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Abstract
Despite extensive investigation of job scheduling in data-
intensive computation frameworks, less consideration has
been given to optimizing job partitioning for resource uti-
lization and efficient processing. Instead, partitioning and
job sizing are a form of dark art, typically left to developer
intuition and trial-and-error style experimentation.

In this work, we propose that just as job scheduling and
resource allocation are out-sourced to a trusted mecha-
nism external to the workload, so too should be the re-
sponsibility for partitioning data as a determinant for task
size. Job partitioning essentially involves determining the
partition sizes to match the resource allocation at the finest
granularity. This is a complex, multi-dimensional prob-
lem that is highly application specific: resource alloca-
tion, computational runtime, shuffle and reduce commu-
nication requirements, and task startup overheads all have
strong influence on the most effective task size for effi-
cient processing. Depending on the partition size, the job
completion time can differ by as much as 10 times!

Fortunately, we observe a general trend underlying the
tradeoff between full resource utilization and system over-
head across different settings. The optimal job partition
size balances these two conflicting forces. Given this
trend, we design Libra to automate job partitioning as a
framework extension. We integrate Libra with Spark and
evaluate its performance on EC2. Compared to state-of-
the-art techniques, Libra can reduce the individual job ex-
ecution time by 25% to 70%.

1 Introduction
With the wild popularity of distributed data-intensive
computation frameworks (e.g., MapReduce [19],
Hadoop [1] and Spark [49]) and services [2], recent years
have witnessed considerable amounts of investigation
on how jobs should be scheduled within a distributed
system. Despite all the efforts, relatively less attention
has been paid to exactly what the most appropriate
schedulable entity should be to optimize for resource
utilization. We have seen proposals at both ends of
the spectrum, ranging from running an end-to-end job
entirely on a single core [37] to running massive numbers

of very small jobs [41] on a server cluster. However,
little formal consideration has been invested in studying
the tradeoffs involved in effectively partitioning the work
into tasks that happens in a schedulable job. Instead,
partitioning and task sizing are a form of dark art,
typically left to developer intuition and trial-and-error
style experimentation.

In this work, we argue that task sizing should be an
independent engine, just as job scheduling and resource
allocation are out-sourced to a trusted mechanism external
to the workload. The reasons are two folds: task sizing
could greatly impact job performance (by more than 10X
times in our experiments), and it could help people decide
the right level of parallelism for running the job.

As an illustration of how important task sizing is to job
performance, Figures 1 and 2 show how the completion
time varies with task size. The minimum point on each
curve corresponds to the optimal size. Not only do the
optimal task sizes vary significantly across applications
or even different parts of the same application workload,
the completion time can vary by as much as 10 times!
Section 2 further analyzes the most significant factors that
should be considered in performing partitioning.

However, we observe that this is a complex, multi-
dimensional problem that is highly application specific:
resource allocation, computational runtime, shuffle and
reduce communication requirements, and task startup
overheads all have strong influence on the most effective
task size for efficient processing (Section 3.2).

Despite the complexity involved in optimal task siz-
ing, we have two key insights from extensive experiments
(Section 2). First, we observe a general trend of the job
completion time variation with the task sizes resembling
a U-shaped curve across applications (Figures 1 and 2).
This trend reflects the tradeoff between full resource uti-
lization and system overhead (such as the task initializa-
tion overhead, metadata management overhead, and task
scheduling delay) [37]. The optimal task size balances
these two conflicting forces. Given this trend, we can
employ an adaptive mechanism to find the optimal size
dynamically, using a small number of probes from the
early portion of the job. This contrasts sharply with the
current practice of repeatedly running and profiling entire
jobs many times [26, 30].
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Second, while the trend is noisy in practice, the same
adaptation technique still applies as long as we can filter
out enough noise from the probe results (Section 3).

Our goal is to provide a dynamic, automatic, pluggable
task sizing engine. It should be able to dynamically adjust
task sizes to address the runtime variances during job ex-
ecution. Also, it has to work automatically without user
intervention. Lastly, it needs to be a pluggable engine,
which can easily integrate with existing systems without
requiring changes to existing codebase.

Libra is designed based on the above insights (Sec-
tion 4). We implement Libra on Spark [49] (Section 5)
and evaluated the system on EC2 under a range of setups
(Section 6). Compared to state-of-the-art techniques, Li-
bra reduces the job completion time by 25% to 70%.

With Libra, we make the following contributions:
First, we highlight the importance of optimizing task

sizes, the challenges involved, and argue for framework
level support.

Second, we observe a well-defined, general trend un-
derlying the variation of the job completion time with the
task size. This lends to a simple optimization mechanism,
using a small number of automatic probes, in contrast to
the current practice of repeatedly running and profiling
entire jobs many times.

Third, we employ an effective adaptation framework
following the above insights and integrate it with Spark.
The logic is conceptually complementary to existing pro-
gramming models and independent of specific frame-
works. Our implementation shows simple extensions to
Spark deliver significant performance benefit.

2 The Elusive Optimal Task Size

2.1 Parallelism in data analytic frameworks
The execution flow for an analytics job is often expressed
as a directed acyclic graph (DAG), where each node in-
dicates specific processing logic and the directed edges
indicate the flow of data. Several programming mod-
els [19, 27, 49, 39, 40] for data analytics systems have
been proposed to provide different DAGs to express di-
verse application semantics. Further, the runtime frame-
works implementing these programming models support
parallel execution based on the DAGs in an application-
independent manner, though at the granularity of nodes
(often referred to as stages) in a DAG.

However, existing framework-level parallelism support
does not specify how to optimally parallelize the per-stage
execution. A stage is typically further divided into tasks
by partitioning the input data for that stage, with each task
processing a portion of the input data. Tasks within a stage
are run in parallel on multiple servers. The developer is
free to request resources and partition the job accordingly

to fully utilize the available resource. Unfortunately, this
also places the burden of optimizing job partitioning on
the framework user.

Fundamentally, task sizing reflects resource allocation
at the finest granularity. When the tasks are too small,
the performance is dominated by various system over-
head, such as the task initialization time and scheduling
delay; when the tasks are too large, the performance is
bottlenecked by the amount of resource available, such as
the number of CPU cores and the memory. The comple-
tion time for a stage could vary by as much as 10 times
depending on the task size (Figure 2). While existing re-
source allocation solutions abound, they typically address
issues such as fairness [22, 12], job performance predic-
tion [45, 46, 23], and guaranteeing the service level objec-
tives [28, 21]. None has optimized the task sizes accord-
ing to the resource specification.

Existing job partitioning techniques [33, 30, 51, 41]
instead address skewness. However, [33, 30, 51] are
application-specific techniques while [34, 41] will incur
high overhead. Again, none of these techniques optimizes
for the tradeoff between full resource utilization and low
system overhead.

The most commonly used dataflow frameworks
Hadoop [1] and Spark [49] currently provide generic
guidelines about using a task size of 128 MB, which is
the block size of the HDFS (Hadoop distributed file sys-
tem). Furthermore, Spark recommends a minimum task
size that would correspond to at least 100 ms execution
time in order to avoid high scheduling overhead.

2.2 Motivating experiments
Consider a simple application, Sort, with only two stages,
map (spreading input data across available CPU cores in
parallel) and reduce (collecting and merging all interme-
diate results from the previous stage). Intuitively, one
should simply partition the input data into equal-sized
portions to take advantage of the parallelism in the sys-
tem. However, this turns out to be non-trivial even on a
single machine dedicated to this workload.

We ran several applications individually on Spark on
a single workstation with 4 “executors” (Java virtual ma-
chines) in parallel, each given 1 CPU core and 1 GB of
memory, with minimal interfering background activity on
the machine. These applications are drawn from the Hi-
Bench benchmark suite (see Section 6 for detail). We par-
tition each workload into different numbers of fixed-sized
tasks at the beginning of each run1. We run the experi-
ments multiple times, and show the results as the average
of multiple runs, though the errors were small.

1In Spark, the data at each stage, whether the initial input data or the
intermediate data generated from the previous stage, are partitioned into
the same number of portions, which is set in the configuration file.
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Figure 1: Normalized stage com-
pletion time varies with task sizes.
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Figure 2: Optimal task sizes for dif-
ferent stages of PageRank.
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Figure 3: Per-task average over-
head breakdown for PageRank.

Figure 1 shows how the normalized stage completion
time varies with the set task sizes for PageRank (2.9 GB
initial input, third stage), Scan (17.4 GB input, first stage),
Sort (13.3 GB input, first stage), and Bayes (5.7 GB input,
second stage). We see a U-shaped trend for all four cases,
but the exact shape varies by application. Figure 2 fur-
ther shows a distinct U-curve for each stage of PageRank.
This follows from Figure 1 since different stages typically
involve different operations.

2.3 Observations and analysis

First, very small task sizes may be suboptimal. This is be-
cause the various overhead will dominate for small tasks.
For each task, its completion time includes significant
contributions from the system overhead incurred, such as
the scheduling overhead and the task thread startup over-
head.

We find that the task scheduling delay is the main over-
head within the task execution span. Figure 3 plots the
average per-task scheduling delay and net execution time
for PageRank stage 1. We see that the per-task schedul-
ing delay is roughly constant for different task sizes, since
the operations involved in scheduling are independent of
the task itself. The net execution time per task is roughly
constant for sizes from 0.8 MB to 2 MB before increasing
exponentially. This is because small tasks cannot maintain
high CPU utilization and are more susceptible to other OS
overhead. Smaller task sizes also correspond to a larger
number of tasks and hence a higher overall scheduling de-
lay and execution time.

Second, very large task sizes are also undesirable. This
is because the performance is then bottlenecked on the
dominant resource. We can see this more clearly in Fig-
ure 4, which plots the number of I/O operations in each
stage of PageRank. When the task size exceeds 148.5 MB
(297 MB and larger), the number of total I/O operations
increases sharply for stages 1 to 3. This is correlated with
each task being allocated 1 GB memory in our experi-
ments. Based on the Spark default configuration [3], only
60% of (heap space - 300 MB) is used for execution and
storage, and the remaining space is reserved for Spark in-
ternal metadata, safeguarding against out-of-memory is-

sues. Within the 420 MB memory for execution and stor-
age, by default half of that amount is reserved for caching
data, so only about 210 MB memory is really dedicated
to execution. Therefore, a task size of 148.5 MB falls
within the allowance, while a size of 297 MB triggers vir-
tual memory swapping to the disk.

For stage 4 of PageRank, the total number of I/O oper-
ations decreases when the task size reaches 297 MB. This
is because that stage of the application mainly writes the
final data to HDFS, which involves little computation but
mostly disk I/O operations, and large task sizes can bene-
fit from batch processing.

Third, Figures 1 and 2 both show convex functions,
each with roughly a single optimal point and suggests a
well-defined performance optimization goal. This is be-
cause of the inherent tradeoff between the performance
bounded by the dominant resource (the memory in these
cases) at full utilization and the per-task overhead.

Fourth, this optimal task size is specific to a particular
experiment setting (application logic, execution environ-
ment, and so on), and the optimal number of tasks is not
determined by the apparent parallelism (measured in the
number of executors or cores) in the system. For exam-
ple, Figure 1 shows that the optimal number of tasks for
PageRankis 800 (the PageRank job size divided by the op-
timal task size), but there are only 4 cores available in our
experiments. Also, it is worth noting that we observed the
U-curve behavior in Hadoop jobs as well.

In general, the memory resource is always scarce in
data analytic frameworks. When a larger amount of mem-
ory is available, it will only shift the bottom of the U-
curve to a larger task size. If the task size increases be-
yond a certain value, the amount of I/O time will domi-
nate. On the other hand, if the task size (say, the recom-
mended 128 MB) is smaller than the optimal task size, the
framework overhead will dominate.

Figure 4 shows that the resource consumption behavior
varies during job lifespan, another reason why the exact
shape of the U-curve varies by stage.

When the resource allocated to a workload varies, the
exact shape of the U-curve will change accordingly. How-
ever, existing data analytics systems usually employ static
resource allocation, and therefore the corresponding U-
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Figure 4: Number of I/O operations
for different stages of PageRank.
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Figure 5: Task processing rate nat-
urally fluctuates during a run.

Figure 6: Normalized per-machine
task processing rate over time.

curve remains the same during the run.
Given the U shape, using different task sizes could pro-

duce very different performance, and the completion time
can vary by as much as 10 times. (Figure 2)! From Fig-
ure 1, we estimate that the completion time for the partic-
ular stages of PageRank, Bayes, Sort, and Scan could be
reduced by up to 55%, 74%, 44%, and 65% respectively.
Though approximate, these estimates suggest significant
room for improvement.

2.4 Summary
To summarize, task sizing has a significant impact on the
job completion time, and the optimal task size should be
individualized per (stage of a) workload and per resource
allocation to minimize the job completion time.

However, the optimal size is difficult to pre-determine
purely from the application semantics. Even if we found
it, it hardly remains the ideal one throughout the job exe-
cution, since these jobs are typically sharing resource on
a cluster. Therefore, we should dynamically achieve this
U-curve minimum via adaptation.

3 Right-sizing tasks with Libra

3.1 Intuition for task size adaptation
Fortunately, our analysis above provides some intuition
for an adaptive mechanism.

The U-curve suggests a well-defined optimization goal
that is agnostic to the specifics of the application or the
run time environment, even though the exact shape of the
curve is application dependent. Therefore, the adaptive
mechanism should be provided at the framework level.
Further, we only need a small number of measurements
during the run time to identify the optimal size corre-
sponding to the U-curve minimum. Since the optimal task
size varies by stage, we need to reset and restart the adap-
tation whenever a new stage starts.

Task processing rate. Intuitively, task size adaptation
within a job run should be based on the observed pro-
cessing rate of the earlier portion of the job. The pro-

cessing rate can be defined as the amount of data already
processed divided by the time taken to process the data2.

The starting point. If given a particular task size by it-
self, we have no clue whether the next task size should
be increased or decreased. Therefore, we always start the
adaptation sequence with a small task size, and increase
the size after each task completes, until the observed task
processing rate starts to drop.

Further, since the U shape varies by the stage within
an application (Figure 2), it is difficult to customize the
start task size statically based on the application seman-
tics. Therefore, we simply adopt a fixed start size across
applications (and stages).

3.2 Bracing for Real-World Complexity

In practice, the exact U-curve is fuzzier than shown in
Figures 1 and 2 for many reasons: random fluctuation and
data skewness even on a single machine, and differences
across machines (static due to heterogeneous hardware or
dynamic due to contention for the same resource). Much
work so far has shown that it is non-trivial to deal with
even a single issue, let alone their combined effects. Even
in these two figures (obtained under ideal machine con-
ditions), each point shows the average of multiple runs,
though the errors were small.

Our key insight is that, whatever the cause for the in-
accuracy, if all the processing rates are measured under
roughly the same conditions, they can be compared di-
rectly to indicate the direction to go on the U-curve to-
wards the optimal task size. Our main challenge is to en-
sure these processing rates are comparable, per machine
and across machines.

Guarding against estimation noise per machine. Fig-
ure 5 plots the task processing rate for each task during
first stage of PageRank, and they fluctuate a lot. So we
want to average over multiple tasks to filter out noise.

There are two main sources of noise. First, the normal
fluctuation due to measurement accuracy. It can be filtered

2In other words, this measures the processing throughput, different
from the “processing rate” definition (the proportion of the task already
completed) in [50].
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out with exponentially weighted moving average.
Second, there might be two types of skewness. In a

JOIN workload, for example, a skewed task may generate
much more output than others due to the uneven distri-
bution of keys. This is data skewness. The other case is
commonly seen in graph algorithms, where a high-degree
node may incur more computation than other nodes. This
is computation skewness. There are several proposed
skewness mitigation techniques [34, 33, 30, 44, 51], and
we want to have a pluggable design to easily integrate
these techniques into our system.

The machine factor. Data analytics jobs are usually run
in parallel on multiple virtual machines of some form
(JVMs, Linux containers, etc.), called executors on Spark.
These executors are given the same resource specification
and thus will see the same U-curve. Therefore, we should
collect data points across machines.

Unfortunately, the physical machines hosting the ex-
ecutors may be heterogeneous due to either static hard-
ware capability differences or different utilization levels
induced dynamically at run time, the latter especially the
case in the face of multiple co-locating applications shar-
ing and contending for the same resource [20]. Therefore,
we need to ensure the executors are comparable before
comparing data samples from different executors. If an
executor is unusually slow (often referred to as a strag-
gler [50]), we can simply skip it in favor of another.

Slow executors can be detected by assessing how their
processing rates deviate from the average among the ex-
ecutors. If we group tasks by executor and plot one line
per executor, most lines should more or less overlap while
the straggler line should be lower than others, as shown in
Figure 6. There are 2 executors in the figure, processing
a large PageRank job. One of the executors has a concur-
rent job contending for CPU added from the beginning to
300 s, shown by the lowest line initially. The rises and
drops in the figure represent different stages of PageRank.

Interaction between the job and the executors. In prac-
tice, skewness and slow executors are present simultane-
ously. They can both be detected by assessing the pro-
cessing rate deviation from the average, across tasks per
executor and across executors respectively. These two ef-
fects interact, so the detection is relative to the average
condition across tasks and across machines. This requires
per-executor “noise filtering” and executor selection to
work together.

3.3 System overview

Following from the above discussion, the primary compo-
nent of Libra is dynamic task sizing (DTS). The basic idea
is to start with a small task on each executor (i.e., a con-
tainer) as a probe, collects task completion time and task

size3 when it finishes, adapt and converge to the optimal
task size as the job progresses. Furthermore, Libra will
filter out the observation noises in task completion time
along the run. Libra also has a secondary component, dy-
namic executor selection (DES), to detect contention is-
sues across executors and proactively switch to a better
one if contention detected.

Libra is a simple add-on to JobManager4 in existing
data analytics frameworks, such as Hadoop and Spark.
At the start of the job, we expect the native framework
scheduler to allocate resource in terms of some number of
executors, each given some CPU cores and memory. This
allocation stays the same throughout the job run, as is cur-
rent practice. DTS then takes over. The initial task size is
set to a predefined value. When a task finishes, it will re-
port its size and completion time to the job manager. The
task processing rate can then be calculated, which DTS
uses to determine the “right” task size for each executor.
The average processing rate is also monitored on all ma-
chines. If a slow executor is detected, DES will be trig-
gered to find a better executor. When DES switches to
this new executor, the task size will be set to the latest
size calculated by DTS for fast ramp-up.

Libra represents a pluggable control framework that
adapts in a intra-job manner to the allocated resource.
Further, it simplifies the configuration and user sophisti-
cation in an application-agnostic manner.

4 Libra design details

4.1 Preprocessing
Figure 5 shows that task processing rates tend to be noisy
due to measurement accuracy and other fluctuations, so
we use exponential smoothing [4] to filter out the noise.
More specifically, we record the processing rates of X
tasks, Rt, t = 1, 2, ..., X . These X tasks must have the
same size Si. We calculate the filtered task processing
rate CSi

corresponding to size Si:

CSi
= α×CSi−1

+(1−α)×Rt, t = 1, 2, ..., X(0 ≤ α < 1)

Currently X is set to max(3, 10% of parallelism).
α is the smoothing factor, and through experiments

across many jobs, we found that setting α to be 0.6 yields
good results across the board.

Similarly, if task i with processing rate Ri is exe-
cuted on executor j, we will update the filtered executor
throughput as:

Cj = α× Cj + (1− α)×Ri
3For map tasks, it is input partition size; for reduce tasks, it is the size

of the aggregated intermediate results sent to one reduce task.
4For example, in YARN it is ApplicationMaster daemon, and in

Spark it is SchedulerBackend daemon.
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4.2 Dynamic Task Sizing

Strawman solution. As discussed in Section 3.1, Fig-
ure 1 and Figure 2 exhibit U-curve pattern, which suggests
a well-defined optimization goal. We can use Gradient
Descent to solve the optimization problem.

More specifically, all executors start with the same task
size S0 at the beginning. When task k finishes (size Sk,
filtered processing rate CSk

), the gradient of the task size
is calculated as dSk =

CSk
−CSk−1

Sk−Sk−1
.

Then, the next task size is updated as (αlearn is the
learning rate of gradient descent algorithm): Sk+1 =
Sk + αlearn × dSk.

However, the solution above suffers from multiple is-
sues. Firstly, measurements with larger gradient dSk
will have unfairly higher impact on new task size. This
may cause the algorithm miss the optimal point. Sec-
ondly, noisy gradient dSk could add randomness to Sk+1.
Thirdly, it cannot guarantee convergence.

Refinements. To solve the above issues, we use ADAM
technique [32] to improve the gradient descent algorithm.
The main idea is to normalize dSk’s effect on Sk+1. Also,
dSk needs to be exponentially filtered to remove the noise.

mk = β1 ×mk−1 + (1− β1)× dSk
vk = β2 × vk−1 + (1− β2)× dS2

k

Sk+1 = Sk + αk ×
mk√
vk + ε

We use vk to characterize the size of the gradient dSk, and
counteract its effect on next task size Sk+1 with 1√

vk
. To

guarantee acceleration, we let the learning rate αk decay
by 1√

k
in each iteration, i.e., αk = α0√

k
. ε is used to avoid

division by zero.
We set β1 to 0.9, β2 to 0.999, α0 to 0.001 and ε to 10−8,

as is recommended by [32].

Discussion. DTS is initialized and applied per stage of
an application workload. This is different from Hadoop
or Spark, which only sets the task size at the beginning of
each job, for all stages. DTS does not affect the number of
stages run, and we leave it to the application to determine
the number of stages needed.

Further, the DTS operations at different stages are in-
dependent. Therefore, we only need to consider the input
data size to each stage, whether these are the initial input
to the entire job (for the first stage) or the intermediate
data from the previous stage. The amount of output data
generated by each task only affects the DTS operations of
the next stage. A particular stage of a workload might be
completed with different numbers of tasks from one run
to another, and the task sizes could vary within a run and
across runs, depending on the machine conditions. Differ-
ent applications and stages are typicially completed with
different numbers of tasks of variable sizes.

4.3 Dynamic Executor Selection

To address the machine factor, DES module will detect
and remove the contended executors, ensuring that the
processing throughputs between executors are compara-
ble, i.e., all executors see a similar U-curve, so that DTS
can work efficiently.

The input to DES is a sequence of executor processing
throughputs, and DES will run outlier detection algorithm
to identify and remove the contended containers.

When each task i completes on executor j, DES checks
container’s filtered processing throughput Cj , and com-
pares it to C, the exponentially weighted moving average
of the task processing rate across all executors.

IfCj < (1−threshold)C, executor j is potentially too
slow. The threshold is a multiple of the standard devia-
tion of C. We suspend executor j, launch the next d tasks
(1 partition each) on d “backup executors” (called idle ex-
ecutors). These executors are initialized at the beginning
of the job but do not run any specific tasks until activated.
They both execute the task and serve as the probe, lever-
aging the power-of-d choices [38]. We use a small size for
the probe tasks for fast feedback.

When all the probe tasks finish, the executor with the
highest processing rate is selected as the new active ex-
ecutor in place of j. We wait for all executors to finish
before making the selection. Since d is usually very small
(around 4 based on our experiments) and the executor se-
lection process is typically not on the critical path of the
next task launch, the delay incurred waiting for all execu-
tors to finish is negligible.

It is worth noting that ourlier detection module is a
pluggable design, and users can freely integrate other out-
lier detection algorithms such as K-nearest Neighbour [5]
and Support Vector Machine [6].

5 Implementation

We implement Libra on Spark [7]. We plan to release the
source code soon.

5.1 Job execution on Spark

On Spark, tasks are executed in executors, with a fixed
amount of resource at the beginning of each job run.
When a job is submitted, the static job partitioner
(DAGScheduler) will divide it into multiple stages,
each stage then statically partitioned into parallel tasks.

The SchedulerBackend manages the executors
and launches a new task when an executor emerges with
available resource.
Map stage tasks read data from HDFS, while reduce

stage tasks read from the output in the previous stage,
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which are hashed into a few buckets, and one reduce
stage task will read one bucket of data.

5.2 Libra additions to Spark
Libra mainly adds two modules, DTS and DES, to
the SchedulerBackend. A Contention Detec-
tor keeps track of the executor capability variation.
When a task completes and frees up an executor, the
SchedulerBackend will first check if this executor
experiences contention. DES will select a new executor
if needed. Otherwise, DTS computes the right size for the
next task on this executor.

Calculating task processing rates. When a task com-
pletes, it sends a status update (including task size and
execution time) to the SchedulerBackend. The
SchedulerBackend then divides task size by execu-
tion time to compute the raw task processing rate.

Dynamic Task Sizing. For map stage tasks, we change
task size by allowing the task to read multiple consecutive
partitions from HDFS. For reduce stage tasks, we hash
each stage output into a large number of buckets, and as-
sign various number of buckets to reduce stage tasks to
change their sizes.

Dynamic Executor Selection. SchedulerBackend
runs the DES algorithm. In order to reduce the JVM
launch overhead, we launch a few idle executors at the
start of the job. The idle executors only add a small
amount of maintenance overhead and slight memory over-
head. In our setting, they do not consume CPU resource
until activated.

Patches to the Spark API and HDFS. The Spark API
assumes a static, fixed-size data partition for each task,
and we replace that with a call to obtain a variable-size
partition. We also modify HDFS API to enable merging
multiple physical chunks stored in HDFS.

6 Evaluation

6.1 General setup

Cluster. We run all experiments on EC2. Small-scale
experiments use 8 m4.xlarge VMs and large-scale experi-
ments use 100 m4.2xlarge VMs. All the microbench-
marks are run on the small-scale cluster for easy con-
trol and comparison, since we need to manually introduce
contention in several experiments.

Given the possibility of performance variation across
EC2 VMs, we always run comparative experiments in
quick succession on the same VMs. We ran the experi-
ments repeatedly and the results were consistent. There-
fore, error bars are omitted from the plots for legibility.

Table 1: Task Size Ramp-up Time (min/mean/max)
Rounds of tasks Completed stage portion

PageRank 3 / 5 / 9 4.5% / 9.4% / 13.2%
Sort 2 / 5 / 8 10.7% / 16.6% / 24.4%

Workloads. We use application benchmarks from the
HiBench suite [8]5, using Sort, Scan, PageRank (imple-
mented on GraphX), and Bayes as representative work-
loads for batch processing, database queries, graph com-
putation, and machine learning based applications respec-
tively. The first two are I/O intensive, while the other two
are CPU intensive. PageRank is the most prone to skew-
ness, while Scan the least. The other applications in the
HiBench suite behave in similar ways to the representative
in their respective category.

The input data are generated by HiBench following
suitable Zipf distributions and show skewness.

In most experiments, we run both a long job and a
short job for these applications. Long jobs typically
mean PageRank with 4.6 GB data, Bayes 10.52 GB, Scan
17.4 GB, and Sort 29.8 GB. The sizes are chosen to en-
sure similar job completion times across workloads. Short
jobs vary in size, and will be stated for individual exper-
iments. We also tried different data sizes, but the results
are qualitatively similar to those under “long jobs” and
“short jobs” correspondingly.

Default Spark setup. We use the spread-out mode, al-
locating enough memory to avoid out-of-memory issues.
The number of executors launched decides job paral-
lelism. Unless otherwise stated, each executor is given
1 CPU core and 1 GB of memory 6.

The current Spark documentation recommends setting
the task size to be either at least 100 ms long or 128 MB,
the HDFS block size. Therefore, “default Spark” in later
experiments means the task size is 128 MB.

Performance metrics. We measure the overall job com-
pletion time in most experiments, and sometimes over-
head in terms of the scheduling latency.

6.2 Control parameters
We first perform experiments to identify suitable values
for the control parameters.

Initial task size. Table 1 illustrates the ramp-up speed of
the DTS algorithm. We run PageRank and Sort with the
initial task size ranging from 1 MB to 30 MB. For each
stage in each initial task size setting, we record how many

5We tune HiBench to generate jobs with different input sizes, but we
do not change the DAGs of the jobs across the run.

6Note that we make no claims about whether this is the most appro-
priate resource specification for the workloads we run. The goal of Libra
is to optimize for already allocated resource, in terms of the number of
executors and the resource for each, based on whatever criteria deemed
appropriate by the cluster wide resource manager.
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Figure 7: DTS processing rate ramp-up to convergence.
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executor switching threshold.
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executor switching threshold.
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Figure 10: DTS vs default Spark
under various initial task sizes.

rounds of tasks are needed and calculate the percentage of
the stage (in the amount of input data processed) already
completed before convergence.

Figure 7 illustrates DTS in action in the third stage7

of an example PageRank run. Each data partition size is
1 MB. Successive task sizes will continuously adapt to
achieve the optimal task size, and the task processing rate
will converge to a high value. Note that our task size in-
crements are discrete, and can only take integer multiples
of the initial partition size.

Since we leverage the static partitioner in Spark, the
initial task size is the same as partition size. While these
two can be decoupled, it is preferable to start with a small
task anyway and then ramp up the size. Given we also
prefer to adjust task sizes in fine steps, we set the intial
task size (and the partition size) to a small number, 5 MB,
in subsequent experiments, unless otherwise noted.

Executor switching threshold. We need a threshold to
detect a particularly slow executor. Intuitively, this should
be a multiple of the standard deviation of the process-
ing rates across executors to detect outliers. In practice,
we find that a fixed fractional deviation suffices, defined
as the reduction from the average rate across executors.
The ideal value should respond to slow executors quickly
without causing unnecessary executor switching. This is
especially important for small jobs for which there are few
rounds for adaptation.

We ran PageRank and Scan, using 8 executors on 8

7This stage involves both I/O and some computation, so the process-
ing rate is a mixture of the I/O and computation throughput.

VMs, each executor given 1 core and 700 MB memory.
In the first experiment, a background workload is added
to one VM via the Linux stress and dd commands
to simulate constant contention, and we measure the job
completion time as the detection threshold varies (Fig-
ure 8). In the second experiment, there is no background
contention, and so any executor switching is considered a
false positive and contributes to the DES overhead. The
false detection rate is calculated as the number of execu-
tor switching instances during an entire run, and plotted
against the switching threshold (Figure 9, note the small
scales on the y-axis in that figure). Although an optimal
value could be set per application, in general the perfor-
mance appears insensitive to a threshold larger than 0.3.
This is because, with exponential weighted moving aver-
age applied, the weighted processing rates for successive
tasks are generally within 10% of one another, and so a
detection threshold of 0.3 can always accurately distin-
guish contention from normal fluctuation. We therefore
empirically set it to 0.3 for all applications.

The number of executors to probe. We adopt power-of-
d choices in DES. Experiments show that the value of d
affects the performance less than the number of idle ex-
ecutors. Therefore, we omit detailed results and set d to
min(4, number of idle executors). Libra favors at least
4 idle executors. We maintain idle executors instead of
initializing an executor on a new machine on demand, be-
cause the JVM initialization takes around 1 s. The cost of
maintaining idle executors is low, including a few heart-
beat messages and a little memory overhead. There is no
CPU overhead unless a probe task is launched.
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ing overhead due to DTS.
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TinyTasks and default Spark.
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Figure 13: DES performance under
dynamic contention.

6.3 Task Sizing Microbenchmarks

We next run microbenchmarks for the task sizing compo-
nent (DTS) of Libra. The experiments in this section were
run free of contention, with DES disabled.

DTS scheduling overhead. Since DTS needs to calcu-
late the task sizes, we measure the task scheduling delay
thus incurred. Figure 11 shows that Libra adds a median
delay of around 4 ms in Libra compared to default Spark
from an example run. This delay is independent of the ap-
plication workload and negligible compared with the task
execution time.

The benefit of per-stage task sizing. Figure 2 shows
each stage of PageRank favors a distinct optimal task size,
whereas the default Spark sets the same size for all stages.
Therefore, we compare DTS and default Spark under var-
ious initial task sizes8. Figure 10 shows the normalized
PageRank completion times for both. DTS always outper-
forms default Spark, even when default Spark approaches
its own optimal performance point. This confirms that
DTS responds to per-stage dynamics.

DTS vs TinyTasks and default Spark. In the literature,
most task sizing discussion revolves around skewness mit-
igation or some application specific techniques (such as
for graph computation). TinyTask [41] made a case for
small task sizes to mitigate skewness in an application in-
dependent manner, although at the expense of generating
a large number of tasks and incurring a high scheduling
overhead. We consider TinyTask without scheduling de-
lay as the state of the art regarding skewness mitigation.
We therefore compare DTS performance to TinyTasks and
default Spark on the 8 VMs.

The TinyTask proposal did not explicitly recommend a
task size, while the Spark documentation suggests a min-
imum execution time of 100 ms per task, or the over-
head would dominate. Therefore, we use the correspond-
ing size (around 0.8 MB) for TinyTask. Since the default
Spark scheduler incurs high overhead when running tiny
tasks, we also compare the job completion time without
including the scheduling delay.

8by partitioning the input data into 100, 500,1000,2000,3000,4000
and 5000 pieces

Figure 12 shows that DTS outperforms both default
Spark and TinyTasks by significant margins. This is be-
cause DTS tries to operate at or near the optimal task size,
whereas the other two schemes do not, as per the U-curve
behavior noted in Section 2. DTS even outperforms Tiny-
Tasks without scheduling overhead. This is consistent
with Figure 3. TinyTasks performs the worst for Scan and
Bayes because both workloads involve substantial num-
bers of I/O operations, which favor large task sizes. De-
fault Spark performs the worst for Sort and PageRank be-
cause these workloads are most susceptible to skewness,
which can be mitigated by TinyTasks.

6.4 Executor Selection Microbenchmarks
Recall that DTS relies on DES to ensure the executors can
achieve comparable performance. We next study the ex-
ecutor selection component (DES) of Libra through mi-
crobenchmarks to assess how well it reacts to executor
capability variation. The experiments are run with static,
fixed task sizes and various contention levels on the ex-
ecutors, with the task sizing component disabled. Al-
though DES would use idle executors for execution, the
total amount of resource used by DES and the schemes
compared against are the same.

DES in the face of contention. We ran the 4 large jobs in
16 executors on 8 VMs for all the experiments.

First, we launch pairs of applications (or all) simulta-
neously. Figure 13 plots the average job completion time
across all workloads in each run, and shows that DES re-
duces this by 40% to 60% compared to the default Spark.

The exact reduction depends on the initial contention.
Recall that the four applications (PageRank, Scan, Sort,
and Bayes) have different resource usage profiles. When
a pair is initially contending with each other for the same
type of resource, DES could bring huge benefit by switch-
ing a workload to other executors to avoid further con-
tention. Even if the initial placement of the jobs does not
incur significant contention, it is possible that some level
of contention still appears mid-job, which can also be re-
duced by DES.

Second, we use the Linux stress command to gen-
erate controlled background workloads, and compare the
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controlled contention.
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Figure 15: Job performance in dif-
ferent machine sharing scenarios.
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Figure 16: Job performance in dif-
ferent machine sharing settings.

performance between three cases: Default Spark with the
same type of single-source contention (CPU, memory, or
disk I/O) across executors, Default Spark with different
single-source contention, and DES with the same type of
single-source contention (Figure 14). Default Spark suf-
fers most when the workloads contend for the same type
of resource, while DES actively rearranges co-locating
workloads via executor selection to avoid this contention.

This shows that even if a contending workload has dif-
ferent resource usage profile than the foreground work-
load (e.g., an I/O intensive foreground over a CPU-
intensive background), contention still happens. In other
words, even if workloads are strategically placed together
based on prior knowledge of their overall behavior, some
contention is still inevitable. Therefore, it is essential to
activate DES during the run time. The performance im-
provement from DES is not significant in this case be-
cause we only created contention on one of the VMs to
simplify the experiments.

Finally, we measure the overhead of DES without con-
tention. This arises from unnecessary executor switching
due to misdetection and is very small, ranging from 5-7%
for the four application workloads.

DES vs isolating applications. Since DES reacts to con-
tention by using an alternative, which may also be con-
tended, we assess how it compares with enforcing re-
source isolation between applications. Arguably, resource
isolation provides the most stable performance.

In this set of experiments, we launch 4 executors on
4 VMs, and launch applications in four ways: (i) The
applications are launched one at a time (“one-by-one”),
each using all 4 VMs; (ii) The applications are evenly
spread on 4 VMs, i.e., each VM sees all 4 applications
(“spreadout”); (iii) and (iv) Each application is confined
to one distinct VM initially, but (iii) enables DES func-
tionality, and allows applications to switch to a different
VM during the run, whereas (iv) confines the application
to the same VM throughout (“DES” and “isolation” re-
spectively). Case (i) enforces temporal isolation between
applications, whereas case (iv) enforces spatial isolation.
Figure 15 shows the individual job completion times for
cases (iii) and (iv), and Figure 16 shows the average job
completion time across all four applications in each case.

For (i), we also calculate the average completion time
across jobs with the job launch latency included, indicated
by the “one-by-one (w)” bars in both figures. The exact
average time varies with the job launch order, but the qual-
itative behavior stays the same.

As expected, DES outperforms the default Spark and
spatial isolation. The latter fails to efficiently utilize the
available resource. This suggests “spatial partitioning”
[35] of resource can sometimes be suboptimal. Case (iii),
with no better machines available, is the most challenging
scenario for DES, but DES still provides benefit by re-
grouping the contending applications. Compared to tem-
poral isolation, while DES cannot achieve the same indi-
vidual job performance, it does reduce the wait time be-
fore job launches.

DES vs Speculative execution. The standard approach
to mitigate stragglers is to speculatively launch a dupli-
cate copy of the task [19], proactively or reactively. When
one copy finishes, the unfinished copy is stopped. While
speculation does not maintain machine capability, it miti-
gates the effect of unpredictable dynamics.

We run an emulation of speculative execution as a
proxy for the optimal performance9 for DES for com-
parison. We run each job twice, ensuring that a task is
run on different VMs in the two runs. To compute the
job completion time, we first find the shorter execution
time between the two runs per task and then take into
account parallelism. We emulate the scheduling process
by always assigning the next pending task to the execu-
tor which sees the smallest accumulated task completion
time. After scheduling all pending tasks, we choose the
shortest accumulated task completion time as the over-
all job completion time. Note that this emulated process
strictly outperforms and upperbounds any actual specula-
tive execution schemes.

Figure 17 shows the performance for the regular large
job workload, where the applications contend with one
another to generate variable machine conditions. DES
usually achieves within 10% of the speculation perfor-
mance. This shows that, by minimizing contention, DES
achieves very good performance.

9It is impractical due to requiring 100% resource overprovisioning.
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Figure 17: DES vs emulation of
speculative execution.
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Figure 18: Comparison of short job
performance.
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Figure 19: Long PageRank job per-
formance.
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Figure 20: Libra vs TinyTasks
combined with speculation.
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Figure 21: Scan completion time
on a large cluster.
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Figure 22: Average job completion
time on a large cluster.

6.5 How DES helps DTS

Small jobs. We use 3 VMs for this experiment, launch-
ing 2 active executors and 1 idle executor. Scan (174 MB)
and Sort are run concurrently, the latter intended to sim-
ulate a background application contending for resource.
Figure 18 shows that Libra performance is generally op-
timal and stable, regardless of how many initial tasks are
launched.

Large jobs. We then run PageRank with 1 GB, 5 GB, and
10 GB input sizes on 8 VMs, adding contention to half
of the VMs using the Linux commands. Figure 19 shows
that Libra as a whole outperforms DTS.

These figures show that DES is essential to DTS. This
is because DTS requires executor capability to be compa-
rable, which is not met in the presence of contention; DES
restores the condition.

Libra vs combination of skewness and straggler mit-
igation. Libra effectively jointly considers issues from
the job side and the machine side. Therefore, we com-
pare it with a system naively combining the state-of-the-
art skewness and straggler mitigation schemes, i.e., Tiny-
Tasks (without scheduling delay) combined with specula-
tion (using twice the resource)

Figure 20 shows that, for the large jobs, Libra with
scheduling overhead outperforms TinyTasks and specu-
lation without scheduling overhead by 25% to 33%, and
more if the scheduling overhead for the latter is included.

Table 2: Workload distribution on a large cluster
Bin Tasks Job Type # of Jobs Run
1 1-10 Scan 85
2 11-50 Pagerank 4
3 51-150 Sort 8
4 >150 Bayes 3

6.6 Large-scale performance

We run a large-scale experiment on 100 m4.2xlarge
VMs. The workload is synthesized based on existing
workload characterization of the Facebook trace [16] as
shown in Table 2, 85% of which are small jobs, and 15%
large jobs, covering the typical types of the applications
seen in the original trace. Note that we cannot replay any
existing cluster traces, because Libra changes the task size
during the run, whereas those traces are based on static
task size settings. We generated a submission plan of 100
jobs whose inter-arrival times are 14 s, so there is a range
of interleaving between jobs during the entire run.

Figure 21 plots the CDF of Scan completion times. Li-
bra reduces the median job completion time by more than
60%, and reduces the tail job completion time by approx-
imately 40%. For Libra, the 80th-percentile job comple-
tion time ranges from 25 s to 75 s, much smaller than the
40 s to 180 s for default Spark. In other words, Libra pro-
vides more stable performance across jobs.

Figure 22 plots the average job completion time for
each type of jobs. The median job completion time for
Libra is a third of that for the default Spark. The smallest
improvement is still around 20%, suggesting that Libra-
works well in large-scale clusters.
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7 Related work

Job partitioning. A lot of efforts have been made on
graph partitioning, typically partitioning the input graph
statically at the beginning of the execution [15, 24] or dy-
namically [26, 31]. However, all these algorithms have to
leverage the graph structure information, and many lever-
age specific properties of the graph algorithm, hence they
are not suitable for more generic data analytics systems.

Naiad [39] includes a static, hash-based job partitioner.
AdaptStream [17] dynamically adjusts batch sizes specif-
ically for streaming workloads, mainly to prevent the data
flow from blocking. Instead, Libra calculates the optimal
task size dynamically regardless of the workload charac-
teristics.

Dynamic task management. Various works [40, 36, 29,
9] essentially permit dynamically changing the DAG. Li-
bra does not affect the DAG, only how each node in the
DAG is executed. DES is related to work stealing pro-
posed in high performance computing [13], although the
trigger and work (task) migration mechanisms differ.

Performance profiling and tail reduction techniques.
A few studies characterize the performance bottlenecks
or outliers [18, 35, 25, 42]. The causes of the tails are
variously attributed to skewness (job issue), stragglers
(slow machines), and data locality issue, and many so-
lutions have been proposed to address these individually
(e.g., [34, 33, 30, 44, 51, 41] to mitigate skewness, and
[10, 50, 48, 14, 47, 11, 43] to mitigate stragglers).

In contrast, Libra does not explicitly address skewness
but employs proactive dynamic repartitioning of the job.
The DES component can mitigate stragglers. Libra op-
timizes the overall job completion performance, but may
reduce performance tails as a side effect.

Prediction techniques. Libra implicitly predicts job per-
formance based on earlier part of the same run following
a data-light, control theoretic approach, assuming the U-
curve behavior. In comparison, other schemes (such as
Wrangler [48] and Quasar [20]) adopt general machine
learning techniques, requiring comprehensive resource
usage data (data-heavy) from previous completed runs of
the same job to make a one-time decision, without as-
sumptions about the application behavior. Ernest [45] is
the closest to our system by leveraging predictable struc-
tures in the job, though still following a machine learn-
ing approach. The control approach is orthogonal to the
learning based approaches. Libra can incorporate learn-
ing techniques to make more accurate decisions at each
adaptation step.

8 Conclusion
In this paper, we propose Libra, to auto-tune job partition-
ing in data analytics systems. The key observation is that
there is an optimal task size per application (stage). This
optimal varies by the application logic, and so we need to
dynamically determine task sizes during run time. We can
start with a small task size and gradually increase the size
until the task processing rate starts to drop. Libra takes a
control approach, collecting information and making de-
cisions local to a job on the fly.

We implemented Libra on Spark and showed Libra
could reduce job completion times by a significant mar-
gin compared to state-of-the-art alternatives.
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