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Computation intensive:

incurring offloading latency, draining battery




Same, popular apps run on
nearby devices




Redundancy across nearby
devices

“Sterling Library”

Example: landmark recognition



Redundancy across nearby
devices

“Sterling Library”
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Example: landmark recognition

Up to 82% input generate the same result




More Examples: smart home
scenarios
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Can we eliminate this redundancy?



Can we eliminate this redundancy?

Reuse previous computation results



Traditional computation reuse

» “Sterling Library”

Cache
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Traditional computation reuse

» “Sterling Library”

Cache

Value

“Sterling Library”

No reusable data



|deal computation reuse

» “Sterling Library”

Cache

Value

“Sterling Library”

> “Sterling Library”



Approximate
Computation Reuse



Our goals

o Algorithms for approximate computation reuse

« A system to eliminate redundancy across devices



Reuse Process



Reuse Process

Lookup computation records

with similar input




Reuse Process

e
1 f Input data
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Lookup computation records
with similar input
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The rest of the talk...

o Algorithms for approximate computation reuse

e« A-LSH — fast lookup
« H-kNN —reuse with accuracy guarantee

e FoggyCache system for cross-device reuse



Handwritten digits from MNIST dataset



A-LLSH: strawman

L ocality sensitive Hashing (LSH)
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SH: strawman

L ocality sensitive Hashing (LSH)

More similar data stay in the same bucket
with higher probabillity




SH is not enough
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SH is not enough

Dense data



SH is not enough

Dense data
Increase lookup time
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Dense data Sparse data
Increase lookup time Miss actually similar records



SH is not enough

H4”

Dense data Sparse data
Increase lookup time Miss actually similar records

LSH configuration
IS static

Data distribution

IS dynamic



Adaptive-LSH

adapt the bucket size to data distribution



Adaptive-LSH

adapt the bucket size to data distribution

| om

Proper bucket setting




Adaptive-LSH

adapt the bucket size to data distribution

Step 1: Use the ratio to

characterize input data distribution



Adaptive-

Recall: the bucket size
also affects lookup time

Step 2: Adapt bucket size

accordingto and the lookup time target
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Reuse Process

!m Input data

e L

f

Lookup computation records
with similar input

. “Bass Library”] [ 1 , “Sterling Library™] ... ..

I Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

v




H-KNN: strawman

Basic idea Query input q
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H-KNN: strawman
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H-KNN: strawman
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Take the result label of the largest

cluster as the reuse outcome




KNN not enough



KNN not enough

Label of the largest cluster is not always the

desirable reuse result




KNN not enough

Border

Label of the largest cluster is not always the

desirable reuse result




KNN not enough
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Pill recognition Lens

KNN does not give us control over the trade-off



KNN: what is needed?



KNN: what is needed?

Need to gauge dominance level of clusters



Why dominance level matters?



Why dominance level matters?
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Why dominance level matters?
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A more dominant cluster
=» more confidence of accurate reuse




KNN: what is needed?

Need to gauge dominance level of clusters

Can then customize reuse trade-off




Homogenelty factor



Homogenelty factor
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Homogenelty factor

KNN Clusters Homogeneity factor @
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A high 8 = a large dominant cluster label (i.e., “4")

= a high confidence of correct reuse.




Homogemized-kKNN (H-kNN)
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Approximate computation reuse

o Algorithms for approximate computation reuse

e« A-LSH — fast lookup

« H-kNN —reuse with accuracy guarantee

« FoggyCache system for cross-device reuse



FoggyCache architecture

« FoggyCache intercepts at library level

[ Applications ]

Reuse result
] FoggyCache

Native Processing Library




FoggyCache architecture

« FoggyCache intercepts at library level

[ Applications ]

Computation resultA
| FoggyCache

Not reusable,
Compute

Nativve Processing Library




—~0oggyCache architecture

e Cache is deployed at both edge server and client

31% Central point

U= U=

Accelerate local reuse



System optimizations
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Stratified sampling:
Populate client cache to
maximize reuse opportunity

Speculative execution:
Precompute results that

might be reused.

Details in the paper



Performance



General setup
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Vlsual workloads & datasets
« Plant recognition: ImageNet subset

\- Landmark recognition: Oxford Buildings, video feeds y

{Audio workloads & datasets j

« Speaker identification: TIMIT acoustic dataset




Reuse accuracy vs saving
computatior
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—nd-to-end performance

L Latency (ms) | Energy (mJ)| Accuracy
Application o W o " loss (%)
Speaker 131 | 42 |304]| 98 3.0
|dentification
Landmark | 15 4 | 579 | 1315] 110.7 5.0
Recognition

Plant | 96 | 99.8 | 3132 901.4 4.7
Recognition




—nd-to-end performance

Application Latency (ms) | Energy (mJ) | Accuracy
w/o w/ w/o w/ loss (%)

Speaker | yay | 4o | 304 98 3.0
|dentification

Landm.a.rk 1024 | 97.9 Over 3x latency reduction
Recognition

Plant
Recognition 209.6 | 99.8 | 3132 | 901.4 4.7




—nd-to-end performance

L Latency (ms) | Energy (mJ)| Accuracy
Application o W o " loss (%)
Speaxer o 304 | 9.8 3.2
Up to 10x battery usage
reduction

- 1315| 110.7 5.0
Recognition
Plant ) o696 | 99.8 |3132| 901.4 4.7

Recognition




—nd-to-end performance

Application Latency (ms) | Energy (mJ)| Accuracy
w/o w/ w/o w/ loss (%)
Speake 3.2
Landmar?
Recognition 102.4 | 27.9 [ 1315] 110.7 5.0
Plant

209.6 | 99.8 | 3132 | 901.4 4.7

Recognition




Conclusion

« FoggyCache: cross-device approximate
computation reuse

o Effectively eliminates fuzzy redundancy
e Approximate computation reuse
e Promising new direction for optimizations

e Algorithms are applicable to other scenarios



Thank you



