FoggyCache: Cross-Device
Approximate Computation Reuse

Peizhen Guo, Bo Hu, Rui Li, Wenjun Hu

Yale University

-merging trend

-merging trend

RS, - - :.. =3 R p—
e S

Computation intensive:

incurring offloading latency, draining battery

Same, popular apps run on
nearby devices

Redundancy across nearby
devices

“Sterling Library”

Example: landmark recognition

Redundancy across nearby
devices

“Sterling Library”

o A
e = W 5o

Example: landmark recognition

Up to 82% input generate the same result

More Examples: smart home
scenarios

4 “Play some music.”

]
i".'.
e

| .
_—
m .

-

“Turn on the ight.”

>

~ 2

W ~ q‘ﬁ m ~ \).‘ ﬁ
o . I :‘}d
|) & -

Play some music.”

Can we eliminate this redundancy?

Can we eliminate this redundancy?

Reuse previous computation results

Traditional computation reuse

» “Sterling Library”

Cache

Value

“Sterling Library”

Traditional computation reuse

» “Sterling Library”

Cache

Value

“Sterling Library”

No reusable data

|deal computation reuse

» “Sterling Library”

Cache

Value

“Sterling Library”

> “Sterling Library”

Approximate
Computation Reuse

Our goals

o Algorithms for approximate computation reuse

« A system to eliminate redundancy across devices

Reuse Process

Reuse Process

Lookup computation records

with similar input

Reuse Process

e
1 f Input data

L

Lookup computation records
with similar input

, "Bass Library”] [1 , “Sterling Library™]

I Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

v

The rest of the talk...

o Algorithms for approximate computation reuse

e« A-LSH — fast lookup
« H-kNN —reuse with accuracy guarantee

e FoggyCache system for cross-device reuse

Handwritten digits from MNIST dataset

A-LLSH: strawman

L ocality sensitive Hashing (LSH)

.I. .I

E B

SH: strawman

L ocality sensitive Hashing (LSH)

More similar data stay in the same bucket
with higher probabillity

SH is not enough

SH is not enough

h,

SH is not enough

h,

Fixed ,

bucket size

h,

SH is not enough

Dense data

SH is not enough

Dense data
Increase lookup time

SH is not enough

Dense data Sparse data
Increase lookup time

SH is not enough

Dense data Sparse data
Increase lookup time Miss actually similar records

SH is not enough

H4”

Dense data Sparse data
Increase lookup time Miss actually similar records

LSH configuration
IS static

Data distribution

IS dynamic

Adaptive-LSH

adapt the bucket size to data distribution

Adaptive-LSH

adapt the bucket size to data distribution

| om

Proper bucket setting

Adaptive-LSH

adapt the bucket size to data distribution

Step 1: Use the ratio to

characterize input data distribution

Adaptive-

Recall: the bucket size
also affects lookup time

Step 2: Adapt bucket size

accordingto and the lookup time target

Reuse Process

e
1 f Input data

L

Lookup computation records
with similar input

, "Bass Library”] [1 , “Sterling Library™]

I Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

v

v

Reuse Process

!m Input data

e L

f

Lookup computation records
with similar input

. “Bass Library”] [1 , “Sterling Library™]

I Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

v

H-KNN: strawman

Basic idea Query input q

k Nearest Neighbor 9
S

9

H-KNN: strawman

Basic idea Query inp,[’jt
k Nearest Neighbor |

/
; ‘\
! \
| 1
AN 1
\)
\ /7
Y 4
~ 7
N ——

H-KNN: strawman

AN
/ q \ugu

Basic idea Query inp{Jt \
k Nearest Neighbor ... T 1 R
P |
n" g
“411 \\\ ‘, /II \ 9 I

S \ /

N v

= -

Take the result label of the largest

cluster as the reuse outcome

KNN not enough

KNN not enough

Label of the largest cluster is not always the

desirable reuse result

KNN not enough

Border

Label of the largest cluster is not always the

desirable reuse result

KNN not enough

» 08:00.
§ ASPIRINALIN ¢

50mg 2 pills

—

Pill recognition Lens

KNN does not give us control over the trade-off

KNN: what is needed?

KNN: what is needed?

Need to gauge dominance level of clusters

Why dominance level matters?

Why dominance level matters?

’\“9” 17 o LL
“4” . .\ “ /’H\Q

Why dominance level matters?

PEEE TSN P LN ugu \“
‘A ',’ ‘\I \ ’ﬂ 7
1) /)

A more dominant cluster
=» more confidence of accurate reuse

KNN: what is needed?

Need to gauge dominance level of clusters

Can then customize reuse trade-off

Homogenelty factor

Homogenelty factor

KNN Clusters
(:}_—> <“6”,1>
_/——-' <“4” 3>

\
({ 653 176 LA 1
4 \\/> < b >
1 |]
1 \ 7
1 N /
1 ~=-7
1

Homogenelty factor

KNN Clusters Homogeneity factor @

.——> <“6”,1>

/
/
I

. . ﬂ/ <97, 1>

\f—’ <“4”, 3 >

A high 8 = a large dominant cluster label (i.e., “4")

= a high confidence of correct reuse.

Homogemized-kKNN (H-kNN)

Calculate homogeneity factor 6

_ Caloulate homogeneity factor 8
1
0> threshold 8,7

0 > threshold 6, "
Yes No

Approximate computation reuse

o Algorithms for approximate computation reuse

e« A-LSH — fast lookup

« H-kNN —reuse with accuracy guarantee

« FoggyCache system for cross-device reuse

FoggyCache architecture

« FoggyCache intercepts at library level

[Applications]

Reuse result
] FoggyCache

Native Processing Library

FoggyCache architecture

« FoggyCache intercepts at library level

[Applications]

Computation resultA
| FoggyCache

Not reusable,
Compute

Nativve Processing Library

—~0oggyCache architecture

e Cache is deployed at both edge server and client

31% Central point

U= U=

Accelerate local reuse

System optimizations

— %
&;I ache

Stratified sampling:
Populate client cache to
maximize reuse opportunity

Speculative execution:
Precompute results that

might be reused.

Details in the paper

Performance

General setup

Dewces A

‘;1% Linux desktop D Google Nexus 9
= /

\

Vlsual workloads & datasets
« Plant recognition: ImageNet subset

\- Landmark recognition: Oxford Buildings, video feeds y

{Audio workloads & datasets j

« Speaker identification: TIMIT acoustic dataset

Reuse accuracy vs saving
computatior

100 & B—u—

&-Time saved (%)

90
80
70
60
50
40
30

20
03 04 045 05 055 06 065 07 075 08 085 09 09 1

Homogeneity threshold

Reuse accu

computatior

‘acy VS saving

—a=Accuracy (%) -E=Time saved (%)

100 & B—u—

90

80

70

60

50

40

30

20

035 04 045 05 0585 06 065 07 075 08 085 09 095 1
Homogeneity threshold

—nd-to-end performance

L Latency (ms) | Energy (mJ)| Accuracy
Application o W o " loss (%)
Speaker 131 | 42 |304]| 98 3.0
|dentification
Landmark | 15 4 | 579 | 1315] 110.7 5.0
Recognition

Plant | 96 | 99.8 | 3132 901.4 4.7
Recognition

—nd-to-end performance

Application Latency (ms) | Energy (mJ) | Accuracy
w/o w/ w/o w/ loss (%)

Speaker | yay | 4o | 304 98 3.0
|dentification

Landm.a.rk 1024 | 97.9 Over 3x latency reduction
Recognition

Plant
Recognition 209.6 | 99.8 | 3132 | 901.4 4.7

—nd-to-end performance

L Latency (ms) | Energy (mJ)| Accuracy
Application o W o " loss (%)
Speaxer o 304 | 9.8 3.2
Up to 10x battery usage
reduction

- 1315| 110.7 5.0
Recognition
Plant) o696 | 99.8 |3132| 901.4 4.7

Recognition

—nd-to-end performance

Application Latency (ms) | Energy (mJ)| Accuracy
w/o w/ w/o w/ loss (%)
Speake 3.2
Landmar?
Recognition 102.4 | 27.9 [1315] 110.7 5.0
Plant

209.6 | 99.8 | 3132 | 901.4 4.7

Recognition

Conclusion

« FoggyCache: cross-device approximate
computation reuse

o Effectively eliminates fuzzy redundancy
e Approximate computation reuse
e Promising new direction for optimizations

e Algorithms are applicable to other scenarios

Thank you

