involving integrals. Our solution is
to appeal to modeling knowledge in order to break the bad
recursion. Certain variables (signals) in a model are usually
required to be continuous or at least free from impulses be-
cause of the underlying physical reality. For example, the
trajectories of physical bodies moving in space are typically
required to be continuous. If such knowledge is stated ex-
plicitly, this can be exploited to make a signal independent
of its impulse part since it is then known that there are no
impulses. To catch modeling mistakes, it should be checked
that there in fact are no impulses, but if this check is delayed
until the following time step, everything will work out fine.

The following signal function allows the user to assert that
a signal is free from impulses, and uses this knowledge to
make the output independent of the impulse part of the
input at the current time step:

assertNoImpulseG :: SF G G

assertNoImpulseG = SF tf0

where

tf0 _ (G x0 i0) =

(aniAux i0, G x0 (noImp i0))

aniAux i_prev = SF tf

where

tf _ (G x i) =

(aniAux i, seq (checkNoImp i_prev)

(G x (noImp i)))

-- A promise that there are no impulses.

noImp i = (I [] (derI i))

-- Check that we kept the promise.

checkNoImp NI = ()

checkNoImp (I [] _) = ()

checkNoImp _ = error "assertion failed"

Ideally, assertions like this one should be inserted automati-
cally where needed based on declaratively stated continuity
assumptions, but that would probably require a more so-
phisticated language implementation strategy than an em-
bedding in Haskell, as is currently the case for Yampa.

As noted in section 1, switching is what introduces dis-
continuities in signals in the first place (along with explic-
itly introduced impulses). The following version of the ba-
sic Yampa switching combinator switch (see section 3) en-
sures that any discontinuities resulting from switching is ac-
counted for by introducing impulses in the overall output:

switchG :: SF a (G, Event b) -> (b -> SF a G)

-> SF a G

The arguments are as for switch. The impulse part of the
output at the point of switching is computed by applying
discI to the left and right limit of the output signal at
that point; i.e., the last output from the signal function be-
ing switched out and the first output from the signal func-
tion being switched in. How to handle any impulses in the
outputs of the subordinate signal functions at the point of

switching has not yet been satisfactorily resolved. Currently
such impulses are ignored. The implementation details are
omitted.

Finally, let us look at an example that makes use of some
of the new capabilities introduced above. We return to the
bouncing ball example from the introduction. By using im-
pulses we can model the ball very concisely. The variable y
represents the height above the floor, and its derivative ẏ
the velocity. The constant y0 is the initial height. We allow
ourselves to use the notation δ(y ≤ 0) for introducing im-
pulses whenever the predicate y ≤ 0 becomes true, and the
notation ẏ(t−) for the left limit of ẏ.

y = y0 +

�
ẏ dt

ẏ =

�
−9.81 + (−2)ẏ(t−)δ(y ≤ 0) dt

Thus, whenever the ball hits the floor, it will be subjected
to a force that instantaneously accelerates it by twice its
current velocity in the direction opposite to the current ve-
locity. Note that “current velocity” really means the velocity
immediately prior to impact. That is why the left limit of ẏ
has to be used.

Transliterating these equations into Yampa yields:

bouncing ::

Position -> SF () (Position, Velocity)

bouncing y0 = proc () -> do

rec

y <- (y0 +) ^<< integralG -< yd_ni

hit <- edge -< y <= 0

yd <- integralG

-< -9.81 +

impulse (hit ‘tag‘ (-2*leftLimit yd))

yd_ni <- assertNoImpulseG -< yd

returnA -< (y, yd)

Figure 1(b) is a plot of the simulation result from this model.
Ignoring the distinction between yd and yd ni, the corre-

spondence between the equations for y and ẏ and the code
above is pretty direct. The only major difference is the use of
assertNoImpulseG. As discussed above, integralG cannot
be used in recursive definitions without asserting that one
of the recursively defined signals is free from impulses. Here
we have chosen to make this assertion for the velocity, yd,
yielding the signal yd ni that safely can be used recursively
since it is known that it is free from impulses.

Without impulses, the bouncing ball would have to be
modeled using explicit mode switching, for example as shown
in section 3. That model has a considerably more compli-
cated structure and is arguably less declarative than the
impulse-based one.

8. CONCLUSIONS
This paper showed how to add support for Dirac impulses

to a causal hybrid simulation system, and how to integrate
this with the technique of automatic differentiation, ensuring
everywhere correct derivatives even for signals that are only
piecewise continuous. The development required introduc-
ing the notion of generalized signals, i.e. signals that con-
ceptually are distributions rather than classical functions,
and extending arithmetic operations to work pointwise on
such signals, computing the value of the result as well as its



derivatives at each point. Multiplication turned out to be a
somewhat tricky case and required extra care.

The paper also demonstrated the utility of impulses and
automatic differentiation for causal (hybrid) modeling. We
expect that these techniques could be even more useful in
a non-causal setting, which is our ultimate goal [14], where
the techniques would be employed transparently behind the
scenes as needed depending on the choice of state variables
and the resulting causality.

For computationally demanding simulation applications,
the present system is really only a proof of concept: lazy
evaluation in itself would usually be considered too expen-
sive, and the somewhat elaborate representation of samples
of generalized signals does not make it any more efficient.
However, in a compilation-based implementation of a sim-
ulation language, it ought to be possible to infer statically
how many derivatives that needs to be computed for the
various variables, and the extent to which it is necessary to
keep track of impulses. Perhaps a suitable type system could
help. It should then be possible to generate reasonably effi-
cient simulation code.

Nevertheless, functional programming and lazy evaluation
made it possible to implement quite sophisticated simulation
techniques remarkably concisely. As a consequence, explor-
ing various design alternatives was also easy and did not
require too much work, something that was very important
during the development.
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