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ABSTRACT
Software for (semi-) autonomous robots tends to be a com-
plex combination of components from many different ap-
plication domains such as control theory, vision, and artifi-
cial intelligence. Components are often developed using their
own domain-specific tools and abstractions. System integra-
tion can thus be a significant challenge, in particular when
the application calls for a dynamic, adaptable system struc-
ture in which rigid boundaries between the subsystems are
a performance impediment. We believe that, by identify-
ing suitably abstract notions common to the different do-
mains in question, it is possible to create a broader frame-
work for software integration and to recast existing domain-
specific frameworks in these terms. This approach simplifies
integration and leads to improved reliability. In this paper,
we show how Functional Reactive Programming (FRP) can
serve as such a unifying framework for programming vision-
guided, semi-autonomous robots and illustrate the benefits
this approach entails. The key abstractions in FRP, reactive
components describing continuous or discrete behavior in a
declarative style, are first class entities, allowing the result-
ing systems to exhibit a dynamic, adaptable structure which
we regard as especially important in the area of autonomous
robots.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Functional)
Programming

General Terms
Languages, Design

Keywords
Functional Programming, Robotics, Vision, Domain-Specific
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1. INTRODUCTION
Developing practical software for autonomous or semi-

autonomous robots is a complex task. It involves the integra-
tion of concepts spanning multiple disciplines, including con-
trol theory, hybrid systems, vision, artificial intelligence, and
human-computer interaction. Within each of these areas,
languages or support libraries that capture domain-specific
functionality, design patterns, and abstractions are used to
structure the solution and aid in the reuse of actual code.
For example, the language Simulink is very popular among
control engineers, in part since it allows working control sys-
tem code to be derived more or less automatically from the
control equations describing the controller. Another exam-
ple is XVision2 [6, 13], a sophisticated C++ library contain-
ing components for building advanced vision algorithms, for
example for identification and tracking of objects in video
streams.

As an application is developed, these software components
must be integrated into a seamless whole. Given the diver-
sity of the domains, this is less than straightforward: the
employed domain-specific support tools often (and arguably
rightfully so) pay little attention to concerns not immedi-
ately relevant to the domain in question. A common in-
tegration paradigm is to treat each subsystem as a black
box that only communicates through a simple procedural
interface. The overall system is then composed from such
black boxes through suitable “glue code”, expressed in some
“least-common denominator” language like C, or a script-
ing language like Perl or Python. The problems with this
approach are twofold. First, composition at such a low ab-
straction level generally cannot take advantage of the rel-
atively high level of abstraction available within the black
boxes. Thus, for compositional purposes, the value of those
abstractions is lost. Second, the resulting system structure
tends to be too rigid: there is only so much one can do with
black boxes communicating via low-level interfaces.

Our approach is to instead look for common notions of
abstraction across the involved domains. By expressing in-
terfaces in these higher-level terms, system integration can
be greatly simplified. This is especially true if the notions
are declarative, since that generally promotes composition-
ality. Furthermore, by providing a seamless link between the
black boxes and the outer world, we can often expose much
more of their inner functionality. In effect, the black boxes
are replaced by tool boxes that provide for a more flexible,
dynamic, and adaptable system structure.
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In the area of robotics, reactivity, continuous behavior,
discrete behavior, and switching among behaviors are exam-
ples of declarative notions which either are common to many
of the involved domains, or in terms of which domain-specific
constructs naturally can be expressed. Functional Reactive
Programming (FRP) [21] is a framework for expressing re-
active systems which captures exactly these notions. Earlier
work has shown how FRP can beneficially be instantiated
to address some of the key areas mentioned above in iso-
lation, such as robotics programming at the control-system
and task levels [18, 17] and vision [19].

In this paper, we show how these ideas can be scaled to
create a fully functional, vision-guided navigation system op-
erating on a real mobile robot equipped with stereo vision.
On a practical level, we claim that FRP can incorporate
large amounts of external functionality, and combine it in
an efficient and reliable manner. On a conceptual level, we
aim to demonstrate the ease of system integration and the
flexibility of the resulting system. The latter results from
the fact that the reactive components describing the system
behavior are first class entities in the FRP framework, al-
lowing for a very flexible and adaptable system structure.
FRP is usually implemented as an embedding inside a host
language. In this paper the host language is Haskell, which
is the most common choice to date.

We substantiate these claims by describing Frob (Func-
tional Robotics), an instantiation of the FRP framework for
robot programming, and by describing a tracking-based nav-
igation system written in Frob using the XVision2 library
[6, 13]. Frob illustrates how some application domains can
be handled within the FRP framework by adding domain-
specific abstractions. We show that Frob is flexible enough to
subsume a number of extant robot programming paradigms,
allowing the programmer to pick the right approach for
the task at hand, and even to mix and match paradigms
thanks to the common underlying FRP framework. The
tracking example illustrates multi-domain system integra-
tion in the context of working code for our vision-equipped,
mobile robot. The XVision2 library is imported and lifted
to the FRP level, resulting in FVision, a flexible tracking
tool box. In addition, we show how a rudimentary human-
computer interface can be integrated into the same reac-
tive framework, thus providing for semi-autonomous, vision-
guided, human-in-the-loop operation.

The rest of this paper is organized as follows. Section 2
gives an overview of our hardware setup and the software
architecture. Section 3 gives an introduction to Arrowized
FRP (AFRP), the particular version of FRP we are using
in this paper, and Frob. Section 4 then shows how Frob can
be used for various styles of robot programming. Section 5
describes the tracking-based navigation system. Section 6,
finally, sums up and gives conclusions.

2. SYSTEM OVERVIEW
This section gives a brief overview of our robot system

and its software architecture. Figure 1 shows the hardware
organization. The actual robot system consists of the robot
itself, an ActivMedia Robotics Pioneer 2; the on-board com-
puter, an x86 laptop running Linux; and a stereo camera.

The Pioneer 2 is a two-wheeled (differential-drive) mobile
robot. It has an on-board microcontroller running a propri-
etary operating system that is responsible for the low-level
operation of the robot. While the microcontroller could be
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Figure 1: Overview of the hardware setup.
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Figure 2: Software architecture.

programmed to perform some (not too complex) high-level
tasks, we only use it in a command-driven mode. In this case,
the microcontroller carries out simple movement commands
sent to it from the on-board laptop computer over a serial
link. Status information and position information obtained
through dead-reckoning are sent in the other direction, from
the microcontroller to the computer.

The on-board computer is thus responsible for the high-
level operation of the robot, along with vision processing and
communication with the outside world. The stereo camera
is connected to the computer via a fast firewire interface.
Stereo vision enables us to recover depth information from
the video stream which in turn allows the vision system to
detect objects through their 3-dimensional shape as well as
appearance, e.g. pre-arranged color cues.

Communication with the outside world takes place over
a wireless LAN, permitting the robot to move about with-
out any attached cables. The robot usually operates semi-
autonomously under the supervision of an operator at a con-
sole. The on-board computer feeds live video to the console
where the operator can instruct the robot to carry out cer-
tain tasks such tracking an object while avoiding obstacles
or moving to some particular location. If necessary the op-
erator can take direct control and tele-operate the robot.

Figure 2 shows the software architecture of the on-board
system. At the lowest level, there are two subsystems. The
Pioneer drivers are a set of routines for communicating with
the microcontroller. XVision2 handles the camera interfac-
ing and all computationally demanding vision processing
and manages the system console. Interfaces to these two
subsystems are lifted into the reactive AFRP level, and two
domain-specific, languages are then built on top: Frob for
robot programming and FVision for describing vision pro-
cessing algorithms. Since these two languages are built on
a common framework it is possible to create a very tightly
coupled interface between the vision and robot control sys-
tems.
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3. THE SOFTWARE FRAMEWORK
Functional Reactive Programming (FRP) is a declarative

framework for describing hybrid (continuous and discrete)
systems. In this paper we use the latest full-scale implemen-
tation of FRP is called Arrowized FRP (AFRP). This sec-
tion gives a short introduction to AFRP; see [15] for a fuller
account. At present, the only implementation of AFRP is
embedded in the Haskell programming language; examples
in this paper are written in a modified Haskell syntax. AFRP
includes a special syntax called arrow notation that is not a
standard part of Haskell. This notation makes AFRP pro-
grams much easier to comprehend and is described below.
We have tried not to assume detailed knowledge of Haskell
in our examples. Nevertheless, some familiarity with modern
functional programming notation might be helpful. Finally,
this section describes the basics of Frob (features of FVision
are introduced as needed in section 5).

3.1 AFRP
Two key concepts in FRP are signals and signal func-

tions. Signal functions, which are first class entities, operate
on one or more input signals, producing one or more output
signals. An FRP system consists of a number of intercon-
nected signal functions, operating on the system input, or
stimuli, and producing the system output, or response. The
signal functions operate in parallel, sensing a common rate
of time flow. The structure of an FRP system may evolve
over time. For example, new signal functions can be added
or old ones deleted. These structural changes are known as
mode switches. The first class status of signal functions in
combination with powerful switching constructs make FRP
unusually flexible as a language for describing hybrid sys-
tems.

A signal is, conceptually, a function of time, or, equiva-
lently, a time-varying value (sometimes called fluent). The
domain of a signal can either be continuous or discrete. In
the former case, the signal is defined at every point in time.
In the latter case, the signal is a partial function, only de-
fined at discrete points in time. Such a point of definition is
called an event.

An executable FRP implementation can only approximate
this conceptual signal model since continuous-time signals
necessarily are evaluated for only a discrete set of sample
points (the points need not be equidistant, but it is the
same set for all continuous-time signals in a system). Thus,
once the sample points have been picked, the true value of
continuous signals between these points are operationally ir-
relevant: the sampled signals operationally become the true
signals. We could still consider sampled continuous-time sig-
nals to have some value between sampling points if we like
(for example, the value at the closest preceeding sampling
point, or some interpolated value), but current FRP imple-
mentations are defined in such a way that this consideration
is irrelevant.

By sampling sufficiently densely, or by picking sampling
points cleverly, one can hope to obtain a “good” approxima-
tion. Indeed, by imposing certain limitations on the system,
it is possible to guarantee convergence results in the limit (at
least under the assumption of exact arithmetic) [21]. While
interesting, these aspects are outside the scope of the present
paper. We will assume that a system is executed at a high
enough rate to ensure appropriate responses, as long as the
input signals are limited to a sufficient bandwidth.

As to the implementation of discrete-time signals, each is
defined on a subset of the sampling points (not necessarily
a proper subset, but in general a distinct subset for each
discrete-time signal). AFRP captures the notion of a par-
tial function by lifting the range using an option type called
Event. This type has two constructors: NoEvent, represent-
ing the absence of a value; and (also) Event, representing
the presence of a value. In Haskell notation:

data Event a = NoEvent | Event a

We can intuitively think of continuous-time signals as
functions of type

Time → A

for some suitable representation type Time for continuous
time, and some value type A, whereas discrete-time signals
can be understood as functions of type

Time → EventA

However, signals are not first class entities in AFRP; in par-
ticular, signals do not possess a type.

A signal function is a pure function that maps a stimulat-
ing signal onto a responding signal while satisfying certain
causality constraints (roughly, the output must not depend
on future input). Unlike signals, signal functions are first
class entities in AFRP. This means that they are treated
just like other values in the language: they have a type,
they can be bound to variables, they can be passed to and
returned from functions, etc. The type of a signal function
mapping a signal of type A onto a signal of type B is written
SFA B. Intuitively, we have

SFAB = (Time → A) → (Time → B)

If more than one input or output signal is needed, tuples are
used for A and B since a signal of tuples is isomorphic1 to
a tuple of signals.

The strict distinction between signals and signal functions
is a defining feature of AFRP. In some earlier versions of
FRP, signals could “masquerade” as signal functions, thus
effectively giving signals first class status. The upshot of the
distinction is that the value of a signal can only be accessed
pointwise in AFRP: it is not possible to refer to the entire
signal at once. Our experience thus far suggests that AFRP
is less susceptible to space and time leaks found in previous
FRP implementations. This, in turn, has been a key factor
in our ability to scale FRP to real applications.

Arrowized FRP is an instance of the arrow framework
proposed by Hughes [8]. A type constructor of arity two to-
gether with three operations, arr, >>>, and first, form an
arrow provided certain algebraic laws hold. Ordinary func-
tions is the canonical example of an arrow. In AFRP, the
type constructor SF is an arrow instance. The three arrow
operations have the following type signatures for SF:

arr :: (a -> b) -> SF a b

(>>>) :: SF a b -> SF b c -> SF a c

first :: SF a b -> SF (a,c) (b,c)

The combinator arr lifts an ordinary function to a signal
function by applying the function pointwise to the input

1Modulo extra bottom elements due to the non-strict se-
mantics of Haskell.
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signal. The result is a stateless signal function since the in-
stantaneous value of the output signal at any point in time
only depends in the instantaneous input value at that same
time. >>> is a serial composition operator, similar to ordi-
nary function composition. first is a “plumbing” combina-
tor, making it possible to route signals in a network of signal
functions.

Other arrow combinators can be defined in terms of these
primitives. A commonly used derived combinator is &&&:

(&&&) :: SF a b -> SF a c -> SF a (b,c)

This combinator composes two signal functions in parallel
(spatially), feeding the same input signal to each of them
and pairing the two resulting output signals.

Another important combinator is loop:

loop :: SF (a,c) (b,c) -> SF a b

The loop combinator is used for recursive definitions: the
c-part of the output is fed back to the input. Note that
loop cannot be defined in terms of the three basic arrow
combinators. The inclusion of loop means that AFRP is an
instance of the class of “loopable” arrows.

Although signals are not first class values in AFRP, Pater-
son’s syntactic sugar for arrows [16] effectively allows signals
to be named. This eliminates a substantial amount of plumb-
ing, resulting in much more legible code. In this syntax, an
expression denoting a signal function has the form:

proc pat -> do [ rec ]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
patn <- sfexpn -< expn

returnA -< exp

The keyword proc is analoguous to the λ in λ-expressions,
pat and pat i are scalar patterns binding signal variables
pointwise by matching on instantaneous signal values, exp
and expi are scalar expressions defining instantaneous sig-
nal values, and sfexpi are expressions denoting signal func-
tions. The idea is that the signal being defined pointwise
by each expi is fed into the corresponding signal function
sfexpi, whose output is bound pointwise in pati. The overall
input to the signal function denoted by the proc-expression
is bound by pat , and its output signal is defined by the
expression exp. The signal variables bound in the patterns
may occur in the scalar expressions, but not in the signal
function expressions (sfexpi). If the optional keyword rec

is used, then signal variables may occur in expressions that
textually precedes the definition of the variable, allowing re-
cursive definitions (feedback loops). The syntactic sugar is
implemented by a preprocessor which expands out the def-
initions using only the basic arrow combinators arr, >>>,
first, and, if rec is used, loop.

For a concrete example, consider the following:

sf = proc (a,b) -> do

c1 <- sf1 -< a

c2 <- sf2 -< b

c <- sf3 -< (c1,c2)

d <- sf4 -< b

returnA -< (d,c)

Here we have bound the resulting signal function to the vari-
able sf, allowing it to be referred by name. Note the use of

the tuple pattern for splitting sf’s input into two “named
signals”, a and b. Also note the use of tuple expressions for
pairing signals, for example for feeding the pair of signals c1
and c2 to the signal function sf3.

AFRP provides a rich set of functions for operating point-
wise on events. In fact, the type Event is abstract in the
current AFRP implementation, so events cannot be manip-
ulated except through these operations. The following selec-
tion of event operations is used in this paper:

tag :: Event a -> b -> Event b

lMerge :: Event a -> Event a -> Event a

rMerge :: Event a -> Event a -> Event a

filterE :: (a -> Bool) -> Event a -> Event a

The function tag tags an event with a new value, replacing
the old one. lMerge and rMerge allow two discrete signals
to be merged pointwise. In case of simultaneous event oc-
currences, lMerge favours the left event (first argument),
whereas rMerge favours the right event (second argument).
filterE, finally, suppresses events which do not satisfy the
boolen predicate supplied as the first argument.

3.2 Frob
Frob programs are signal functions operating on robot-

specific input and output types. These types capture the
relevant aspects of available sensors and actuators. Frob has
mechanisms for abstracting over classes of available func-
tionality, allowing generic code that is not tied to a spe-
cific hardware platform to be written. However, in this pa-
per, we will target our Pioneer platform explicitly to keep
things simple. The input and output types for the Pioneer
are PioneerInput and PioneerOutput. Consequently, a top-
level signal function for controlling the Pioneer has the type

SF PioneerInput PioneerOutput

The function reactimatePioneer is provided to connect such
a signal function to the sensors and actuators of the robot:

reactimatePioneer ::

SF PioneerInput PioneerOutput

-> IO ()

It forms the input signal pointwise by reading the various
sensors, applies the signal function to the current input value
to get the current output, and then uses that output to send
the appropriate commands to the actuators.

The PioneerInput and PioneerOutput types are essen-
tially record types with one field for each available sen-
sor and actuator. For example, PioneerInput has fields for
odometry, the images from the stereo camera, and input
from the console such as mouse position and keyboard in-
put. PioneerOutput has fields for controlling the speed of the
robot and for overlaying graphics on the live video stream.

AFRP provides a framework for constructing records in-
crementally by merging sets of fields, as opposed to con-
structing a record by providing values for all fields at once.
This idea is captured by the type class MergeableRecord.
Any record type that supports this form of record construc-
tion, such as PioneerOutput, is made an instance of this
class. Functions for constructing individual fields are also
provided. These can then be merged into sets of fields, and
eventually finalized into a record:
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mrMerge :: MergeableRecord a =>

MR a -> MR a -> MR a

mrFinalize :: MR a -> a

Some of the functions available for controlling different
aspects of the Pioneer platform are listed below. Note that
each returns a mergeable PioneerOutput record:

ddBrake :: MR PioneerOutput

ddVelDiff :: Velocity -> Velocity

-> MR PioneerOutput

ddVelTR :: Velocity -> RotVel

-> MR PioneerOutput

fvgoOverlaySG :: SimpleGraphic

-> MR PioneerOutput

The prefix dd stands for Differential Drive, and fvgo stands
for FVision GUI Output. ddBrake brakes the two wheels.
ddVelDiff sets the desired peripheral wheel velocity (in m/s)
for the left and right wheel, whereas ddVelTR sets the wheel
velocities in terms of the overall desired translational and
rotational velocity of the robot. Only one mode of control-
ling the wheel velocities can be used at any one point in
time. If two or more are used, one will override the others.
fvgoOverlaySG, finally, is used to overlay simple graphics
(lines, circles, text, . . . ) on the live video stream sent to the
console. Merging of multiple fvgoOverlaySG is by superpo-
sition. The semantics of merging is thus field-dependent.

The following is a simple Frob program that instructs the
robot to move forward at a constant speed, while superim-
posing a circle over the live video:

fwdDemo :: SF PioneerInput PioneerOutput

fwdDemo = proc inp -> do

(x,y) <- mousePos -< inp

returnA -< mrFinalize $

ddVelTR 0.25 0

‘mrMerge‘ fvgoOverlaySG (SGEllipse

(x-10,y-10)

(x+10,y+10)

True

Red)

main = reactimatePioneer fwdDemo

mousePos extracts the mouse position from the input signal.
The circle is centered at these co-ordinates, causing it to
track the mouse movements.

3.3 Tasks
Nearly all robot programming languages have a notion of

task : actions to be carried out by the robot to accomplish a
specific goal. Tasks thus involve one or more continuous ac-
tivities, such as driving, and some way of determining when
the task has been completed. There are also ways of com-
bining tasks into more complex tasks.

Hager and Peterson defined a task notion for an earlier
version of Frob [5]. They defined a task as a combination of
a continuous behavior and a terminating event. Such tasks
form a monad, allowing Haskell’s monadic constructs such
as do notation to be used for task-based programming.

AFRP provides a similar notion of task, where a task is
seen as a signal function operating on a continuous-time in-
put signal and producing a pair of a continuous-time output
signal and an event signal for indicating termination. For an

input signal of type A, an output signal of type B, and a
terminating event of type C, the type of a task is written
TaskAB C, and we intuitively have

TaskA B C = SFA (B,EventC)

Two tasks are sequenced by switching from the first signal
function to the second on the first event on the first sig-
nal function’s event output. Thus switching is what causes
termination: a signal function as such never terminates.
Task is an instance of Monad, and Haskell’s do-notation

for monads can thus be used to express sequencing:

task1 = do

taskexp1

taskexp2

task2 = do

x <- taskexp3

taskexp4

The task task1 is the sequential composition of the tasks de-
noted by the expressions taskexp1 and taskexp2. Switching
from taskexp1 to taskexp2 occurs when the former termi-
nates, and the composite task task1 terminates when the
latter does. The task task2 is similar, but the value of the
terminating event of the task denoted by taskexp3 is bound
to the variable x and can thus be used in the expression
taskexp4, which denotes the second task.

The following are some of the task-related functions pro-
vided by AFRP:

mkTask :: SF a (b, Event c) -> Task a b c

runTask :: Task a b c -> SF a (Either b c)

runTask_ :: Task a b c -> SF a b

constT :: b -> Task a b c

snapT :: Task a b a

timeOut :: Task a b c -> Time

-> Task a b (Maybe c)

abortWhen :: Task a b c -> SF a (Event d)

-> Task a b (Either c d)

mkTask creates a task from a signal function of the right
form. runTask turns a task back into a signal function. The
output type is Either b c, and the output value is Left x
while the underlying task is running, and becomes the con-
stant value Right y, where y is the value of the terminat-
ing event, once the task has terminated. runTask is a ver-
sion of runTask where the output becomes undefined after
termination. It is typically used for non-terminating tasks.
constT creates a task with a constant output value. snapT
is task that terminates immediately. The value of the ter-
minating event is a snapshot of the input at that point in
time. timeOut adds a time constraint to an existing task by
forcibly terminating after the given time interval. In the case
of a time out, the value of the terminating event is Nothing,
otherwise it is Justx, where x is the value of the event that
terminated the underlying task. Similarly, abortWhen adds
an extra termination criterion to a task. The value of the
terminating event of the resulting task is Leftx if termina-
tion is due to termination of the underlying task, or Right y
if termination is due to the new criterion, where x and y are
the values of the terminating event in question.
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4. FROB AND ROBOT PROGRAMMING
Robot programming languages encompasses a broad, dis-

parate collection of work. At one end of the spectrum are
languages specifically designed for joint-level or Cartesian
motion, e.g. RCCL [7] or Saphira [12]. At the other end of
the spectrum are languages that have been motivated by
the needs of AI planning or, more generally, high-level goal-
based specification of behavior, e.g. RPL [14] or PRS [10,
9]. Another set of languages are the so called intermediate-
level languages which emerged in recent years, e.g. TDL
[20], Colbert [11] and Charon [1]. These languages attempt
to strike a compromise, offering the ability to program low-
level behavior in some detail, while at the same time pro-
viding language abstractions that facilitate the description
of higher-level system behavior.

Many (indeed nearly all) of these languages have no pre-
cise formal specification, and thus can only be analysed
anecdotally. However, it is possible to identify a few com-
mon themes, such as focus on reactivity (tight coupling of
perception to action) and switching between various modes
of operation in response to discrete events. Indeed, some of
these are arguably concepts intrinsic to the robotics domain.
They are also central notions in FRP, embodied in key ab-
stractions such as signal functions, switching combinators,
and events. This makes FRP a suitable basis for a robot
programming language, and by adding a layer of domain-
specific definitions to FRP we arrive at Frob, our language
for robot programming.

In conception, Frob most closely resembles an intermediate-
level robot programming language. However, since Frob is
constructed as a definitional extension around core concepts
common to a wide spectrum of robot programming lan-
guages, and since it uses a full-fledged functional program-
ming language as the “meta language”, it is easy to extend
Frob further in the direction of almost any desired robot pro-
gramming language or paradigm. Thus we can integrate a
number of robot programming paradigms addressing differ-
ent concerns within a single framework. We regard this as a
key advantage over most current, less extensible, robot pro-
gramming languages. Furthermore, this also demonstrates
that the thesis of this article is of value not only across ap-
plication domains, but also within domains.

This section illustrates this point by showing how Frob
can be extended to cover some common robot programming
paradigms. On a more general note, it also shows the central
FRP abstractions in use, and how higher-level abstractions
are derived in terms of these, thus paving the way for the
next section where we look at multi-domain integration.

4.1 Finite State Automata
Languages like Colbert [11] and Charon [1] employ hybrid

systems as their basic execution model. A hybrid system can
be thought of as a collection of continuous control modes
and a switching logic that governs transitions between these
modes. Thus, Finite State Automata (FSA) are very conve-
nient for describing the sequences of behaviors which define
a complex task to accomplish a high-level goal [2, 11]. In an
FSA description, each node represents a continuous mode
of operation, and a transition denotes a discrete switch to a
new continuous behaviour; see figure 3.

An FRP task can be seen as a simple example of an op-
erating mode associated with a transition. Since FRP tasks
form a monad, Haskell’s do-notation can be used to encode

an FSA conveniently, at least as long as the FSA structure is
not too complicated (mostly sequencing). For example, the
FSA in Figure 3(a) can be coded as follows in Frob. Note
that t2 and t3 can get “stuck”, a condition which we as-
sume is indicated by the return value. If a task gets stuck,
the active behavior switches to the node t4 to handle the
situation, and then t5 which decides whether to restart by
calling t recursively, or terminate the overall task.

t = do

t1

res <- t2

case res of

NotStuck -> do

res <- t3

case res of

NotStuck -> t6

Stuck -> handleStuck

Stuck -> handleStuck

where

handleStuck = do

t4

x <- t5

if x then t else t6

Although it is not common in standard FSA formulations,
it is highly useful to allow any value associated with a transi-
tion to be used to instantiate the next mode; see Figure 3(b).
This is of course very easy to achieve in our monadic setting,
since the transition value is just the return value of the task
monad:

do

(x,y) <- findObject

goto (x,y)

Indeed, since tasks and signal functions are first class en-
tities, nothing stops us from returning a task or a signal
function from a task directly, and then switch into this dy-
namically instantiated entity later. For example:

do

newTask <- mkTask ..

newTask

We will see this used to good advantage in section 5 for
creation and use of visual trackers. But of course, this takes
us out of the realm of finite state automata.

Figure 3(c) illustrates that this approach to FSA encoding
naturally allows for hierarchical automata since composition
of tasks yields new tasks. In particular, t is a task whose
terminating event is given by the subtask t6. Thus t can be
used as a node in a higher-level FSA. Note that the inner
structure of composed tasks is not visible from the outside.
For example, if new termination criteria, such as a timeout,
were to be added to a composite node, all subtasks will be
terminated as soon as the termination criteria are fulfilled.

We can also define an FSA abstraction which captures the
graph representation of an FSA more closely. We will take
the nodes to be non-terminating tasks of type RobotTask ():

type RobotTask e = Task PioneerInput

(MR PioneerOutput) e

Transitions are initiated by independent, event-generating
signal functions being run in parallel with the node task.
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Figure 3: Expressing FSA’s in Frob

Nodes are identified by string labels, and each transition is
associated with such a label denoting the destination. The
point here is to illustrate how a new domain-specific lan-
guage can be introduced by leveraging the existing concepts.
We thus deliberately keep the new abstraction as simple as
possible in order to not obscure this point, while acknowl-
edging that one in practice might want an abstraction with
more general applicability.

We introduce TaskNet as the type of FSA descriptions.
Elements of this type are just lists with one element for
each node in the FSA giving its label, the associated task,
and a list of possible transitions. A transition is just a pair
of an event-generating signal function and destination label.

type TaskNet =

[(Label, (RobotTask (), [Transition]))]

type Transition =

(SF PioneerInput (Event ()), Label)

type Label = String

The following recursive function implements a simple in-
terpreter for task nets. Given a label identifying the current
state and a task net, it looks up the task for the current
state along with its associated transitions. This task will de-
cide the overall behaviour until one of the transitions occur,
signalled by an event carrying a label identifying the next
state. The new state is used to invoke the interpreter recur-
sively. A label that does not exist in a task net is taken to
identify a final state and causes the interpreter to exit with
that label as the final result.

runTaskNet :: Label -> TaskNet

-> RobotTask Label

runTaskNet l tn =

case lookup l tn of

Nothing -> return l

Just (t, trs) -> do

rl <- t ‘abortWhen‘ (joinTrans trs)

case rl of

Left _ -> error "Task died!"

Right l -> runTaskNet l tn

Note that the overall result of applying runTaskNet to
a task net is a task. Thus, this way of describing an FSA
integrates elegantly with other task-based FSA encodings.
This might seem a trivial point, but the ability to extend
the domain vocabulary by capturing design patterns in new
abstractions is a big practical advantage over languages that
only offer a fixed set of abstractions.

The utility function joinTrans turns a list of transitions
into a single event-generating signal-function:

joinTrans :: [Transition]

-> SF PioneerInput (Event Label)

joinTrans [] = never

joinTrans ((e,l):rest) =

let e1 = e ‘tagSF‘ s

e2 = joinTrans rest

in (e1 &&& e2) >>> (arr (uncurry lMerge))

The example below shows how the task net abstraction
can be used. In the resulting task, the user can change the
robot’s behavior by using the mouse buttons. A left click
will change the type of the tracker being used, while a right
click will toggle the obstacle avoidance behavior between
disparity based obstacle avoidance and sensor based obstacle
avoidance.

net1 =

[ ("S0",(nullT,[(lbpE,"S1"),(rbpE,"S3")])),

("S1",(task1,[(lbpE,"S2"),(rbpE,"S3")])),

("S2",(task2,[(lbpE,"S1"),(rbpE,"S4")])),

("S3",(task3,[(lbpE,"S4"),(rbpE,"S1")])),

("S4",(task4,[(lbpE,"S3"),(rbpE,"S2")]))

]

where

task1 = colorTracking ‘withOA‘ disparityOA

task2 = ssdTracking ‘withOA‘ disparityOA

task3 = colorTracking ‘withOA‘ sensorOA

task4 = ssdTracking ‘withOA‘ sensorOA
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4.2 Subsumption Architecture
The subsumption architecture is perhaps one of the most

widely cited ideas for programming reactive robot systems
[3, 4]. A subsumption “program” is a set of blocks (signal
functions) connected by “wires” along which information
flows. Programs are designed in layers, ranging from sim-
ple low-level behaviors to high-level complex behaviors. The
coordination process for defining complex behaviors from
simpler ones only depends on two basic mechanisms: inhibi-
tion and suppression. Inhibition means a signal is prohibited
reaching the actuators and suppression means the signal is
replaced with another suppressing message.

We can implement something similar in Frob by associat-
ing priorities with signals. We introduce the type synonym
Stimulus for a “prioritized” signal sample, along with some
convenient abbreviations:

type Priority = Double

type Stimulus a = (a, Priority)

type Behavior a = SF PioneerInput a

type RControl = MR PioneerOutput

A prioritized behavior can easily be derived from an un-
prioritized behavior and a priority-determining behavior:

withPriority ::

Behavior a -> Behavior Priority

-> Behavior (Stimulus a)

withPriority b p = b &&& p

Subsumption between prioritized behaviors is captured by
the following definition. It is a simple pointwise selection of
the stimulus with the highest priority:

subsumes ::

Behavior (Stimulus a)

-> Behavior (Stimulus a)

-> Behavior (Stimulus a)

subsumes b1 b2 = (b1 &&& b2) >>> (arr f)

where

f ((a1,p1),(a2,p2)) =

if p1>p2 then (a1,p1) else (a2,p2)

Let us outline an example showing how these can be used.
We want to define a robot task where the robot will wander
randomly while avoiding obstacles, pick up pre-designated
objects should they happen to be close, and travel home
once all pre-designated objects have been picked up.

The homing behavior is parameterized on a boolean be-
havior indicating if it is time to return home. If not, then
the homing priority is 0 (i.e. the behavior is not active),
otherwise the priority is 2.

homing :: Behavior Bool

-> Behavior (Stimulus RControl)

homing allDone =

(travelTo home)

‘withPriority‘ (allDone >>> arr f)

where f p = if p then 2 else 0

travelTo :: Point -> Behavior RControl

travelTo p = ...

Pickup is initialized with a set of points representing the
positions of the pre-designated objects to pick up. Its output
is a prioritized control signal paired with a boolean signal in-
dicating whether all pre-designated objects have been picked

up. The pickup behavior’s priority is 0 until the first object
is close. Then it raises to a sufficiently high priority, say 5,
until the object has been picked up, at which point the be-
havior will invoke itself recursively on the rest of the object
position list.

pickup :: [Point]

-> Behavior (Stimulus RControl,Bool)

pickup [] = (idle ‘withPriority‘ constant 0)

&&& (constant True)

pickup (p:ps) = ...

The wandering behavior has a constant priority of 1. The
priority of the avoidance behavior is determined by sonar
readings. If an obstacle is sufficiently close, the priority is
raised so that avoidance suppresses all other navigation tasks.
Once an obstacle has been successfully avoided, the priority
of avoidance will drop and the other tasks regain control.
The details are omitted.

wandering :: Behavior (Stimulus RControl)

wandering = randomWalk ‘withPriority‘ (constant 1)

avoiding :: Behavior (Stimulus RControl)

avoiding = ...

Finally we can combine these prioritized behaviors using
the subsumption operator. Note how pickup is used to cre-
ate two behaviours, one for picking up objects, one for in-
dicating when all objects have been picked up. The latter is
passed to homing where it controls the priority of the homing
behaviour, as described above.

system :: Behavior RControl

system = (homing allDone

‘subsumes‘ pickup’

‘subsumes‘ wandering

‘subsumes‘ avoiding)

>>> (arr fst)

where

p = pickup [(200, 200), (100, 100)]

allDone = p >>> (arr snd)

pickup’ = p >>> (arr fst)

5. A TRACKING-BASED NAVIGATION SYS-
TEM

This section illustrates how notions from the application
domains of robotics, vision, and user interfaces can be inte-
grated within the AFRP framework. We illustrate through
a simple but still realistic system for vision-based robot nav-
igation. The task of the robot is to follow an object while
avoiding bumping into obstacles. The user can interact with
the system by choosing what object to track and follow,
which kind of tracker to use, toggling the obstacle avoid-
ance behavior on and off, and, if necessary, switch to manual
control.

We first turn our attention to visual tracking. Trackers
typically maintain a state that describes the position of the
tracked feature in the video frame. Under the assumption
that the tracked feature has not moved too far between two
consecutive video frames, the state is used to acquire an im-
age region from the latest video frame covering the tracked
feature. A stepper is then used to compute the new state,
and the feedback loop is closed by feeding this to the ac-
quiring component. The stepper may also return an accu-
racy value which can be used to estimate the target position
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more correctly. Since only a part of the video frame is used
for the computation, stateful tracking is more efficient than
processing the whole image as long as the tracked feature
does not move too quickly.

The two main components of a tracker are thus the source,
which acquires the target subimage, and the stepper, which
computes the new state. In our setting, both are signal func-
tions. The source takes the whole image signal and produces
the subimage signal, along with the state information used
for acquiring the subimage. The stepper consumes the signal
from the source and produces a signal of state values. The
init parameter in the stepper type specifies an initialization
value for the stepper. For instance, this can be a color value
for a color tracker. XVision2 stepper functions generally re-
turn a blob, which is a rectangular region described by the
upper left corner coordinates and width and height of the
blob.

type Src state =

SF (ImageRGB, state) (ImageRGB, state)

type Stepper init state =

init -> SF (ImageRGB, state) state

type Blob = (Int, Int, Int, Int)

The following is a very simple source function that just
returns the subimage:

source1 :: Src Blob

source1 = proc (im, blob) -> do

returnA -< (subImage (im, blob), blob)

Next we define a stepper that uses color for identifying
the feature to track:

colorStepper :: Stepper ColorSelector Blob

colorStepper c = arr f

where

f (im, blob1) = g blob1

(stepBlob im c)

g b1 b2 = let (x, y, w, h) = b1

(x2,y2,w2,h2) = b2

pad = 10

in limitB $

if w2<=0 || h2<=0 then b1

else (x+x2-pad, y+y2-pad,

w2+2*pad, h2+2*pad)

The XVision2 (native C++) function stepBlob is called
first. If no blob is detected for the given color value (which
sometimes happens, for example due to light conditions), the
state remains the same. Otherwise the new state is computed
with some padding around the region to provide a safety
margin. limitB is used to limit the coordinates according to
the screen dimensions. We then combine the source and the
stepper in a feedback loop to define our tracker:

makeTracker :: state -> init -> Src state

-> Stepper init state

-> SF ImageRGB state

makeTracker s0 i src stp = proc img -> do rec

(subImg, s1) <- src -< (img, s)

s’ <- stp i -< (subImg, s1)

s <- iPre s0 -< s’

returnA -< s

makeTracker can be used to define a tracker with any source
or stepper as long as they share the same state type. It re-
turns a signal function that takes whole images and returns
the tracking state. Note how the initialized delay operator
iPre is used to close the loop.

The next step is to define a pair of tasks for interactive
creation of trackers :

getBlob :: RobotTask Blob

getBlob = do

c1 <- getClick

let sf = proc inp -> do

mpos <- mousePos -< inp

returnA -< drawRect c1 mpos

c2 <- mkTask (sf &&& fvgiLBP)

let (x1,y1) = c1

(x2,y2) = c2

return (x1,y1,(x2-x1),(y2-y1))

colorTracker :: RobotTask (SF ImageRGB Blob)

colorTracker = do

blob0 <- getBlob

inp <- snapT

let c = getColorSelector

(subImage ((fviImage inp),blob0))

track = makeTracker blob0 c source1

colorStepper

return track

In getBlob, the user selects the first corner of the blob
by clicking the left mouse button. The corner returned by
getClick (c1) is then used to define a signal function (sf)
which outputs a rectangle from this corner to the current
mouse position. This signal function is used to form a task
which terminates on a left mouse button click, returning
the current position as the second corner of the blob (c2).
In colorTracker, a snapshot is taken of the current input
once a blob has been selected since the color to be tracked in-
side the blob must be determined on the current frame. The
color of the blob is then determined and used for creating a
color-based tracker. Note that the first class status of signal
functions (here, the tracker) is crucial in this definition and
where it is used below, especially the abilty to dynamically
instantiate and then switch into a signal function.

Up to this point, we have used tasks for the vision com-
ponent of the system, but no commands have been sent to
the robot. Thus we see that the task abstraction is useful in
domains beside pure robot programming.

Let us now use the tracker in code for driving the robot
and for displaying a rectangle on the live image showing the
region being tracked.

drive = do

tr <- colorTracker

let sf = proc inp -> do

(x,y,w,h) <- tr -< fviImage inp

(v,t) <- arr driveVector -< toVector

(mid(x,y,w,h))

returnA -< ddVelTR v t ‘mrMerge‘

drawBlob (x,y,w,h)

res <- mkTask (sf &&& fvgiLBP)

‘abortWhen‘ fvgiRBP

case res of

Left _ -> drive

Right _ -> followMouse
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driveVector :: Vector -> (Velocity, RotVel)

driveVector (x,y) = (v,w)

where

a = radian x y

v = limitA maxVelocity (k1 * x)

w = limitA maxTurn (signum a * k2 * a * a)

The image part of the input signal selected by fviInput

is fed into the tracker to get the blob state. The function
toVector takes a screen coordinate, which is in this case
the middle of the blob, and produces a force vector which
conceptually pushes the robot in the desired direction. Since
the camera is mounted on top of the robot and showing what
is ahead of the robot, this vector can be computed from the
middle of the bottom of the screen and the screen coordi-
nate. The resulting vector indicates whether the target is
to the left or right of the robot. How much to the left or
right determines the turning velocity. The magnitude of the
vector is used to determine the translational velocity. The
conversion of the imaginary force vector into appropriate ro-
tational and translational velocities is done by driveVector

where both velocities are bounded for safety reasons.
The signal function sf both drives the robot, by feeding

the translational and rotational velocities to the command
function ddVelTR, and draws a rectangle at the blob. This
signal function is used to define a task which either termi-
nates normally with a left button click or, because of the
added termination criterion, with a right button click. For
the former case, task is initiated again enabling user to se-
lect another target to track. Alternatively if the task termi-
nates with a right click then the overall task switches to the
task followMouse, where the user can drive the robot with
the mouse. The definition of followMouse is very similar to
drive, except that the force vector is computed from the
mouse position this time instead of blob.

Figure 4 shows an extension of the example. It adds a
simple user interface, more user interaction and obstacle
avoidance. The signal function butSG draws three buttons,
i.e. rectangles with labels inside. The event source butE

generates events corresponding to left button clicks inside
a rectangle, with the event value specifying which button
is pressed. The resulting events are merged into one by
buttonE. This final event will be used as the terminating
event of the driving task to choose between different contin-
uations. The two first buttons allow the user to switch to a
new target, specifying that either color tracking or dispar-
ity tracking should be used. The third button switches to
manual control.

The right button is used to toggle the obstacle avoidance
behavior on and off. The signal function accumHold takes
an event input signal where the events carry functions of
type a -> a. It maintains an internal state initialized to the
supplied initial value. The value of this state is also the value
of the continuous output signal. Whenever an event occurs,
the function carried by the event is used to compute a new
internal state. This means that toggleOA is a boolean signal
changing between True and False every time a right button
event occurs. toggleOA is both used to turn the obstacle
avoidance behavior on and off, and to display the current
obstacle avoidance mode on the screen in obsavSG.

The XVision2 function obsLines returns a list of lines
which are projections of obstacles ahead. These lines are
used by toVector2 with the position of the tracked object for

Figure 5: User-interface while robot is navigating
towards the tracked object

computing a force vector for guiding the robot. If there is no
obstacle right in front of the robot, it goes forward by follow-
ing the force vector produced by the tracked object. If there
is an obstacle in front, the closest gap between the obstacles
that is large enough for the robot to pass through is found,
and another force vector is computed towards this gap. Since
the magnitude of the obstacle avoidance vector will increase
the closer an obstacle is, this vector will eventually dominate
over the tracking vector, causing the robot to pass through
the gap. After the obstacle has been cleared, the tracking
vector will be dominant again and the robot continues to
drive towards the tracked object. The third boolean argu-
ment of toVector2 is used to turn obstacle avoidance on and
off.

Figure 5 shows the user interface in a frame coming from
the stereo camera mounted on top of the robot while the
robot is driven by drive2.

6. CONCLUSIONS
To date, robot programming has been an area rife with

innovative approaches to systems and software development
but relatively lacking in principled analysis. Yet, it is an
area that provides an interesting and challenging basis for
programming language research. In particular, the fact that
almost all operations are based on time-varying quantities
(indeed, time is a critical factor) in most algorithms offers
new and interesting challenges to programming languages.

Our experience with FRP has been quite promising. We
have found it to be a flexible and powerful method for in-
tegrating the various time-based computations required in
vision, robotics, graphics, and human-machine interaction.
Furthermore, the recent development of AFRP has been a
great practical step forward in terms of the scalability of our
systems.

At the same time, we have learned several lessons in the
use of FRP. First, we have found that most toolkits cannot
be treated as black boxes with a single, high level interface.
For example, our vision code is imported at a level which
allows us to redefine some of the underlying C++ abstrac-
tions (e.g. a visual tracker) in FRP. This level of interface
is far more flexible and useful when integration occurs. Sec-
ond, we have found that there is often a natural evolution
from high-level (FRP) code to low-level (e.g. C++) code as
applications develop and tool-box deficiencies appear. As a
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data Navigation_Mode = ColorTracking | DisparityTracking | Manual

but1, but2, but3 :: Blob

but1 = (10, 10, 90, 20) -- similar for but2 and but3

butE :: Blob -> a -> SF PioneerInput (Event a)

butE rect res= fvgiLBP >>> (arr check)

where

f (x0, y0, w, h) (x, y) = x>=x0 && x<=x0+w && y>=y0 && y<=y0+h

check ev = (filterE (f rect) ev) ‘tag‘ res

but1E, but2E, but3E :: SF PioneerInput (Event Navigation_Mode)

but1E = butE but1 ColorTracking

but2E = butE but2 DisparityTracking

but3E = butE but3 Manual

buttonE :: SF PioneerInput (Event Navigation_Mode)

buttonE = proc inp -> do

(e1,(e2,e3)) <- (but1E &&& but2E &&& but3E) -< inp

returnA -< lMerge e1 (lMerge e2 e3)

butSG = drawBlob but1 ‘mrMerge‘ drawBlob but2 ‘mrMerge‘ drawBlob but3

‘mrMerge‘ fvgoOverlayText (20, 25) "COLOR TRACKER" Red

‘mrMerge‘ fvgoOverlayText (15, 55) "STEREO TRACKER" Red

‘mrMerge‘ fvgoOverlayText (40, 85) "MANUAL" Red

drive2 trackTask = do

tr <- trackTask

let sf = proc inp -> do

rbpE <- fvgiRBP -< inp

toggleOA <- accumHold False -< rbpE ‘tag‘ not

(x,y,w,h) <- tr -< fviImage inp

ls <- obsLines -< fviImage inp

(v,t) <- arr driveVector

-< toVector2 ls (mid (x,y,w,h)) toggleOA

returnA -< ddVelTR v t

‘mrMerge‘ drawBlob (x,y,w,h)

‘mrMerge‘ butSG

‘mrMerge‘ obsavSG toggleOA

res <- mkTask (sf &&& buttonE)

case res of

ColorTracking -> drive2 colorTracker

DisparityTracking -> drive2 dispTracker

Manual -> followMouse2

where

obsavSG p = let str = if p then "Obstacle Avoidance :: ON "

else "Obstacle Avoidance :: OFF"

in fvgoOverlayText (160, 20) str Red

Figure 4: Main task for Tracking-based Navigation System
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result, there is a natural merging of functionality over the
life of a project. Finally, we have found that working in FRP
is ideal for the prototyping “beyond the state of the art.”
The flexible facilities of FRP (and its embedding in Haskell)
make it an ideal platform to discover and develop domain
abstractions.
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