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Summary. The field of distributed computing started around
1970 when people began to imagine a future world of multi-
ple interconnected computers operating collectively. The the-
oretical challenge was to define what a computational prob-
lem would be in such a setting and to explore what could and
could not be accomplished in a realistic setting in which the
different computers fell under different administrative struc-
tures, operated at different speeds under the control of un-
coordinated clocks, and sometimes failed in unpredictable
ways. Meanwhile, the practical problem was to turn the vision
into reality by building networks and networking equipment,
communication protocols, and useful distributed applications.
The theory of distributed computing became recognized as a
distinct discipline with the holding of the first ACM Princi-
ples of Distributed Computing conference in 1982. This pa-
per reviews some of the accomplishments of the theoretical
community during the past two decades, notes an apparent
disconnect between theoretical and practical concerns, and
speculates on future synergy between the two.

1 Introduction

Theoretical computer science had its beginnings in mathe-
matical logic through the attempt to formalize the notion of
effective procedure. Turing machines [27], general recursive
functions [16], and lambda calculus [5] were among the pro-
posed models. They were eventually all shown to be equiv-
alent in the sense of defining the same class of functions
(cf. [6]), now known as the Turing-computable functions [24].
Church’s thesis states that all reasonable models of computa-
tion compute only the Turing-computable functions [4].

The Turing machine model and the notion of simulation
upon which the equivalence proofs were based was extremely
useful in modeling early computers. Computers then typically
consisted of a single processing element operating determin-
istically. They were generally run in batch mode, meaning

that the inputs for each job were made available at the begin-
ning of the job, the job was expected to run to completion,
and the only thing that mattered about a completed job was
the output that it produced during its run. Computers were
thus deemed to be devices for evaluating functions. Since they
were subject to the simulation methods used to establish the
equivalence of the early models of effective procedure, they
too could only compute Turing-computable functions. The
only real questions of interest about a computable function
were how fast could it be computed and by what methods?
These questions were the genesis of the present-day fields of
complexity theory and algorithms.

The practical picture began to change as early as the
1960’s. Parallel hardware such as DMA channels began to
be incorporated into computers [15]. Multiprogramming and
multitasking operating systems were introduced to make bet-
ter use of this new hardware [8]. Models of computation ad-
equate for operating systems had to address issues of concur-
rency and non-terminating computations [25], both of which
remain at the heart of distributed computing research today.
Concurrency, within computer systems and between such sys-
tems and their environments, and the uncertainty it intro-
duces, is fundamental to the understanding of distributed sys-
tems. Liveness properties replace termination conditions in
many interactive problems.

The field of distributed computing theory distinguished
itself from the related areas of operating systems and paral-
lel computing when it began to focus on the intrinsic char-
acteristics of physically distributed systems: the distinguish-
ing elements of true concurrency (as opposed to the “pseudo-
concurrency” that arises from task-switching in uniprocessor
operating systems), asynchronous computation, communica-
tion delays, failures of communication or processors, and de-
centralized administration.

The original goals of this new field were ambitious: To
build a mathematical theory of distributed computing that
would shed light on distributed computing systems just as
Turing machine theory had done for sequential computers.
The hope was to find an abstract distributed model that
would capture the salient features of real distributed systems
while suppressing distracting and unenlightening details of
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the physical world. The theory to be constructed was to be
elegant, general, and powerful.

Twenty-plus years later, these goals seem hopelessly
naı̈ve. The theory of distributed systems is immensely more
complex than its sequential counterpart. Every one of the dis-
tinguishing elements has seemingly endless plausible vari-
ations. Elegant theoretical assumptions such as pure asyn-
chrony (no timing assumptions whatsoever) and Byzantine
faults (no assumptions limiting faulty behavior) lead to pes-
simistic results that do not jibe well with real-world experi-
ence.

Even finding precise specifications for the problems to be
solved by distributed systems has proven to be much more
difficult than expected. Many tasks of interest in the real
world include philosophically subtle interplays of knowledge,
cooperation, and competition in systems that can perhaps best
be described as multiagent games. The particular input-output
behavior exhibited by the system in isolation may be of less
interest than global properties about the interaction of the sys-
tem with its environment.

The remainder of this paper takes a very high-level view
of theoretical distributed computing research to date and ar-
gues that there has been a disconnect between theory and ap-
plications. Much of the theoretical work concerns oversim-
plified problems on unrealistic models. Theoretical results,
which are often clever and sometimes deep, are nevertheless
difficult to apply to real-world problems. Attempts to make
the models and problems more realistic while retaining the-
oretical elegance and generality have had limited success.
While the theoretical work provides a framework and some
good intuition for thinking about real-world distributed sys-
tems, it falls short of providing the clarity of understanding
that would lead to the broadly-applicable synthesis and anal-
ysis tools envisioned early on.

Some of the most important contributions of the theory,
which have successfully impacted and illuminated practice,
are impossibility results and pessimistic lower bounds. Such
results, often in very general and abstract models, justify
implementation- or application-specific modeling assump-
tions. In sequential computing theory, a proof of NP-hardness
may justify the search for application-specific heuristic so-
lutions. Similarly, solutions to many distributed computing
problems imply a solution to the simple consensus problem—
justifying assumptions of synchrony, fault-freedom, failure
detectors, use of randomization, or an appeal to strong com-
munication primitives. The theory influences the implemen-
tation, but does not contribute directly to the solution.

We argue that the future viability of the field lies in its
ability to contribute to solutions of practical real-world prob-
lems in theoretically elegant ways. This will require the iden-
tification of distinctive distributed computing problem do-
mains and the development of domain-specific system mod-
els. While a unique general theory of distributed systems may
be unattainable, the practical world of distributed computing
is a rich field that is ripe for theoretical development.

2 Early Research

Early work on distributed computing grew out of work on
practical problems such as operating system design, reliable

network communication, network routing, email systems,
concurrent databases, and avionics systems. The early the-
oretical work focused primarily on problems of concurrency
(for shared memory) and fault-tolerance (in message-passing
models). Time-slicing in operating systems led naturally to a
concurrency model of interleaved atomic actions. Problems
fruitfully discussed in this model included synchronization
problems such as mutual exclusion, dining philosophers, and
readers/writers. In the realm of fault tolerance, the Byzantine
generals problem [22] showed the world that achieving fault
tolerance was considerably more difficult than simple use of
triple redundancy and majority voting would suggest.

2.1 Early Research Agenda

Against this background, the ambitious early research agenda
was to develop a theoretical framework for distributed com-
puting systems that supported analysis, synthesis, and veri-
fication of distributed protocols. Any computational frame-
work comprises several components:
• Natural abstract models.
• Meaningful performance measures.
• Comprehensive and comprehensible problem specifica-

tions.
• Rules of composition that enable large systems to be built

from simple, well-understood components and that enable
complex systems to be decomposed into simpler, more
easily understood components.

Once a suitable framework for distributed systems was con-
structed, the more ambitious goals could be attacked:
• Develop a complexity theory of distributed computation.

Prove limits on what can and cannot be done by dis-
tributed systems. Understand how performance of large
systems depends on the performance of their components.

• Develop general synthesis techniques to aid in finding a
correct distributed protocol for a given problem specifica-
tion.
• Develop general verification techniques to aid in proving

the correctness of distributed protocols.
• Create a library of generally useful primitive building

blocks and analyze their properties.
• Develop domain-specific languages for describing dis-

tributed computations.
The above goals apply to any theory of computation. Addi-
tional goals, specific to distributed systems, include:
• Understand and model intuitive notions of cooperation

and coordination.
• Develop general and powerful fault-masking techniques.
• Develop techniques for transforming concurrent algo-

rithms to distributed settings.

2.2 Accomplishments to date

The two decades of research accomplishments of the field
are well documented in the proceedings of the several dis-
tributed computing conferences and in various scientific jour-
nals.1 We will not try to summarize them here except to say

1 The reader is referred to [18] for a comprehensive reference to
many of these results.
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that much progress has been made toward these goals. Many
abstract models have been proposed that reflect interesting
aspects of real systems. Some generally-agreed-upon perfor-
mance measures have emerged. Many non-trivial distributed
problems have been analyzed and solved. Many limits have
been established on what can be achieved. Most important
perhaps has been an exploration of the complexity explo-
sion that results from dealing simultaneously with notions
of computation, concurrency and asynchrony operating in a
geographically distributed, decentralized environment con-
trolled by agents that are both cooperative and competitive.
The landscape of distributed computing has been mapped out
to a considerable degree. Theoretical results have challenged
previously-held beliefs (such as the sufficiency of triple re-
dundancy for single-fault masking) and exhibited in stark re-
lief strange phenomena that exist in the real world (such as the
impossibility of masking even a single process crash failure
in as general a way as previously believed). The conceptual
framework that has been built is a firm basis for both practi-
cal work in distributed systems and also for future theoretical
development of the field.

Despite these considerable successes, the field has not
achieved the research goals set out early on for a general
unified theory of distributed computing. The field has also
not had as large an impact on practitioners as the early re-
searchers had hoped it would. In retrospect, the original goals
were naı̈vely optimistic. The real world is vastly more com-
plicated than originally envisioned. General theoretical mod-
els often fail to account for significant aspects of real-world
problems, and more specific models tend to become unwieldy
and difficult to apply.

In the remainder of this paper, we explore in some detail
properties of distributed systems that make them difficult to
model and reason about, both as a way to explain the unex-
pected obstacles encountered during the first two decades of
theoretical research, and also to suggest fruitful directions for
future research.

3 A Disconnect between Theory and Practice

A topic of conversation at several of the early distributed
computing conferences was the question of why theoretical
distributed computing research was not having a greater im-
pact on practitioners. One reason is that it takes time for new
ideas to percolate across discipline boundaries. But even to-
day, many of the most significant theoretical advances such
as protocols for distributed consensus, leader election, and
self-stabilization have found only limited practical applica-
tion. Large-scale distributed systems are still either primarily
client-server based, and hence do not face the same problems
as what are now known as “peer-to-peer” distributed systems,
or they use ad hoc protocols and algorithms tailored to the
specific application. Programming fully distributed applica-
tions remains difficult!

We believe one of the primary reasons for the failure of
the theoretical community to have greater impact on the prac-
tical world of computing has been a lack of sufficient gen-
erality and realism in models, methods, and results. In short,
it has failed to achieve the ambitious research goal of creat-
ing a general theory of distributed systems! The field is much

richer than was originally envisioned. No universal model has
emerged on which to build a general theory. Many detailed as-
sumptions are needed to make problems tractable. Finding the
“right” abstractions to capture the essence of real-world prob-
lems and finding the “right” primitives from which to build
a compositional theory have both proven difficult. Easily-
applied rules of protocol composition that preserve proper-
ties of interest are elusive. Proofs of correctness are still no-
toriously difficult to produce, despite considerable progress.
Without generality in methods or results, it is difficult to ap-
ply theoretical results to practical situations, for one or more
of the underlying assumptions will often fail to be satisfied.

This is not to say that the theoretical work is misguided or
unsuccessful. Theory’s greatest value is in providing frame-
works for thinking about problems, methods and techniques
for finding potential solutions, and paradigms for analyzing
the final results. Theory codifies knowledge obtained in one
problem domain so that it can be transmitted to others and ap-
plied in new problem domains. Distributed computing theory
has been quite successful at laying the groundwork for further
study, at providing formal models that allow rigorous study of
selected problems, and by generating elegant techniques for
analyzing particular problems. Getting a firm understanding
of the landscape is a necessary prerequisite to achieving the
desired level of abstraction and generality—one that is broad
enough to encompass interesting new situations yet specific
enough to address the crucial issues. Much progress has been
made, but more needs to be done.

In the early work, models and problem statements were
kept simple in order to remain elegant and tractable, but this
has often resulted in an overly-pessimistic view of the world.
Even where solutions to particular problems exist, they may
be complex to implement and costly to run. To make further
progress, one must continually revisit the underlying assump-
tions with the goal of relaxing those that are unnecessarily re-
strictive or that conflict with reality. We now examine some
of those assumptions.

3.1 Global coordination

Many models of distributed systems include unrealistic or
problematical assumptions about global coordination of the
system, e.g.,

• All processes start at time zero in a specified initial state.
• All processes terminate after a finite amount of time.

In practice, processes start and stop at different times, and
a large distributed computation such as the internet Domain
Name System [19] never terminates, even though individual
processes are continually starting and stopping.

3.2 Process step timing and scheduling

Any distributed system must somehow account for the fact
that processes controlled by independent clocks will neces-
sarily run at different speeds. In the real world, step times
of physical processors are affected by variables such as tem-
perature and voltage that vary unpredictably but are likely to
remain within reasonable bounds. On the other hand, step
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times of logical processes that result from time slicing are
wildly varying. Most distributed models, in order to remain
tractable, have eschewed timing details and assumed instead
that processes are either fully synchronous or fully asyn-
chronous.

In the fully synchronous model, all processes operate in
lockstep, either with respect to the basic process step or with
respect to communication with other processes. This is tan-
tamount to assuming that all processes run at exactly the
same speed, with no variation permitted. This assumption
is difficult to justify in real-world situations where process
speeds are determined by independent unsynchronized clocks
and communication is subject to variable and unpredictable
delays. While a powerful model for proving general lower
bounds, it does not support practical algorithms.

In the fully asynchronous model, no assumptions are
made about the relative speeds of different processes. This
also obviates the need to make detailed timing assumptions,
but the resulting model admits runs that are highly unlikely
to occur in practice, thereby crippling the protocols with un-
realistic constraints. For example, not only is there no a pri-
ori bound on the speed ratio of two processes; there is also
no assumption that the ratio is constant within a run. A run
in which process 1 takes one step after the first step of pro-
cess 2, two steps after the second step of process 2, four
steps after the third step of process 2, eight steps after the
fourth step of process 2, and so forth, is perfectly acceptable.
Without any timing assumptions, the commonly-used practi-
cal tool of timeouts is inapplicable. Not surprisingly, many
problems proved impossible or expensive in the fully asyn-
chronous model have been “solved” in practice.

Real systems tend to fall somewhere in between the two
extremes of full synchrony and full asynchrony. Coordinated
action is generally only possible when processors share a
common clock. Thus synchronous models are only really
applicable to tightly-coupled parallel computers and not to
distributed systems. Full asynchrony is overly general for
physical processors whose step time variability is bounded.
But how best to capture the amount of variability that can
be expected in practice is unclear. Assuming any particular
fixed bound on process step times is arbitrary and unpleas-
ing. Parameterizing this bound for the specific implemen-
tation to instantiate is dangerous, because incorrect or out-
dated settings can result in system failure, and non-modular,
because bounds for one component may depend on bounds
for another, and cycles seem inevitable. Moreover, conser-
vative delay estimates lead to poor performance. Other ap-
proaches, such as assuming fixed but unknown bounds (so
that the same protocol is supposed to work for all bounds)
have been explored, resulting in a complex theory of mod-
els and algorithms [9,10]. Work on failure detectors [3] has
made significant progress in encapsulating the issues of syn-
chronization and fault-tolerance. But failure detectors (or re-
liable broadcast primitives, another encapsulation of asyn-
chrony and faults) can bias designs towards a ‘consensus bot-
tleneck’, where applications are constructed as monolithic
state machines with centralized updates. Such designs incur
significant performance penalties, in which the advantages of
parallelism and fast components are sacrificed to coordination
overhead with slow peers.

An alternative approach, that will become increasingly
important in the future, is to incorporate clocks and explicit
notions of real time into the model. For example, full asyn-
chrony and timeouts can coexist in a model with real-time
clocks in which one assumes a fixed upper bound on the step
time of any process but no corresponding lower bound. Any
asynchronous schedule of process steps remains possible in
such a model since processes can run arbitrarily fast. The real-
time clock, however, allows a process to observe the passage
of time and thereby infer a lower bound on the number of
steps taken by any other process.

Of course, once real time is introduced into a model,
then one can begin considering real-time properties of the
computation—when outputs appear may be just as impor-
tant as what results are computed. While real time proper-
ties are important for practical applications, they can lead to
complex and tedious bookkeeping in both code and analyses
and overly-specific solutions that have little or no generality.
Partly because of these difficulties, real time models are only
beginning to be addressed by the distributed computing com-
munity.

3.3 Communication system

The communication system offers even more possibilities for
variation than process scheduling. At the one extreme, com-
munication is synchronous and immediate. Each message
sent by a synchronous process at the beginning of a round
is received at the end of the same round. There is no need for
message buffers since every message is received immediately
after being sent.

At the other extreme, message systems can be completely
asynchronous. In this model, a message sent can be delayed
arbitrarily long before eventually being delivered. Messages
do not have to be delivered in the order they are sent. The
message system can be thought of as an infinite unordered
buffer that contains all of the messages in transit. In the most
liberal version of this model, a process might receive no mes-
sages on a step even though many are waiting in the message
buffer for delivery. The only constraint imposed by this model
is that every message delivered must have been sent sometime
in the past—messages are not spontaneously generated by the
message system.

Many intermediate models have been studied. The mes-
sage buffer might behave like a single queue, so that mes-
sages are delivered in the same order as they were sent. The
message buffer might act like a set of queues, one for each
process. In this case, messages are delivered to each process
in the order sent, but messages to different processes can be
delivered out of order. Or the sender might have a queue, en-
suring that messages from a given sender are delivered in the
order sent, but messages from different senders might be de-
livered to the same recipient out of order.

In practice, we do not have infinite message buffers, and
recipients may be unable to receive messages as fast as they
are being sent. In this case, messages are lost in transit. This is
a kind of “fault” in the message system, but unlike other kinds
of faults, this is not due to a malfunction of the communica-
tion system but is rather a transient property of the particular
order of execution. How this should be modeled in a realistic
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way is still an open problem. One may of course make the
pessimistic assumption that messages can be arbitrarily lost
in transit, assuming only some minimal “liveness” property
to ensure that sometimes messages do get through. In prac-
tice, though, whether or not messages get through depends
in complicated ways on the traffic in the network. Interest-
ing protocols such as TCP [26] require message loss to adapt
gracefully to network congestion. A theory adequate to model
such protocols would need a realistic model of network traf-
fic that does not yet exist. In the absence of such a theory, a
protocol’s performance can be considered for the likely case
that communication is failure-free, and the protocol should
degrade gracefully as messages are lost.

As with process scheduling, real time and timeouts play
important roles in real-world networks by allowing processes
to detect and recover from lost packets and other kinds of
network faults.

3.4 Fault tolerance

Understanding and controlling system behavior in the pres-
ence of faults is much more important for distributed systems
than for sequential systems. There are three major reasons
for this. Most obviously, redundancy is implicit in the notion
of distribution, and redundancy offers opportunities for fault
tolerance that simply don’t exist in single-processor systems.
Secondly, distributed systems are most frequently viewed as
operating continuously in a reactive, real-time environment;
there is no opportunity to rerun the computation in case of
component failures. Finally, the larger the number of compo-
nents with independent failure modes, the greater the proba-
bility of at least one failure actually occurring. In large real-
world distributed systems, failures are the rule rather than the
exception and so must be dealt with at all levels—problem
specification, algorithm design, and analysis.

3.4.1 Fault models

In order to make systems fault tolerant, one must have a
model of the kinds of faults to be expected. Almost endless
variation is possible. First of all, one must consider which
components of the system are likely to fail, processors or
the communication systems, and how those faults manifest
themselves. A faulty process might simply stop running, or it
might continue to run but fail to send certain messages that
it should send, or it might continue to run but behave com-
pletely erratically, sending incorrect messages and producing
incorrect outputs (so-called Byzantine faults).

Byzantine faults are particularly difficult to deal with
since every process must be distrustful of every message that
it receives. The attraction of the Byzantine fault model is that
it does not require a detailed characterization of the kinds of
faults to be expected. Once a process is deemed to be faulty,
it can do anything at all.2 Weaker fault models always invite

2 Actually, even Byzantine-faulty processes are constrained in
what they can do. Typically the model does not enable them to pre-
vent non-faulty processes from communicating directly, in contrast
to the denial-of-service attacks prevalent on the internet.

the question, “Why does one believe the ‘permitted’ faults are
the only ones likely to occur?” For example, why should one
assume that a crashing process stops cleanly without send-
ing bogus messages? Under what circumstances might a pro-
cessor fail to send messages but otherwise continue correct
operation?

In the real world, we often distinguish between natural
faults and malicious (Byzantine) faults. Natural faults are as-
sumed to occur independently of the computation in progress
and are usually assumed to result from a random process.
Thus, a message might be randomly corrupted (a transient
fault), or a processor might randomly overheat and become
damaged (causing a persistent fault). Independent random
faults can often be detected (with high probability) by simple
redundancy techniques such as repeating the computation and
comparing results, whereas malicious faults lack such nice
properties. The malicious fault model is the worst-case model
of fault tolerance. It demands that protocols operate correctly
no matter what faults occur. But masking Byzantine faults is
often expensive or impossible, so one often settles for lower
degrees of fault tolerance.

3.4.2 Adversaries

In considering fault models, it is often convenient to imagine
a game situation between the protocol, which is trying to pro-
duce a correct result, and an adversary, who is trying to create
faults at just the worst possible times so as to cause the pro-
tocol to fail. The adversary wins the game if it has a strategy
that causes the protocol to fail (with non-negligible probabil-
ity). The protocol wins if it is immune to the adversary attacks
(with high probability).

The adversary corresponding to the Byzantine fault model
is a nondeterministic process that can create any sequence of
faults (subject to limitations on the number of faulty proces-
sors, discussed in Section 3.4.3 below). Protocols that win
against a Byzantine adversary are clearly desirable since they
tolerate any sequence of Byzantine faults that may occur for
whatever reason. However, as mentioned previously, the cost
of such protocols may be so large as to make them unattrac-
tive to use, and often Byzantine-tolerant protocols do not
exist. One is motivated therefore to find weaker adversaries
(corresponding to weaker fault models) that nevertheless are
capable of exhibiting the fault properties that one expects to
see in practice.

One way in which the Byzantine adversary is unrealisti-
cally strong is that it ignores the question of how the particu-
lar bad sequence of faults that makes the protocol fail might
be produced. In this model, all fault sequences receive equal
attention. No distinction is made between likely and unlikely,
or easily-computed and hard-to-compute, fault sequences.

Real-world faults occur for a reason. Natural faults result
from some sort of a randomized physical process that is more
or less independent of the computation at hand. Malicious
faults result from an agent acting strategically to disrupt the
protocol. Either way, the faults can be thought of as result-
ing from a randomized computational process that is subject
to information and computational constraints. Even an intel-
ligent, malicious agent that is trying to compromise a system
must still somehow compute the faulty actions necessary to
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bring the system down. Such an agent is considerably weaker
than a Byzantine adversary. For example, protocols that use
strong cryptographic checksums to assure data integrity are
believed to be secure in practice; however, they can be easily
defeated by a non-deterministic Byzantine adversary that is
able to guess the decryption key.

Once we bring adversaries into our model, we are in the
unenviable position of having to define precisely the capabil-
ities and actions of the adversary, and to justify the relevance
of those assumptions in practice. In principle, any part of a
system might fall under control of an adversary and therefore
be considered faulty. Not only can the processors and commu-
nication subsystem misbehave, but the adversary might also
corrupt underlying infrastructure such as the physical devices
that control process scheduling and random number genera-
tion upon which the system depends.

The power of the adversary must be somehow limited;
otherwise most problems have no solution. Adversaries can
be limited in three general ways: static limits on the numbers
and kinds of faults produced, limits on information available
to the adversary, and computational limits on the adversary’s
power to process that information. Static limits include the
common case of assuming a bound on the number of pro-
cesses that can ever become faulty, or a bound on the rate
at which messages or other faults can occur. Informational
limits might prevent an adversary from predicting future ran-
dom choices that affect the computation. They might pre-
vent an adversary from seeing inside processes it does not
control. They might prevent an adversary from seeing traf-
fic on private communication channels. Computational limits
assume that the adversary has limited computational power
with which to choose its actions.

To actually impose such limits on an adversary in a pre-
cise and rigorous way, one is forced to describe a computa-
tional model that includes processes, communication, envi-
ronment, and adversaries, all of which can interact in com-
plicated ways. For example, a “dynamic adversary” is lim-
ited in the total number of processes it can corrupt, but the
information available to it depends on previous corruptions.
As long as a process is uncorrupted, its memory is hidden
from the adversary. However, the dynamic adversary can, at
any time, decide to corrupt a particular process. At that time,
it gets to see the entire process state and can also take con-
trol of the behavior of the process. Or perhaps the adversary
gets to see the entire history of the corrupted process. While
the dynamic adversary is an appealing abstraction of a well-
funded subversive group, it is so complicated that its under-
lying assumptions become harder and harder to justify in the
real world. For example, why should we assume the adversary
is limited in the number of processes it can corrupt? Why is it
reasonable to assume that it can corrupt any process it wants
to whenever it wants to? If the reason the number is limited is
that some processes are inherently incorruptible, then that set
would presumably be fixed at the beginning and the adversary
would not have the freedom to corrupt any process it chooses
to.

Adversarial assumptions constrain the safe range of appli-
cation of a system. Care must be taken in composing systems
with different assumptions, and they must be documented and
tracked as system components are abstracted and applied in
new contexts. (A forgotten assumption, that frequent reloca-

tion would force periodic re-boots, led to poor performance
when Patriot missiles were statically sited during the 1991
Gulf War [14].)

3.4.3 Tolerance requirements

The above discusses what kinds of faults to expect. There is
also an issue with how many faults to tolerate. Intuitively,
one wants protocols that tolerate faults as well as possible.
In practice, one generally doesn’t know how many faults to
expect, so one wants the likelihood of incorrect operation to
be as small as possible for however many faults actually do
occur. Of course, if too many components fail, one expects
the protocol to fail, but one desires protocols that make a
“best-effort” attempt to mask faults and do “as well as pos-
sible”, even if a hoped-for threshold is exceeded. For exam-
ple, both on-board processors simply shut down during the
infamous Ariane-5 rocket failure, although the duplicated ex-
ception was in a superfluous routine [2]. Surely it would have
been better for the second processor to sense it was running
in simplex mode and to at least attempt to proceed without
the offending process?

By way of contrast, it is typical in theoretical papers to re-
place the “best-effort” requirement with a threshold require-
ment. For a threshold t, this states that the protocol must op-
erate correctly if at most t faults occur, but no requirement is
imposed if more than t faults occur. (This holds true even for
many algorithms which claim to be “gracefully degrading” or
“adaptive”.) A requirement for gradual degradation of service
with increasing faults, as is common for survivable systems,
cannot be specified using the threshold model. Moreover, it
is sometimes possible for a protocol to exploit the threshold
requirement by relaxing its resistance to additional faults as
it observes that more and more faults have already occurred,
resulting perhaps in improved efficiency but at the great ex-
pense of survivability under high fault loads.

3.5 Environments

The environment of a distributed system is the “glue” that
binds together the processes, communication system, and ex-
ternal inputs. The environment is generally assumed to con-
trol the non-deterministic and randomized aspects of the sys-
tem. That is, the environment supplies the information that
determines a particular run of the system.

Whatever is left to the environment is subject to assump-
tions that the environment operates correctly. In the case of
asynchronous process scheduling, one usually assumes some
sort of fairness condition on the environment that at least im-
plies that no processes are starved (that is, at every point in
time, every correct process eventually gets to take another
step). Does it make sense to talk about faulty environments?
For example, a faulty environment might indeed starve a cor-
rect process. Is this a kind of fault we are concerned about?
Why or why not? Presumably the answer to such a question
would arise from an investigation of the physical processes
that justified our original assumption. What do we have to as-
sume about the real world in order to believe that every cor-
rect process will eventually take another step? Presumably
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this argument would boil down to a basic understanding of
physics and the relative independence of spatially-separated
physical devices. The validity of such an analysis must be re-
examined as systems are adapted to new uses: an environment
failure, or rather the falsification of an environmental assump-
tion, was the root cause of the Ariane-5 rocket failure.3 Are
those assumptions subject to manipulation by an adversary?
Maybe or maybe not, but we can at least pose the question.

4 Future Directions

The previous section surveyed some of the issues that make
it difficult to find general models for real-world distributed
computing situations that are both useful and accurate. As a
result, much theoretical distributed computing research has
opted for simplicity and elegance rather than practical accu-
racy. There was good reason to believe initially that a com-
prehensive general theory would emerge, but our experience
to date suggests that a general theory that supports synthe-
sis (as opposed to lower bounds) is not on the horizon. Fu-
ture research needs to become more specific to the particular
application domain and environment characteristics. Models
need to be extended in various directions to overcome the
limitations discussed previously. Decisions on what features
to include and what not to include should be made in the
context of the motivating problem domain. The result will
be many domain-specific models rather than a universal gen-
eral model. Generality may eventually emerge as the various
domains become better understood, but for now, pragmatism
should be emphasized. Carrying out this program will require
interdisciplinary research between the theoretical community
and the more practical domain-specific research communi-
ties.

Below are some of the issues that will be increasingly im-
portant in future work.

4.1 Real time

Real-time properties are critical to many real-world situations
such as process control, but they arise in some form or other
in almost any practical application. It is not enough to even-
tually complete a task; the result must become available soon
enough to become useful. Real-time computing has histori-
cally been considered a distinct research area, but timing is-
sues are too pervasive to be viewed as a subspecialty. Various
theoretical models of time are possible, ranging from the view
of time as a partial ordering on events [17] all the way to con-
sidering time as a continuously-varying real number. Intro-
ducing continuity into otherwise-discrete models of computa-
tion raises a number of interesting issues in its own right [1].
Weaker notions of time that allow modeling discrete clocks
and timeouts should also be explored more extensively. Time
and timing constraints must also be incorporated into problem
specifications and performance measures.

3 Flight characteristics of the Ariane-5, specifically horizontal
bias measurements, exceeded values observable in safe launches of
the Ariane-4. When the Ariane-4 software was ported to the new
platform, this crucial environmental assumption was not correlated
with the anticipated change in flight characteristics [2].

4.2 Communication systems

The assumed underlying communication mechanism has a
large effect on the applicability of a distributed computing
model. Communication systems have historically been con-
sidered a distinct research area (networking), but the ability
to accurately model network properties is crucial to many dis-
tributed domains. Properties such as performance, survivabil-
ity, and security of distributed systems essentially depend on
the structure of the communications network. Realistic adver-
sarial models such as one needs in modeling internet security
may require detailed information on

• connectivity of the underlying graph;
• the sets of communication paths that an adversary may

control;
• how much control an adversary has over timing and syn-

chronization;
• how much variability is expected in packet routing.

Moreover, a balance between expected-case and worst-case
performance, crucial to practical systems, presumes a good
understanding of the expected regime. Collaboration with
networking specialists is likely to be particularly rewarding.

4.3 Fault notions

Fault-tolerance has been a cornerstone of much of the early
theoretical distributed computing research. Simple fault mod-
els that work well for benign faults of nature break down
when considering intentional fault behaviors. While inten-
tional deviations from a protocol are often called “malicious
faults” and used as justification for the Byzantine fault model,
the result is far too pessimistic. Most agents are not malicious
but are more accurately described as self-interested, or oper-
ating according to internal belief structures that may be ir-
rational according to other plausible belief structures. Such
agents are neither benign nor malicious but operate some-
where in between. Many risks are tolerable because most real-
world agents do not exhibit extreme Byzantine behavior. To
reason about agents, one may need to understand their knowl-
edge and motives. Assuming full honesty is certainly naı̈ve.
But assuming the worst precludes many practical solutions.

4.4 Randomized protocols

Randomization is crucial to many distributed protocols. Some
of its many uses include breaking symmetry, tagging data
with globally unique identifiers, and allowing use of cryptog-
raphy [13]. Randomization can be introduced into a model
either by giving processes explicit access to random number
generators or by making probabilistic assumptions about the
environment, for example, that random noise is injected into
every message sent. Whatever the source of randomness, the
effect is to impose a probability distribution on the space of
possible behaviors. Certainty properties may be replaced with
properties that hold only with high probability.

If explicit random number generators are introduced into
the model, a new fault modality must also be considered—
randomization faults. Namely, suppose the random number
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generator produces outputs with the wrong distribution. This
could lead to processes that exhibit correct behaviors but with
the wrong probabilities. Detecting and masking randomiza-
tion faults may be an important consideration in the practi-
cal application of randomized protocols since we rarely have
confidence in the true randomness of our random number
sources.

4.5 Problem specifications

Perfection is difficult in real-world distributed systems. In
many cases, absolute correctness properties need to be re-
placed by probabilistic ones, and the underlying models need
to allow for meaningful statements about the distribution of
system behaviors.

Along with richer models, we need more refined prob-
lem perspectives. Distributed systems cannot be adequately
viewed as merely devices for computing prescribed functions
from inputs to outputs, even when the notions of inputs and
outputs are suitably generalized to account for the on-line
nature of distributed computation as described above, using
temporal logics or related formalisms [23]. Rather, in many
real-world situations, the purpose of a distributed system is to
behave “well” in a larger environment. What is of interest are
global properties of the system operating within its environ-
ment rather than the particular function computed. A simple
example is the consensus problem, where the property of in-
terest is the agreement among the (non-faulty) processes, not
the particular value agreed upon. Similarly, the requirements
for an electronic auction system will include statements about
the utility functions of the bidders and the interests of the sell-
ers that fall outside of a narrowly-construed computational
model.

4.6 Agents

In the real world, the environment of a distributed system in-
cludes a collection of human agents with intentions and mo-
tivations. Because people control the processes of the system,
it is natural to ascribe intentions and motivations to the pro-
cesses themselves. A distributed system is then viewed as a
large multiagent cooperative/competitive game. A particular
system is neither correct nor incorrect, faulty or not. Rather
it, together with the agent behaviors, determines a play of the
game. The goodness or badness of the result is measured by
how well it satisfies the individual and collective goals of the
participants. Economic theory suggests that equilibria prop-
erties of such systems may be obtainable even where exact
characterizations of the behaviors is intractable. Distributed
systems can implement very complex games, yet the range of
possible behaviors is limited by the computational power of
the participants. Studying such systems from a computational
perspective may provide fruitful insights that are unattain-
able in traditional game-theoretic models [28]. Algorithmic
mechanism design [11,20], trust-modeling [7], and algorith-
mic game theory [21] give glimpses into some of the new
kinds of results that this approach can yield.

5 Summary

The 20-year old goals for a general theory of distributed sys-
tems are just as seductive now as they originally were:
• universal model
• general specification techniques
• general verification methods
• general protocol synthesis techniques
• general notions of cooperation and coordination
• general and meaningful performance measures

Experience over the past two decades has shown that
achieving these goals in practically-relevant ways is much
more difficult than originally imagined. Future research will
need to become more domain specific and to cross dis-
ciplinary boundaries. It should identify problem domains
of practical interest and strive to construct realistic models
for those limited domains. For example, one might distin-
guish between cooperative distributed environments such as
the Grid [12], where participants are assumed to be non-
malicious, and hostile environments such as the Internet at
large, where assumptions of benign intent are unfounded.

We conclude with some goals for future research:
• Identify and characterize additional interesting domains

of practical importance.
• Find increasingly realistic distributed models and prob-

lem specifications for specific domains.
• Explore and understand properties of the resulting models

and their relationship to competing models.
• Identify unrealistic assumptions and replace them with

practically justifiable ones.
• Establish correctness properties in the gray area between

absolute perfection and catastrophic failure.
• Understand and apply knowledge from related disciplines

such as real-time systems, computer networking, pro-
gramming languages, and economics.

• Model and understand realistic agents in multiparty coop-
erative/competitive environments.
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