
Functional Hybrid Modeling

Henrik Nilsson, John Peterson, and Paul Hudak

Department of Computer Science, Yale University,
P.O. Box 208285 New Haven, CT 06520-8285 U.S.A.

{Henrik.Nilsson, John.C.Peterson, Paul.Hudak}@yale.edu

Abstract. The modeling and simulation of physical systems is of key
importance in many areas of science and engineering, and thus can bene-
fit from high-quality software tools. In previous research we have demon-
strated how functional programming can form the basis of an expressive
language for causal hybrid modeling and simulation. There is a growing
realization, however, that a move toward non-causal modeling is neces-
sary for coping with the ever increasing size and complexity of modeling
problems. Our goal is to combine the strengths of functional program-
ming and non-causal modeling to create a powerful, strongly typed fully
declarative modeling language that provides modeling and simulation ca-
pabilities beyond the current state of the art. Although our work is still
in its very early stages, we believe that this paper clearly articulates the
need for improved modeling languages and shows how functional pro-
gramming techniques can play a pivotal role in meeting this need.

1 Introduction

Modeling and simulation is playing an increasingly important role in the de-
sign, analysis, and implementation of real-world systems. In particular, whereas
modeling fragments of systems in isolation was deemed sufficient in the past,
considering the interaction of these fragments as a whole is now necessary. The
resulting models are large and complex, and span multiple physical domains.

Furthermore, these models are almost invariably hybrid : they exhibit both
continuous-time and discrete-time behaviors. For example, the modeled system
may contain a digital controller, or it could be that the very structure of the
modeled system changes over time. Either way, the resulting model will have
a number of structural configurations, or modes, each described by continuous
equations. In general, the total number of modes can be enormous, or even
unbounded, and often cannot be predicted a priori. We refer to systems whose
number of modes cannot be practically predetermined as structurally dynamic.

Special modeling languages have been developed to facilitate modeling and
simulation. There are two broad language categories in this domain. Causal (or
block-oriented) languages are most popular; languages such as Simulink [9] and
Ptolemy II [8] represent this style of modeling. In causal modeling, the equations
that represent the physics of the system must be written so that the direction
of signal flow, the causality, is explicit. The second, but less populated, class



of language is non-causal (or object-oriented 1), where the model focuses on the
interconnection of the components of the system being modeled, from which
causality is then inferred. Examples include Dymola [3] and Modelica [11].

The main drawback of casual languages is the need to explicitly specify the
causality. This hampers modularity and reuse [2]. Non-causal languages address
this problem by allowing the user to avoid committing the model itself to a
specific causality: depending on how the model is being used, the appropriate
causality constraints are inferred using both symbolic and numerical methods.
Unfortunately, current non-causal modeling languages sacrifice generality, par-
ticularly when it comes to hybrid modeling.

There are additional weaknesses that are common to both types of language.
Many languages are either untyped, or important invariants are only checked
dynamically. No commercially available modeling system enforces the consistent
use of physical dimensions. Also, the number of modes is usually limited, since
this simplifies implementation by making it possible to generate simulation code
for all modes at compile time [12].

In previous research at Yale, we have developed a framework called functional

reactive programming, or FRP [20], which is highly suited for causal hybrid mod-
eling. This framework is embodied in a language called Yampa2 as an extension
of Haskell. Yampa permits highly dynamic hybrid systems to be described clearly
and concisely [14]. In addition, because the full power of a functional language
is available, it exhibits a high degree of modularity, allowing reuse of compo-
nents and design patterns. It also employs Haskell’s polymorphic type system
to ensure that signals are connected consistently, even as the system topology
changes. The semantic foundations of Yampa are well defined and understood,
making models expressed using Yampa suited for formal manipulation and rea-
soning. Yampa and its predecessors have been used in robotics simulation and
control as well as a number of related domains [16–18].

Non-causal modeling and FRP complement each other almost perfectly. We
therefore aim to integrate the core ideas of FRP with non-causal modeling to
create Hydra, a powerful, fully declarative modeling language combining the
strengths of each. If we treat causality and dynamism as two dimensions in the
modeling language design space, we see that Hydra occupies a unique point:

Simulink

Modelica

Causal

Non-causal

Static
structure

Dynamic
structure

Yampa

Hydra

We refer to the combined paradigm of functional programming and non-
causal, hybrid modeling as functional hybrid modeling, or FHM. Conceptually,

1 Not to be confused with object-oriented programming languages. Concepts like
classes and inheritance may be part of an object-oriented modeling language, but
methods and imperative variables are not.

2 See http://haskell.org/yampa.



FHM can be seen as a generalization of FRP, since FRP’s functions on signals
are a special case of FHM’s relations on signals. In its full generality, FHM, like
FRP, also allows the description of structurally dynamic models.

The main contribution of this paper is that it outlines how notions appropri-
ate for non-causal, hybrid simulation in the form of first-class relations on signals

and switch constructs can be integrated into a functional language, yielding a
non-causal modeling language supporting structural dynamism. It also identi-
fies key research issues, and suggests how recent developments in the field of
programming languages could be employed to address those issues.

2 Non-Causal and Hybrid Modeling

We believe that both the non-causal and hybrid styles of modeling are essential to
address the increasing complexity of modeled systems. Unfortunately, combining
these styles is difficult. In this section, we explain non-causal modeling and its
advantages. We then outline the state of the art of non-causal hybrid modeling,
and identify a number of shortcomings that must be addressed.

2.1 Advantages of Non-Causal Modeling

Consider the simple electrical circuit in Fig. 1(a) (adapted from [10]). We can
model this circuit in a causal language such as Simulink by transforming the
circuit into the block diagram of Fig. 1(b).

i

+

R1 R2

C L

G

uL

i2

uR2

uC

i1

R1u

uin

(a) Electrical circuit

R2 1/L

1/C1/R1

i

-1

+1Σ

+1

-1Σ

+1

+1Σ

i2

uR2 uL

uin i1

uR1

uC

(b) Causal model

Fig. 1: A simple electrical circuit and its causal model.

Mathematically, such a block diagram corresponds to a system of ordinary
differential equations (ODEs) in explicit form.3 In such an ODE, the causality,

3 Since a system of ODEs can be written as a single ODE using vector notation, we
will just write ODE and not worry about whether there are one or more equations.



i.e. the cause-and-effect relationship, is explicit: “known” quantities (inputs and
state variables) are used to define “unknown” quantities (outputs and state
derivatives). Hence the name causal modeling. The block diagram in Fig. 1(b) is
a rendering of the following equations, where i2 and uC are the state variables:

uR2
= R2i2, uL = uin − uR2

, i2
′ = uL

L

uR1
= uin − uC, i1 =

uR1

R1

, uC
′ = i1

C

i = i1 + i2

With causal modeling, it is easy to derive the simulation code by translit-
erating the ODEs into a sequence of assignment statements that compute the
outputs and the derivatives of the state variables for each time step. Simulation
is then just a matter of stepwise numerical integration.

Unfortunately, the above equations, and consequently also the corresponding
block diagram, bear little structural resemblance to the physical circuit they
model. The burden of deriving the causal model rests entirely with the modeler,
and is generally a difficult task. In particular, a causal model is not compositional :
it cannot be expressed structurally as a composition of physical models of the
individual components. For instance, consider a resistor. In a causal model, this
component may be modeled (via Ohm’s law) by one of two equations, u = Ri,
or i = u/R, depending on whether the voltage needs to be computed from the
current or vice versa. Thus, no single type of causal representation can capture
the behavior of a resistor. Details of how the equations that define the model are
to be solved dictate how the user must express the model. In practice, modeling
using causal equations is quite “brittle”: a small change in the physical structure
of the system may have global consequences in the causality of the equations.
This make it difficult to reuse components in models [2].

In contrast, non-causal modeling frees the modeler from the need to spell out
the “how” of the simulation code through an explicit ODE. A non-causal model
is an implicit system of differential and algebraic equations (DAE):

f(x,x′,w,u, t) = 0

where x is a vector of state variables, w is a vector of algebraic variables, u

is a vector of inputs, and t is the time. This allows the modeler to express the
model in a way that directly reflects its physical structure. Models of individual
components can be reused without first having to adapt them according to any
specific causality requirements.

For example, a non-causal model of a resistor can be formulated as follows:

u = vp − vn

ip + in = 0

u = Rip

where the subscripts p and n signify the positive and negative pin of the compo-
nent, respectively. A non-causal model for an inductor is given by the following



equations:

u = vp − vn

ip + in = 0

u = Lip
′

Note that the equations are identical to those in the resistor model, except for
the last one. This is also the case for a capacitor model where the last equation
would read:

ip = Cu′

In the context of a composite model, such as the circuit from Fig. 1(a), the
models of individual components can be reused simply by copying the equations
(and renaming variables to avoid name clashes). The sub-models are then inter-
connected by adding connection equations according to Kirchhoff’s voltage and
current laws. For instance, after suitable renaming, the connection equations for
the node between the resistor R1 and the capacitor C would be:

vR1,n = vC,p

iR1,n + iC,p = 0

Good abstraction mechanisms can facilitate the mechanical aspects of copy-
ing code and creating connections, allowing the user to define component models
in the form of named groups of equations and then create multiple interconnected
instances by referring to the components by name. A non-causal language can
also support component hierarchies, allowing the reuse of modeling knowledge in
an object-oriented way. For example, the common aspects of the resistor, induc-
tor and capacitor models above (the two first equations of each model) can be
collected into a superclass describing what is common for two-pin components.
This modeling knowledge would then be reused in the actual component models
through inheritance from the common superclass. A good example of such a
language is Modelica [11].

A non-causal simulation tool must undertake a substantial amount of sym-
bolic processing to put the model into a form suitable for simulation. While
there are numerical methods for integrating implicit DAEs, these methods are
not suitable for solving higher-index4 DAEs which are very common in prac-
tice. Fortunately, it is possible to automatically reduce the index of a DAE to 1
through symbolic manipulations [15], and further transformations allow the sys-
tem to be put into a form which can be solved efficiently by specialized numerical
methods [4, 5].

2.2 The Need for Non-Causal Hybrid Modeling

A hybrid model contains both continuous and discrete values. The continuous
and discrete parts of the model interact via discrete transitions at distinct points

4 The index of a DAE is the number of symbolic differentiations it takes to transform
the system to an ODE.



l

φ

m

u

mg

(a) Pendulum

model BreakingPendulum

parameter Real m=1, g=9.81, L=0.5;

parameter Boolean Broken;

input Real u;

Real pos[2], vel[2];

Real phi(start=PI/4), phid;

equation

vel = der(pos);

if not Broken then

// Equations of pendulum.

pos = {L*sin(phi), -L*cos(phi)};
phid = der(phi);

m*L*L*der(phid) + m*g*L*sin(phi) = u;

else

// Equations of free-flying mass.

m*der(vel) = m*{0, -g};
end if;

end BreakingPendulum;

(b) Modelica model

Fig. 2: A pendulum, subject to externally applied torque and gravity.

in time. These interactions are known as events. In between events, the model
evolves continuously: all discrete values remain fixed. Since the model may de-
pend conditionally on the discrete values, each discrete value assignment defines
a potentially unique configuration or mode of continuous operation.

While the simulation of pure continuous systems is relatively well understood,
hybrid systems pose a number of unique challenges [12, 1]. Problems include
handling a large number of modes, event detection, and consistent initialization
of state variables. The integration of hybrid modeling with non-causal modeling
raises further problems. Indeed, current non-causal modeling languages are quite
limited in their ability to express hybrid systems. Many of the limitations are
related to the symbolic and numerical methods that must be used in the non-
causal approach. But a more important reason is that most such systems insist
on performing all symbolic manipulations before simulation begins [12]. Avoiding
these limitations is an important part of our approach, see Sec. 4.

Since Modelica is representative of state-of-the-art, non-causal, hybrid model-
ing languages, we illustrate the limitations of present languages with an example
from the Modelica documentation [10, pp. 31–33]. The system is a pendulum in
the form of a mass m at the end of a rigid, mass-less rod, subject to gravity
mg and an externally applied torque u at the point of suspension; see Fig. 2(a).
Additionally, the rod could break at some point, causing the mass to fall freely.

Figure 2(b) shows a Modelica model of this system that, on the surface,
looks like it achieves the desired result. Note that it has two modes, described by



conditional equations. In the non-broken mode, the position pos and velocity vel

of the mass are calculated from the state variables phi and phid. In the broken
mode, pos and vel become the new state variables. This implies that state
information has to be transferred between the non-broken and broken mode.
Furthermore, the causality of the system is different in the two modes. When
non-broken, the equation relating vel and pos is used to compute vel from pos.
When broken, the situation is reversed.

These facts make simulation hard. So much so that Modelica does not handle
these equations correctly, because it forbids conditional equations with dynamic
conditions. Thus, Broken is declared to be a parameter, meaning that it will
remain constant during simulation. Therefore the model above does not really
solve the hybrid simulation problem at all! In order to actually model a pendulum
that dynamically breaks at some point in time, the model must be expressed in
some other way. The Modelica documentation suggests a causal, block-oriented
formulation with explicit state transfer. Unsurprisingly, the result is considerably
more verbose, nullifying the advantage of working in a non-causal language.

Thus we see that even quite simple examples go beyond the non-causal mod-
eling capabilities of one of the most advanced non-causal, hybrid modeling lan-
guages currently available. Moreover, even if Broken were allowed to be a dy-
namic variable, a fundamental problem would remain: once the pendulum has
broken, it cannot become whole again. However, Modelica provides no way to
declaratively express the irreversibility of this structural change. The best that
can be done is to capture this fact indirectly through a state machine model
and use that to control the value of Broken. But this makes the resulting model
harder to understand, and it is also difficult for a simulator to exploit the fact
that a certain set of equations and variables cannot be used again (to save mem-
ory and computational resources) since the simulator would have to infer this
fact from the state machine model.

3 Integrating Functional Programming and Non-Causal

Modeling

In the previous section we pointed out the advantages of non-causal modeling and
the importance of hybrid modeling. We also pointed out serious shortcomings
in current modeling languages with respect to these features. In this section, we
describe a new way to combine non-causal and hybrid modeling techniques that
addresses these issues. The two key ideas are to give first-class status to relations
on signals and to provide constructs for discrete switching between relations. The
result is Hydra, a declarative, semantically coherent, functional hybrid modeling
language capable of representing structurally dynamic systems.

3.1 First-Class Signal Relations

A signal is, conceptually, a function of time. A signal function maps a stimulating
signal onto a responding signal; i.e., a signal function is just a (causal) block in



the terminology of block-oriented modeling languages. A natural mathematical
description of a continuous signal function is that of an ODE in explicit form.
Signal functions are first-class entities in Yampa: they have a type, they can be
bound to variables, they can be passed to and returned from functions. This is
the key to the tight integration of the discrete and continuous aspects of Yampa,
and is what makes Yampa uniquely flexible as a language for hybrid modeling.

A function is just a special case of the more general concept of a relation.
While functions usually are given a causal interpretation, relations are inherently
non-causal. DAEs, which are at the heart of non-causal modeling, express depen-
dences among signals without imposing a causality on the signals in the relation.
Thus it is natural to view the meaning of a DAE as a non-causal signal relation,
just as the meaning of an ODE in explicit form can be seen as a causal signal
function. Since signal functions and signal relations are closely connected, this
view offers a clean way of integrating non-causal modeling into an Yampa-like
setting, which is the essence of Hydra.

In the following, first-class signal relations are made concrete by proposing a
(tentative) system for integrating them into a polymorphically typed functional
language. Signal functions are also useful, but since they are just relations with
explicit causality, we need not consider them in detail in the following.

Conceptually, we define the polymorphic type of signals as S α = Time →
α; that is, S α is the type of a signal whose instantaneous value is of type α.
However, signals only exist implicitly via signal functions and signal relations:
there is no syntactic entity which has type S α. We then introduce the type

SR α

for a relation on a signal of type S α. Specific relations use a more refined type.
For example, for the derivative relation der we have the typing:

der :: SR (Real, Real)

where :: is the typing relation. Since a signal carrying pairs is isomorphic to a
pair of signals, we can understand der as a binary relation on two real-valued
signals.

Next we need notation for defining relations. The following construct, in spirit
analogous to a λ-abstraction, denotes a signal relation:

sigrel pattern where equations

The pattern introduces signal variables which at each point in time are bound
to the instantaneous value (a “sample”) of the corresponding signal. Thus, given
p :: t, we have:

sigrel p where . . . :: SR t

Consequently, the equations express relationships between instantaneous sig-
nal values. This resembles the standard notation for differential equations in
mathematics. For example, consider x′ = f(y), which means that the instanta-
neous value of the derivative of (the signal) x at every time instant is equal to
the value obtained by applying the function f to the instantaneous value of y.

We introduce two styles of equations:



e1 = e2

sr � e3

where ei are expressions (possibly introducing new signal variables), and sr is
an expression denoting a signal relation. We require equations to be well-typed.
Given ei :: ti, this is the case iff t1 = t2 and sr :: SR t3.

The first kind of equation requires the values of the two expressions to be
equal at all points in time. For example:

f(x) = g(y)

where f and g are functions.
The second kind allows an arbitrary relation to be used to enforce a relation-

ship between signals. The symbol � can be thought of as relation application; the
result is a constraint which must hold at all times. The first kind of equation is
a special case of the second in the following sense: if taking the syntactic liberty
to allow = to denote the identity relation (= :: SR (Real,Real)), one could write
f(x) = g(x) as

= �(f(x), g(x))

For another example, consider a differential equation like x′ = f(x, y). Using our
notation, this equation could be written:

der � (x, f(x, y))

where der is the relation relating a signal to its derivative. For convenience, a
notation closer to the mathematical tradition should be supported as well:

der(x) = f(x, y)

The meaning is exactly as in the first version.
We illustrate our language by modeling the electrical circuit from Fig. 1(a).

The type Pin is a record type describing an electrical connection. It has fields v
for voltage and i for current.5

twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, u) where

u = p.v − n.v
p.i + n.i = 0

resistor :: Resistance → SR (Pin, Pin)
resistor(r) = sigrel (p, n) where

twoPin � (p, n, u)
r · p.i = u

5 The name Pin is perhaps a bit misleading since it just represents a pair of physical
quantities, not a physical “pin component”; i.e., Pin is the type of signal variables
rather than signal relations.



inductor :: Inductance → SR (Pin, Pin)
inductor(l) = sigrel (p, n) where

twoPin � (p, n, u)
l · der(p.i) = u

capacitor :: Capacitance → SR (Pin, Pin)
capacitor(c) = sigrel (p, n) where

twoPin � (p, n, u)
c · der(u) = p.i

As in Modelica, the resistor, inductor and capacitor models are defined as exten-
sions of the twoPin model. However, we accomplish this directly with functional
abstraction rather than the Modelica class concept. With first-class relations
we have a language that is both simpler and more expressive. Note how pa-
rameterized models are defined through functions returning relations. Since the
parameters are normal function arguments, not signal variables, their values
remain unchanged throughout the lifetime of the returned relations.6

To assemble these components into the full model, we will adopt a Modelica-
like connect-notation as a convenient abbreviation for connection equations.
This is syntactic sugar which is expanded to proper connection equations, i.e.
equality constraints or sum-to-zero equations depending on what kind of physical
quantity is being connected. We assume that a voltage source model vSourceAC

and a ground model ground are available in addition to the component models
defined above. Moreover, we are only interested in the total current through the
circuit, and, as there are no inputs, the model thus becomes a unary relation:

simpleCircuit :: SR Current

simpleCircuit = sigrel i where

resistor(1000) � (r1p, r1n)
resistor(2200) � (r2p, r2n)
capacitor(0.00047) � (cp, cn)
inductor(0.01) � (lp, ln)
vSourceAC (12) � (acp, acn)
ground � gp

connect acp, r1p, r2p
connect r1n, cp
connect r2n, lp
connect acn, cn, ln, gp
i = r1p.i + r2p.i

3.2 Modeling Systems with Dynamic Structure

In order to describe structurally dynamic systems we need to represent an evolv-
ing structure. To this end, we introduce two Yampa-inspired switching con-
structs: the recurring switch and the progressing switch. The recurring switch

6 Compare to Modelica’s parameter-variables mentioned in Sec. 2.2.



allows repeated switching between equation groups. In contrast, the progressing
switch expresses that one group of equations first is in force, and then, once the
switching condition has been fulfilled, another group, thus irreversibly progress-
ing to a new structural configuration. For either sort of switching, difficult issues
such as state transfer and proper initialization have to be considered.

We will revisit the breaking pendulum example from Sec. 2.2 to illustrate
these switching constructs. To deal with initialization and state transfer, we in-
troduce special initialization equations that are only active at the time of switch-
ing, that is, during events, and we allow such equations to refer to the values of
signal variables just prior to the event through a special pre-construct devised
for that purpose. The initialization equations describe the initial conditions of
the DAE after a switch. Mathematically, these equations must yield an initial
value for every state variable in the new continuous equations. It is important
that each branch of a switch can be associated with its own initialization equa-
tions, since each such branch may introduce its proper set of state variables.
Initialization equations typically state continuity assumptions, as in the case of
pos and vel below.7

First, consider a direct transliteration of the equation part of the Modelica
model using a recurring switch. The necessary initialization equations have also
been added:

vel = der(pos)
switch broken

when False then

init phi = pi/4
init phid = 0
pos = {l · sin (phi),−l · cos (phi)}
phid = der(phi)
m · l · l · der(phid) + m · g · l · sin (phi) = u

when True then

init vel = pre(vel)
init pos = pre(pos)
m · der(vel) = m · {0,−g}

A recurring switch has one or more when-branches. The idea is that the equa-
tions in a when-branch are in force whenever the pattern after when (which
may bind variables) matches the value of the expression after switch. Thus,
whenever that value changes, we have an event and a switch occurs (this is
similar to case in a functional language).

To express the fact that the pendulum cannot become whole once it has
broken, we refine the model by changing to a progressing switch:

vel = der(pos)

7 Since Modelica does not support hybrid models where the set of state variables
changes, it does not provide any declarative constructs for relating the states across
modes. However, it does provide an essentially imperative construct for reinitializing
individual state variables.



switch broken

first

. . .
once True then

. . .

A progressing switch has one first-branch and one or more once-branches.
Initially, the equations in the first-branch are in force, but as soon as the value
of the expression after switch matches one of the once-patterns, a switch occurs
to the equations in the corresponding branch, after which no further switching
occurs (for that particular instance of the switch).

By combining recursively-defined relations and progressing switches, it is
possible to express very general sequences of structural changes over time, from
simple mode transitions to making and breaking of connections between objects.
A simple example of a recursively defined relation parameterized on a discrete
state variable n is shown below. Initially, the relation behaves according to the
equations in the first-branch, which may depend on n. Whenever the switching
condition is fulfilled, the relation switches to a new instance of itself with the
parameter n increased by one. In functional parlance, this is a form of tail call.

sysWithCntr :: Int → SR (Real, Real)
sysWithCntr(n) = sigrel (x, y) where

switch . . .
first

. . .
once . . . then

sysWithCntr(n + 1) � (x, y)

Yampa supports even more radical structural changes, including dynamic addi-
tion and deletion of objects [14]. We hope to carry over much of that functionality
to Hydra as well.

4 Implementation Issues

There are a number of significant challenges that must be addressed in an im-
plementation of a language like Hydra. The primary issues are ensuring model
correctness, simulation in the presence of dynamic mode changes, and mode
initialization. The static and dynamic semantics of the language must also be
worked out in detail. The dynamic semantics are best described using a reference
implementation as an embedding in a functional language such as Haskell. Good
surface syntax is also important and can be provided through a pre-processor.

It is critical that dynamic changes in the model should should not weaken
the static checking of the model, i.e. we want to ensure compositional correct-

ness. Using a Haskell-like polymorphic type system, as in FRP, ensures that the
system integrity is preserved. In addition we would like to find at least necessary
conditions for statically ensuring that causality analysis can always be carried



out, that the equations at least could have a solution, and so on, regardless of
how relations are composed dynamically. An example of a necessary but not suf-
ficient condition is that the number of equations and number of variables agree,
and that each variable can be paired with one equation. Since it will be neces-
sary to keep track of the balance between equations and variables across relation
boundaries, it is natural to integrate this aspect into the type system. Similar
considerations apply to the number of initialization equations and continuous
state variables. Recent work on dependent types is relevant here [21]. We also
aim at extending the type system to handle physical dimensions [7].

In a structurally dynamic language, it will be impossible to identify all pos-
sible operating modes and then factor them out as separate systems. We intend
to generate the modes dynamically during simulation. In non-causal modeling,
that implies that causality analysis and the prerequisite symbolic processing
has to be performed whenever mode switches occur during simulation. The hy-
brid bond graph simulator HyBrSim has demonstrated the feasibility of this
approach, and that it indeed allows some difficult cases to be handled [13]. How-
ever, HyBrSim is an interpreted system. Simulation is thus slowed down both
by occasional symbolic processing and by the interpretive overhead. To avoid
interpretive overhead, we intend to leverage recent work on run-time code gen-
eration, such as ‘C [6] or Cyclone [19]. We will need to adapt the sophisticated
mathematical techniques used in existing non-causal modeling languages [15, 4,
5] to this setting. In part, it may be possible to do this systematically by staging

the existing algorithms in a language like Cyclone.

Whenever a switch occurs, a new, global, “flattened” DAE has to be gen-
erated. This DAE is what governs the overall continuous system behavior until
the next discrete event. It is obtained by first carrying out the necessary discrete
processing. This amounts to standard functional evaluation, including evalua-
tion of the relational expressions in the equations that are to be active after the
switch. The evaluation of relational expression is what creates new instances of
relations, and carrying out the instantiation dynamically when switching occurs
is what enables modeling of truly structurally dynamic systems. Once the new
flattened DAE has been generated, it is subjected to causality analysis and other
symbolic manipulations in preparation for simulation using suitable numerical
methods [15, 4, 5]. The result is causal simulation code (a sequence of “assign-
ment statements”), which should be compiled dynamically for better efficiency.

The initial conditions of the (new) differential equations must be determined
on transitions from one mode to another. However, arriving at consistent initial
conditions is, in general, hard. Some state variables in the continuous part of
the system may exhibit discontinuities at the time of switching while others will
not: simply preserving the old value is not always the right solution. Structural
changes could change the set of state variables, and the relationship between the
new and old states may be difficult to determine. One approach is to require
the modeler to provide a function that maps the old state to the new one for
each possible mode transition [1]. However, the declarative formulation of non-
causal models means that the simulator sometimes has a choice regarding which



continuous variables should be treated as state variables. Requiring the user to
provide a state mapping function is therefore not always reasonable.

A key to the success of HyBrSim is that bond graphs are based on physical
notions such as energy and energy exchange, which are subject to continuity and
conservation principles. We intend to generalize this idea by exploring the use of
declarations for stating such principles, along the lines illustrated in Sec. 3.2. It
may also be possible to infer continuity and conservation constraints automati-
cally based on physical dimension types.

Nevertheless, particularly when dealing with systems with highly dynamic
structure, manual intervention may be necessary. In our work on Yampa, we
have developed high-level mechanisms that exploit the first-class status of signal
functions to give the user fine control over state transfer across mode switches
[14]. We hope to generalize these results to signal relations and a non-causal
setting in Hydra.

5 Conclusions

Hybrid modeling is a domain in which the techniques of declarative programming
languages have the potential to greatly advance the state of the art. The model-
ing community has traditionally been concerned more with the mathematics of
modeling than language issues. As a result, present modeling languages do not
scale in a number of ways, particularly in hybrid systems that undergo significant
structural changes. Hydra uses functional programming techniques to describe
dynamically changing systems in a way that preserves the non-causal structure
of the system specification and allows arbitrary switching among modes, yielding
expressive power beyond current non-causal modeling languages.

Although we have not completed an implementation of Hydra, this paper
demonstrates our basic design approach and maps out the design landscape. We
expect that further research into the links between declarative languages and
hybrid modeling will produce significant advances in this field.

References

1. Paul I. Barton and Cha Kun Lee. Modeling, simulation, sensitivity analysis, and
optimization of hybrid systems. Submitted to ACM Transactions on Modelling
and Computer Simulation: Special Issue on Multi-Paradigm Modeling, September
2001.

2. Franois E. Cellier. Object-oriented modelling: Means for dealing with system
complexity. In Proceedings of the 15th Benelux Meeting on Systems and Control,
Mierlo, The Netherlands, pages 53–64, 1996.

3. Hilding Elmqvist, Franois E. Cellier, and Martin Otter. Object-oriented modeling
of hybrid systems. In Proceedings of ESS’93 European Simulation Symposium,
pages xxxi–xli, Delft, The Netherlands, 1993.

4. Hilding Elmqvist and Martin Otter. Methods for tearing systems of equations in
object-oriented modeling. In Proceedings of ESM’94, European Simulation Multi-
conference, pages 326–332, Barcelona, Spain, June 1994.



5. Hilding Elmqvist, Martin Otter, and Franois E. Cellier. Inline integration: A new
mixed symbolic/numeric approach. In Proceedings of ESM’95, European Simula-
tion Multiconference, pages xxiii–xxxiv, Prague, Czech Republic, June 1995.

6. Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language
for high-level, efficient, and machine-independent dynamic code generation. In
Proceedings of the 23rd ACM Symposium on Principles of Programming Languages
(POPL’96), pages 131–144, January 1996.

7. Andrew Kennedy. Programming Languages and Dimensions. PhD thesis, Uni-
versity of Cambridge, Computer Laboratory, April 1996. Published as Technical
Report No. 391.

8. Edward A. Lee. Overview of the ptolemy project. Technical memorandum
UCB/ERLM01/11, Electronic Research Laboratory, University of California,
Berkeley, March 2001.

9. The MathWorks, Inc. Using Simulink Version 4, June 2001.
10. The Modelica Association. Modelica – A Unified Object-Oriented Language for

Physical Systems Modeling: Tutorial version 1.4, December 2000.
11. The Modelica Association. Modelica – A Unified Object-Oriented Language for

Physical Systems Modeling: Language Specification version 2.0, July 2002.
12. Pieter J. Mosterman. An overview of hybrid simulation phenomena and their

support by simulation packages. In Fritz W. Vaadrager and Jan H. van Schuppen,
editors, Hybrid Systems: Computation and Control ’99, number 1569 in Lecture
Notes in Computer Science, pages 165–177, 1999.

13. Pieter J. Mosterman, Gautam Biswas, and Martin Otter. Simulation of disconti-
nuities in physical system models based on conservation principles. In Proceedings
of SCS Summer Conference 1998, pages 320–325, July 1998.

14. Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive pro-
gramming, continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Work-
shop (Haskell’02), pages 51–64, Pittsburgh, Pennsylvania, USA, October 2002.
ACM Press.

15. Constantinos C. Pantelides. The consistent initialization of differential-algebraic
systems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231,
March 1988.

16. Izzet Pembeci, Henrik Nilsson, and Greogory Hager. Functional reactive robotics:
An exercise in principled integration of domain-specific languages. In Principles
and Practice of Declarative Programming (PPDP’02), Pittsburgh, Pennsylvania,
USA, October 2002.

17. John Peterson, Greg Hager, and Paul Hudak. A language for declarative robotic
programming. In Proceedings of IEEE Conference on Robotics and Automation,
May 1999.

18. John Peterson, Paul Hudak, Alastair Reid, and Greg Hager. FVision: A declar-
ative language for visual tracking. In Proceedings of PADL’01: 3rd International
Workshop on Practical Aspects of Declarative Languages, pages 304–321, January
2001.

19. Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and Trevor Jim.
Compiling for run-time code generation. Submitted for publication to JFP SAIG.

20. Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-
ciples. In Proceedings of PLDI’01: Symposium on Programming Language Design
and Implementation, pages 242–252, June 2000.

21. Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proceedings of ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 214–227, San Antonio, January 1999.


