
FoggyCache: Cross-Device
Approximate Computation Reuse

Peizhen	Guo,	Bo	Hu,	Rui	Li,	Wenjun	Hu

Yale University

Emerging trend

Emerging trend

Same, popular apps run on
nearby devices

Example: landmark recognition

Redundancy across nearby
devices

“Sterling Library”

Example: landmark recognition

Redundancy across nearby
devices

“Sterling Library”

Example: landmark recognition

More Examples: smart home
scenarios

Can we eliminate this redundancy?

Can we eliminate this redundancy?

Reuse previous computation results

Traditional computation reuse

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒()

Cache
Key Value

“Sterling Library”

=
“Sterling Library”

Traditional computation reuse

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒()

Cache
Key Value

“Sterling Library”

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒()

=

≠

“Sterling Library”

No reusable data

Ideal computation reuse

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒()

Cache
Key Value

“Sterling Library”

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒()

=

≈

“Sterling Library”

“Sterling Library”

Approximate
Computation Reuse

Our goals
• Algorithms for approximate computation reuse

• A system to eliminate redundancy across devices

Reuse process

Reuse process

Input data

[, “Bass Library”] [, “Sterling Library”] ……

Lookup computation records
with similar input

Reuse process

Input data

[, “Bass Library”] [, “Sterling Library”] ……

Lookup computation records
with similar input

Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

The rest of the talk…
• Algorithms for approximate computation reuse

• A-LSH – fast lookup

• H-kNN – reuse with accuracy guarantee

• FoggyCache system for cross-device reuse

…

…

Handwritten digits from MNIST dataset

A-LSH: strawman

…

…

Locality sensitive Hashing (LSH)

A-LSH: strawman

h2

h1

h3
…

…

More similar data stay in the same bucket
with higher probability

Locality sensitive Hashing (LSH)

LSH is not enough

LSH is not enough
h2

h1

h2

h1

LSH is not enough
h2

h1

h2

h1

Fixed
bucket size

LSH is not enough
h2

h1

h2

h1

Dense data

Fixed
bucket size

LSH is not enough
h2

h1

h2

h1

Dense data
Increase lookup time

Fixed
bucket size

“4”
“6”

“9”

LSH is not enough
h2

h1

h2

h1

Dense data
Increase lookup time

Sparse data

Fixed
bucket size

“4”
“6”

“9”

LSH is not enough
h2

h1

h2

h1

Dense data
Increase lookup time

Sparse data
Miss actually similar records

Fixed
bucket size “4”

“4”
“6”

“9”

LSH is not enough
h2

h1

h2

h1

Dense data
Increase lookup time

Sparse data
Miss actually similar records

LSH configuration
is static

Data distribution
is dynamic

Fixed
bucket size “4”

“4”
“6”

“9”

Adaptive-LSH
adapt the bucket size to data distribution

Adaptive-LSH

Proper bucket setting

adapt the bucket size to data distribution

Adaptive-LSH

Step 1: Use the ratio c=R2/R1 to
characterize input data distribution

R1

R2

adapt the bucket size to data distribution

Adaptive-LSH

Step 2: Adapt bucket size
according to c and the lookup time target

R1

R2

Reuse process

Input data

[, “Bass Library”] [, “Sterling Library”] ……

Lookup computation records
with similar input

Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

Reuse process

Input data

[, “Bass Library”] [, “Sterling Library”] ……

Lookup computation records
with similar input

Determine reuse outcome

Not reusable or “Bass Library” or “Sterling Library”

H-kNN: strawman

Basic idea
k Nearest Neighbor

Query input

H-kNN: strawman

“9”
Basic idea

k Nearest Neighbor
Query input

“4”

H-kNN: strawman

“9”

Take the result label of the largest
cluster as the reuse outcome

Basic idea
k Nearest Neighbor

Query input

“4”

kNN not enough

kNN not enough

Label of the largest cluster is not always the
desirable reuse result

kNN not enough

“4” “9”

Label of the largest cluster is not always the
desirable reuse result

Border

kNN not enough

kNN does not give us control over the trade-off

Need high accuracy Prefer less computation

Pill recognition Google Lens

kNN: what is needed?

kNN: what is needed?

Need to gauge dominance level of clusters

“4” “9”

Why dominance level matters?

Why dominance level matters?

“4” “9”

“4”
“9”

“6”“7”

Why dominance level matters?

A more dominant cluster
è more confidence of accurate reuse

“4” “9”

“4”
“9”

“6”“7”

kNN: what is needed?

Need to gauge dominance level of clusters

“4” “9”

Can then customize reuse trade-off

Homogeneity factor
kNN

Homogeneity factor
kNN Clusters

<“6”, 1 >

<“9”, 1 >

<“4”, 3 >

Homogeneity factor

A high 𝜽 ⇒ a large dominant cluster label (i.e., “4”)
⇒ a high confidence of correct reuse.

kNN Clusters

<“6”, 1 >

<“9”, 1 >

<“4”, 3 >

Homogeneity factor 𝜽

3

1 1
𝛼

“6”
“9”

“4”
𝜽 = cos	(𝛼)

Homogemized-kNN (H-kNN)

Calculate homogeneity factor 𝜽

𝜽 > 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅	𝜽𝟎 ?
Yes No

Reuse Compute

Approximate computation reuse
• Algorithms for approximate computation reuse

• A-LSH – fast lookup

• H-kNN – reuse with accuracy guarantee

• FoggyCache system for cross-device reuse

FoggyCache architecture
• FoggyCache intercepts at library level

Applications

Native Processing Library

FoggyCache

Reuse result

FoggyCache architecture
• FoggyCache intercepts at library level

Applications

Native Processing Library

FoggyCache

Computation result

Not reusable,
Compute

FoggyCache architecture
• Cache is deployed at both edge server and client

Cache

CacheCache

System optimizations

Cache

CacheCache

Details in the paper

Performance

General setup

Linux desktop Google Nexus 9

Audio workloads & datasets
• Speaker identification: TIMIT acoustic dataset

Devices

Visual workloads & datasets
• Plant recognition: ImageNet subset
• Landmark recognition: Oxford Buildings, video feeds

Reuse accuracy vs saving
computation

20

30

40

50

60

70

80

90

100

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Homogeneity threshold

Time saved (%)

Reuse accuracy vs saving
computation

20

30

40

50

60

70

80

90

100

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Homogeneity threshold

Accuracy (%) Time saved (%)

End-to-end performance

Application Latency (ms) Energy (mJ) Accuracy
loss (%)w/o w/ w/o w/

Speaker
Identification 13.1 4.2 30.4 9.8 3.2

Landmark
Recognition 102.4 27.9 1315 110.7 5.0

Plant
Recognition 269.6 99.8 3132 901.4 4.7

End-to-end performance

Application Latency (ms) Energy (mJ) Accuracy
loss (%)w/o w/ w/o w/

Speaker
Identification 13.1 4.2 30.4 9.8 3.2

Landmark
Recognition 102.4 27.9 1315 110.7 5.0

Plant
Recognition 269.6 99.8 3132 901.4 4.7

End-to-end performance

Application Latency (ms) Energy (mJ) Accuracy
loss (%)w/o w/ w/o w/

Speaker
Identification 13.1 4.2 30.4 9.8 3.2

Landmark
Recognition 102.4 27.9 1315 110.7 5.0

Plant
Recognition 269.6 99.8 3132 901.4 4.7

End-to-end performance

Application Latency (ms) Energy (mJ) Accuracy
loss (%)w/o w/ w/o w/

Speaker
Identification 13.1 4.2 30.4 9.8 3.2

Landmark
Recognition 102.4 27.9 1315 110.7 5.0

Plant
Recognition 269.6 99.8 3132 901.4 4.7

Conclusion
• FoggyCache: cross-device approximate

computation reuse

• Effectively eliminates fuzzy redundancy

• Approximate computation reuse

• Promising new direction for optimizations

• Algorithms are applicable to other scenarios

Thank you

