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Abstract
Emerging mobile applications, such as cognitive assistance
and augmented reality (AR) based gaming, are increasingly
computation-intensive and latency-sensitive, while running
on resource-constrained devices. The standard approaches
to addressing these involve either o�oading to a cloud(let)
or local system optimizations to speed up the computation,
often trading o� computation quality for low latency.

Instead, we observe that these applications often operate
on similar input data from the camera feed and share com-
mon processing components, both within the same (type of)
applications and across di�erent ones. Therefore, dedupli-
cating processing across applications could deliver the best
of both worlds.

In this paper, we present Potluck, to achieve approximate
deduplication. At the core of the system is a cache service
that stores and shares processing results between applica-
tions and a set of algorithms to process the input data to
maximize deduplication opportunities. This is implemented
as a background service on Android. Extensive evaluation
shows that Potluck can reduce the processing latency for
our AR and vision workloads by a factor of 2.5 to 10.
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1 Introduction
Many emerging mobile applications increasingly interact
with the environment, process large amounts of sensory in-
put, and assist the mobile user with a range of tasks. For
example, a personal assistance application can “see” the
environment and generate alerts or audio information for
visually-impaired users [8]. A driving assistance applica-
tion [44] can render 3D scenes overlaid on the physical en-
vironment to help the driver to visualize the surroundings
beyond the immediate views. These applications are usually
computation-intensive and latency-sensitive, while running
on resource-constrained devices.
The standard approaches to resolving these challenges

involve either o�oading to a cloud(let) [18, 21, 40, 43] or local
system optimizations to speed up the computation [15, 32],
often trading o� computation quality for low latency.

Instead, we observe that these applications often operate
on similar, correlated input data with and share common
processing components, both within the same (type of) ap-
plications and across di�erent ones. While the input data
are rarely the same, they share temporal, spatial, or seman-
tic correlation due to the scene change behavior or the re-
quirements of the applications. Moreover, a vast majority
of these applications exhibit a unique computation feature
in common: correlated and similar input values often yield
the same processing results. Being lifestyle applications, it
is highly probable for these applications to be installed on
the same device [34]. This suggests that deduplicating pro-
cessing across applications and inputs could deliver the best
of both worlds, i.e., achieving good performance within the
resource constraints. Section 2 discusses these opportunities
in detail. Deduplication is orthogonal to both o�oading and
local system optimizations, and can be combined with either
for further optimization.
While recent works involve sharing computation, we ar-

gue formore generic deduplication. Speci�cally, StarFish [33]
shares some intermediate results at the library level for com-
puter vision applications, MCDNN [23] enables sharing re-
sults from some layers of the deep neural network for dif-
ferent applications operating on top, and FlashBack [14]
relies on matching pre-de�ned sensing input and retrieving
pre-computed results for virtual reality (VR) applications.
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However, all of these were designed for (almost) exact match-
ing of the input (images), for speci�c (type of) applications
only and operate within the same type of applications. In
contrast, we take an unusual approach to deduplicate compu-
tation across correlated input values, across (di�erent types
of) applications, and in a fashion agnostic to the exact im-
plementation of the processing procedures.
In this paper, we present Potluck, a cross-application ap-

proximate deduplication service to achieve the above goal.
Potluck essentially stores and shares processing results be-
tween applications and leverages a set of algorithms to assess
the input similarity to maximize deduplication opportuni-
ties, as detailed in Section 3. We carefully design an input
matching algorithm to improve the processing performance
without compromising the accuracy of the results. Potluck
is implemented as a background service on Android that
provides support across applications (Section 4). Extensive
evaluation shows that our system can potentially reduce the
processing latency for our benchmark augmented reality and
vision applications by a factor of 2.5 to 10 (Section 5).

In summary, we make the following contributions:
First, we highlight deduplication opportunities across emerg-

ing vision-based and AR-based mobile applications. These
arise from various sources of correlation in their input, com-
mon processing components they leverage, and the co-installation
of these applications.

Second, in view of the opportunities above, we propose a
set of cross-application approximate deduplication technique
to achieve both fast processing and accurate results. To the
best of our knowledge, this is the �rst such attempt.
Third, we build the system as a background service. Ex-

tensive evaluation con�rms its bene�t is signi�cant.

2 Motivation
2.1 Motivating applications

Among the fastest growing applications, vision-based cog-
nitive assistance applications and augmented reality (AR)
based applications are two representative categories.
As an example cognitive application, Google Lens [10]

continuously captures surrounding scenes via the camera,
recognizes objects using deep learning techniques, and then
presents related information to assist the user. These appli-
cations increasingly provide personal assistance.

On the other hand, AR applications such as IKEA Place [4]
for home improvement, Google’s Visual Positioning System
for indoor navigation [3], and PokeMon Go [9] blend the
virtual and physical experience. They overlay 3D graphic ef-
fects on real world scenes to enrich and enhance the interface
between human eyes and the physical world.
Common themes. Most of these are lifestyle applications.
According to the measurement study of the smartphone us-
age [34], there is a high probability of such applications

being co-installed, even though they may not be running si-
multaneously. Further, they often operate in similar physical
environments, share common processing steps, and map a
group of similar input values to the same output. We discuss
these in detail next.

2.2 Input correlation and similarity

The above applications all take input from the environment
or some context, directly or indirectly. Such input exhibits
similarity, within an application or across applications, due to
the activities of themobile user showing spatial and temporal
correlation.
Temporal correlation.We can view the combined video in-
put to all the applications as a continual camera feed. In other
words, assuming there is a never-ending centralized camera
feed to the mobile device, di�erent applications simply take a
subset of the frames as needed. From standard video analysis,
signi�cant temporal correlation exists between successive
frames because the scene rarely changes completely within
a short interval, and this has been leveraged extensively in
video compression. In most cases, the main objects of interest
in these scenes are slightly distorted versions of one another
by some translation and/or scaling factor.
Spatial correlation. It is common for humans to follow
along recurrent trajectories, for example, due to their regular
commuting schedules or frequenting a favorite restaurant
from time to time. Therefore, there is some level of recurrence
of the scenes obtained as part of those activities, though po-
tentially taken from di�erent view points and partially di�er-
ent environments, such as di�erent lighting conditions and
surrounding backgrounds. The actual images might show
di�erent color bias, for example. Such correlation can be
identi�ed using SURF [12] like approaches.
Semantic correlation. A further situation arises when the
same object or the same type of objects appears in com-
pletely unrelated background scenes and at di�erent times.
For example, when a road sign is detected at di�erent places
and times, regardless of the exact sign, a driver assistance
app simply generates an alert. Since many applications in-
terpret the scene to related abstract notions of objects or
faces, many seemingly di�erent images can be classi�ed to
the same category and considered semantically equivalent.
Similar but not identical. However, these correlated input
frames are rarely exactly the same, for various reasons. In
some cases, the scene is actually changing (e.g., the user
walking or driving along a street). In other cases (e.g., ap-
proaching the same intersection from di�erent directions),
we get more or less the same scenes, but at di�erent view an-
gles. More generally, there might be distortion across frames
due to image blur (di�erent focus or motion-induced blur).
Correlation in the results. Generalizing the semantic cor-
relation, these similar input values are often mapped to the
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(a) (b) (c) (d) (e)

Figure 1. (a) and (b) are two snapshots taken successively along the same road 136 m apart in October 2016. (c) is taken
at a similar location but in August 2014. (d) and (e) are captured in completely di�erent places at di�erent times, but both
prominently feature a stop sign.
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Figure 2. Similarity between frames
same output values in the aforementioned applications, due
to the resolution of the results. For example, adjacent pix-
els in an image may be mapped to the same feature details.
Image recognition functions may attach the same label to
di�erent images. For an AR application, there is no need to
render a new scene if it is visually indistinguishable to our
eyes from a previous one.
Examples. Figure 1 illustrates these similarities. The images
are taken from Google Street View. Images (a) - (c) could be
perceived “the same” by a Google Len like app for showing
theWashington Monument, whereas images (d) and (e) show
“stop sign”.

As another example, we select a video segment from an
HEVC test dataset [30], and compute several features (color
histogram [22], HoG feature [45]) for consecutive frames.
Figure 2 shows the relative di�erences between the �rst and
later frames, calculated as the Euclidean distance between
the normalized vectors of the matched features. Shorter dis-
tances indicate higher levels of similarity, although there are
no universal criteria to de�ne similarity levels. The features
show consistent correlation levels across a long sequence of
frames whereas the raw images do not.
2.3 Common processing steps
As noted previously [23, 33], many computer vision applica-
tions share similar, incremental processing steps. However,
we also observe common processing steps in other types of
applications (e.g., speech recognition) and across di�erent
types of applications (e.g., vision and AR applications).
Figure 3 shows the schematic processing �ows for a cog-

nitive application (Google Lens), and two AR based applica-
tions, IKEA place (as an example of AR shopping application)
and indoor navigation.
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Figure 3. Schematic processing pipelines for three apps.

The indoor navigation app �rst recognizes the environ-
ment in the input image feed, which essentially invokes the
object recognition procedure. This is also the core step of
the Google Lens cognitive assistance app. Similar situations
could be very common, since AR application logic typically
starts with understanding the spatial context. Therefore, AR
applications can share essential recognition functions with
image recognition apps.

The two AR applications both require 3D graphic render-
ing. IKEA place would render virtual furniture at certain
positions to visualize a furnished room, while the indoor
navigation app would render a virtual map of merchandise
to help direct customers. When the latter takes place in a
furniture shop, the rendering logic would be essentially the
same as what is needed for IKEA place.
Common functions are also used in non-vision based ap-

plications. For example, two location based applications can
share the processing for GPS data or related contextual in-
formation close in time. A call assistant might use the mic
to capture the audio to identify the location and ambient
environment to determine whether to mute the call [19]. Sim-
ilarly, the same procedures can be used for home occupancy
detection as part of smart home management to determine
whether to turn o� the lights and turn on the alarm.

More generally, emerging learning-based application ecosys-
tems further presents common APIs and libraries, and the
possibility of sharing common processing steps between ap-
plications. For instance, Alexa Skills [1] enable developers
to deploy various services on smart IoT devices like Amazon
Echo. Deep learning frameworks such as Tensor�ow [11]
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provide high-level programming models for app developers.
Services and applications within such ecosystems leverage
the same human-device interface, processing pipelines, and
the underlying implementations to capture the input, under-
stand the context, and execute tasks.

2.4 Opportunities and challenges
Given the similarities between applications discussed so far,
deduplication is a natural approach for performance opti-
mization. As long as these applications collectively are used
frequently, there is signi�cant potential for deduplication.
For example, the home occupancy assessment and home per-
sonal assistant are usually used multiple times throughout a
day; the Google Lens and indoor navigation are both likely
to be used daily or more frequently.
Note that these “sharing” applications do not need to be

run concurrently. Deduplication works as long as the previ-
ous results are still cached, and the interval could easily be
days or longer provided there is enough space to store the
cached results.
Challenges. In order to e�ectively deduplicate the process-
ing across applications, we need support for identifying the
equivalence between input values, cross-application sharing,
and appropriate cache management criteria.

Since the input images are rarely the same, we need to be
able to quantify and assess the extent of similarity between
them, based on the semantics of the function.

The deduplication opportunities may straddle application
boundaries, so we need a service shared between applica-
tions. This will naturally support in-app deduplication as
well, though incurring a slight overhead by crossing the
application boundaries.
Deduplication means we need to cache previous results.

However, since our cache serves a di�erent purpose than
those of traditional caches, we cannot manage cache entries
based on the least recent access or other traditional cache
entry replacement algorithms.

We address these challenges by designing a cache service,
Potluck, shared between applications.

3 Potluck System Design
3.1 Overview
Potluck caches previously computed results to provide ap-
proximate deduplication across applications. The processing
�ow is conceptually simple. When an application obtains
an input (e.g., a frame from a video feed) and calls certain
processing functions, it �rst queries the cache for any exist-
ing results. The query proceeds in several steps. First, the
input data are turned into a feature vector, which serves as
the key. Second, a lookup attempt is made with the key and
the name of the function called, by matching the input key
to any existing key within a given similarity threshold. If
there is a hit, the cached result is returned. Otherwise, the

application processes the raw input and then puts the result
in the cache. Third, the put action may trigger an adjustment
of the input similarity threshold. We discuss the individual
steps next.

3.2 Computing the key

De�nition of keys. The key is essentially a variable-length
feature vector generated from the input image, such as SIFT [35],
SURF [12], HoG [45], colorHist [22], FAST [42], and Har-
ris [24]. For example, the feature vector might be a 768-bit
vector to represent the color histogram, a vector of N ⇥ 64
bytes to describe SURF features from the input image, or a
vector ofm⇥n bytes to represent the down-sampled version
of the raw input image intom ⇥ n pixels.
An essential requirement is that the key must be de�ned

in a metric space, in which a notion of distance can then be
de�ned. This need not necessarily be the Euclidean distance,
although it is the one commonly used.
Given the raw input (e.g., images or speech segments),

as application requirements might di�er, we give the appli-
cation the freedom to choose the exact key generation and
similarity assessment mechanisms. App developers can cus-
tomize the implementation of both or select from a library
of mechanisms provided within Potluck.

Converting the raw input to a feature vector is important,
because this step can eliminate noise in the raw data, “ho-
mogenize” inputs with di�erent formats and scales, and save
space when storing these items.

3.3 The usefulness of cache entries

The Importancemetric.Conventional caches operatewithin
a single application, where the entries store frequently ac-
cessed data. The number of data access attempts simply
re�ects the value of the data and determines whether the
data should be retained.
Instead, our cache is di�erent, since not all cache entries

of computation results are created equal, and the variance
across applications is even larger. The access frequency is
the only factor that determines the value of the cached result.
Therefore, we assess the usefulness of a cache entry by a new
metric, called importance, computed as computation o�erhead⇥
access f requenc�/entr� size In addition, each cache entry is
tagged with a validity period. When that expires, the entry
will be automatically cleared from the cache in the back-
ground.
The importance value indicates how frequently an entry

has been used and might save on future computation times,
but has no correlation with the accuracy of the result. There-
fore, it is only used for evicting a cache entry. The lookup
operation does not take into account this value.
Calculation and update of importance. The importance
value for an entry is dynamic and its recalculation happens in
two cases. A lookup() call increments the access frequency
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of the fetched entry by 1, and the corresponding importance
value is updated accordingly. With a put() call, on the other
hand, a new importance value is calculated for the entry.
Speci�cally, the computation o�erhead is calculated as the
elapsed time between the lookup() miss and the put() op-
eration of this entry, and the access f requenc� is initialized
to 1. The expiration time is simply that of the overall entry,
set during the put() call.

3.4 Querying the cache

Threshold-restricted nearest neighbor query. A query
involves �nding the closest match for an input key. When
given a feature vector as the key, we initiate a k nearest
neighbour search, iterating over all entries in the key index.
After that, we discard those returned entries whose dis-

tance from the input key vector exceeds a certain threshold.
By default, to balance the lookup time and quality, we set k
to 1. We experimented with a few values and �nd that this
value provides the fastest lookup time without sacri�cing
quality.
Random dropout. When a cache query operation is in-
voked, with a probability (currently set to 0.1) Potluck will
simply return nullwithout actually querying the cache. This
is a randomization mechanism to enforce a put() operation
at least periodically. This refreshes cache entries as well as
triggers a recalibration of the threshold. The latter is valu-
able, in case the threshold has been loosened too much, as
explained next. We will discuss how to set the “dropout”
probability at the end of Section 5.2.

3.5 Tuning the similarity threshold
The threshold controls towhat extent di�erent raw inputs are
consider “the same”. Part of our argument is that many raw
images are similar and therefore we can avoid duplicating the
subsequent processing. Clearly, there is a tradeo� between
performance speedup from reusing previous results and the
accuracy of the results. We manage this by adaptively tuning
the similarity threshold based on the ground truth and the
observation of the nearest neighbour entry, as shown in
Algorithm 1.
The algorithm. The idea is straightforward. The thresh-
old is initialized to 0, meaning no distance between input
images is permitted. After caching enough entries (100 by
default), the algorithm kicks into action and we then gradu-
ally increase (“loosen”) or decrease (“tighten”) it as needed,
triggered by each put() operation. In general, the threshold
is loosened conservatively but tightened aggressively. If the
threshold is too tight, we might miss deduplication opportu-
nities. When the threshold is too loose, the cache lookups
might return false positives, i.e., input images that are not
actually similar but considered so due to the threshold.

Given the new key and value to be stored in the cache, the
algorithm �nds the nearest neighbor in the feature vector

Algorithm 1: NN-based threshold tuning algorithm
1 initialize threshold  0;
// params are customizable

2 initialize k  4, �  0.8, z  100;
Wait: z entries inserted to cache by Put operations

3 while service not terminated do
4 wait for new Put operation;
5 read (ke�,�al) pair from the operation;
6 (ke� 0,�al 0) lookup(ke�);
7 if | |ke� 0 � ke� | |  threshold and �al 0 , �al then
8 threshold  threshold/k ;
9 else if | |ke� 0 � ke� | | > threshold and �al 0 = �al

then
10 threshold  (1��)⇥| |ke� 0�ke� | |+�⇥threshold ;

11 end

space to the new key. Two cases should be noted. If the key
distance is larger than the threshold and both keys map to
the same values (line 9 in the pseudo-code), the threshold
is too tight and should be loosened with an exponentially
weighted moving average. Conversely, if the key distance is
within or equal to the current threshold, but the keys map to
di�erent values (line 7), the threshold is too loose and should
be tightened. Note that the latter case will not arise naturally.
If two keys are within the threshold, the cache query would
normally return the cached result (incorrectly). Therefore
we adopt the “random dropout” in the cache lookup process
to arti�cially trigger this case from time to time, as a quality
control mechanism.
Intuition and correctness.The threshold-tuning algorithm
is essentially based on �nding k nearest neighbors (kNN). It
observes the distance between the (key, value) pairs of the
nearest neighbours and compares the stored results with the
ground-truth to adjust themaximumdiameter of the “similar”
result cluster accordingly. This diameter is then the thresh-
old value we adopt. kNN is a widely used non-parametric,
case-based machine learning algorithm, which makes no
assumptions of the input data model. It has been extensively
studied for decades and proven correct [27] for handling
data with unknown features. In the same vein, our NN-based
threshold tuning algorithm can provide reasonable hints on
the correlation between input similarity and the reusability
of the result even if we have no prior knowledge of the input
data.
Quality of results and security considerations. While
leveraging results across applications in Potluck can yield
performance bene�ts, it breaks the isolation between appli-
cations. This can leave the system vulnerable to malicious
apps polluting the cache by inserting spurious results.
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Fortunately, the combination of the threshold-based kNN
and random dropout algorithms can guarantee the qual-
ity of results (QoS) is not completely a�ected by a polluted
cache and act as a defense mechanism against malicious apps.
The protection can be further enhanced by incorporating
a reputation system (such as Credence [47]) into Potluck.
Each cache entry can be tagged with the application source.
The threshold-tuning phase can then establish a reputation
record for each application, and malicious apps can be iden-
ti�ed and barred from time to time.

It is worth mentioning that sharing results in our context
does not present privacy concerns. The input data tend to
be derive from the contextual information for the mobile
device, and hence common to all applications on the device.

3.6 Cache management

Inserting and indexing cache entries Several steps are
involved to insert a cache entry (namely a put() operation).
Potluck �rst collects the auxiliary information about the
entry to compute its importance. Second, we invoke the
threshold tuning algorithm (Section 3.5). Finally, we store
the key, the computed result, and the importance value.
The key is then added to the right position in the index.

The processing time depends on the index data structure.
However, unlike cache lookup, the indexing process runs
in the background asynchronously and does not a�ect the
application response time.
Eviction policy and expiry. The cache entries can be dis-
carded in two ways. First, cache entries can expire, and the
timeout is currently set to be an hour. Second, if the cache is
full when a new put() request comes, the least important
entry will be evicted and replaced with the new entry.

3.7 Supporting multiple key types

So far we have explained the processing �ow from a single-
app (single key type) perspective. In practice, di�erent appli-
cationsmay prefer tomap input to feature vectors of di�erent
speci�cations. In other words, we need to support multiple
de�nitions of the key, or types. Each application should be
able to perform cache operations using their preferred key
types, and we automate typecasting between keys to further
support cross-application deduplication.
Multi-index structure. For multi-key-type settings, we
construct a cache query index for each type of the keys, so
that the query index can be optimized for the unique prop-
erties of the particular key type to ensure highly e�cient
lookups. Cache entries generated by di�erent applications
but using the same key type will be managed in the same
index.
Cache lookup. The cache lookup will take one more argu-
ment, specifying the key type being looked up. This then
sends the query to the corresponding key index.

Potluck Service

secondary flash storage

In-memory storage

App
Listener CacheManager

AppY

notify oper. info

manage 
stored entries

AppX

Binder IPC
register/request

lookup

OS
APP

Figure 4. System architecture.

Cache insertion. Whenever a put() operation introduces
a new key-value pair to the cache, we propagate this entry to
all key indices. This triggers operations to iterate through all
existing input key types, mapping the raw input to each key
type, invoke the threshold tuning procedure per key index,
and then insert the key to each corresponding index.
Cache entry eviction. Unlike cache insertion, cache evic-
tion is not propagated to all indices. Instead, for each key
type, the corresponding index will select the entry to be
evicted and delete the key. The actual cached computation
result will be cleared via garbage collection when no indices
have references to it.

4 Implementation
4.1 Architecture
We implement Potluck as a background application level
service in Android Marshmallow OS with API version 23.
Figure 4 shows the architecture of the system.
The deduplication service consists of the following mod-

ules. The AppListener maintains a threadpool, handles the
requests from upper-level applications, and carries out the
corresponding procedures, including registering apps to the
service, executing the lookup() or put() requests, and in-
voking the threshold tuning or reset procedure. The CacheManager
maintains the importance metric of stored entries by mon-
itoring the execution time of the functions and the access
frequency of the stored entries. Based on such information,
it handles the expiry and eviction in the background. The
DataStorage is the storage layer which keeps previous com-
putation results, and indexes the entries to speed up lookup
requests.

4.2 Deduplication service

Key generation and comparison. Generally, our system
supports variable-length vectors to serve as the keys. They
are implemented as Vector instances from java.util.
Collection, String instances of java.lang.String, or
INDArray instances (a third-party class for fast numerical
vector computation) [5]. We implement the extraction of the
features mentioned in Section 3. Most of them are already
implemented in the openCV library [6], and we invoke the
corresponding functions to process the input image.
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By default, we support comparison and similarity mea-
surement for scalars and vectors, as well as lexical ordering
and comparison for strings.
Support for custom key de�nition and matching. We
expose an interface to the application, through which the
application can customize its own key generation and com-
parison logic if desired. For example, app developers can
implement Mel Frequency Cepstral Coe�cents (MFCC) [38]
computation for an audio �le and Principal Component Anal-
ysis (PCA) [25] based dimensionality reduction for high-
dimensional input data. Any customized classes andmethods
are then incorporated via dynamic class loading, supported
via re�ection in Java. In this way, app-speci�c components
are meshed with the system logic in Potluck. Our imple-
mentation leverages the OpenHFT.compiler open-source
package [7] to achieve this.
Cache organization. Figure 5 shows the cache layout. There
are three variables, the function called, the feature vector
speci�cation (i.e., the key type), and the value of the key,
that collectively correspond to a stored result. Therefore, we
organize the cache entries into multiple levels, �rst by the
functions invoked, then by the key types, and �nally the
speci�c keys.
First, when an insertion or lookup is needed, we add

or match a function. This is implemented with a HashMap.
Note that this means only applications using exactly the
same function can share results. Since the type of applica-
tions that might bene�t from Potluck typically use common
libraries (such as OpenCV or some deep learning frame-
work), we believe the current approach is reasonable trade-
o� between simplicity and e�ectiveness. Second, we use
another HashMap to organize all key types corresponding to
a function. Third, we use appropriate data structures to or-
ganize di�erent key values, either a Locality Sensitive Hash
(LSH) [16], KD-tree [52], treemap, or a hashmap, depending
on the key dimension and how similarity assessment work.
The �nal “values” stored are simply references (memory
addresses) to the actual value stored in the memory.
A hashmap is useful for the exact matching, achieving

O(1) time complexity for key search. A Treemap is imple-
mented as a balanced binary tree which supports nearest
neighbor and range searches in O(lo�N ) time. Scalar or vec-
tor keys which are compared by their lexical order could
bene�t from using this data structure. Further, KD-trees and
LSHs are data structures to support spatial indexing and
e�cient nearest neighbor and range searches (with O(lo�N )
average complexity) for multi-dimensional vectors, where
we can only calculate distances between keys but not derive
a global order for them.
Cache eviction and expiry. Cache entry eviction and ex-
piry are handled by a separate management thread running
in the background. If the cache is full when put() is called,

Function Name Map

Func 1

KD-tree index

Func 2 Func N

Physical memory block

Hash key index

Figure 5. Cache layout.

the management thread will iterate through all indices to
�nd the entry with the lowest importance to be discarded.

Separately, the management thread also maintains a queue
that orders all cache entries by their expiration times. This
thread will be waken up when the current head item in
the queue reaches its expiration time. The thread clears all
(at the same time) expired entries from the cache and the
priority queue, and sets the next wake-up time according to
the expiration time of the new head item.
Communication between components. The communica-
tion between the apps and the deduplication service lever-
ages Binder with AIDL [2], the IPC mechanisms natively
supported by the Android OS. Interactions between the in-
ternal modules of the service are simply through shared
memory with mutual exclusion locks.
The AppListener receives a Request message from an

application, which consists of the request type (register or
operation), function name, key type, lookup key, and com-
putation results to store. It replies to the application with
a Reply message containing the request type and the cor-
responding return values. The AppListener also sends the
query information to the CacheManager.
The CacheManager maintains a queue of query requests.

It also manages the data in the dataStorage, inserting new
entries, evicting the least important entries when necessary,
updating the importance value of those accessed entries, and
discarding expired entries.

4.3 APIs and patches to the application code
There are two sets of APIs exposed to the application, on the
control and data paths of the application respectively.
Registration on the control path.Applications start using
Potluck with a register() call. This function registers a
handle with the cache service, loads any custom-de�ned key
generation methods, and initializes the application-speci�c
key index. It also resets the input similarity threshold.
Cache operations on the data path. Applications can call
put() and lookup(), two intuitive functions to insert and
look up an entry. Therefore, the changes needed to leverage
Potluckis negligible.
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Discussion. Currently we need to patch the application
source code to add handles to Potluck, but this makes sense
because fuzzy inputmatching requires having the exact input
values, not just their memory representations. Further, we
want to expose some interface to the application to control
the accuracy and performance tradeo�.

5 Evaluation

5.1 General setup

Application benchmarks. We built three simpli�ed appli-
cations as benchmarks, one image recognition application
and two augmented reality (AR) applications. The image
recognition application includes pre-trained models and per-
forms deep-learning based inference using the AlexNet neu-
ral network [29]. For the AR applications, one uses the cur-
rent 3D orientation of the device and its location to render
virtual objects, while the other �rst runs image recognition
on the current frame in the camera view, and then renders
virtual objects overlaid on the detected physical objects.
Data sets.While the above applications can run in real time,
evaluating the recognition performance using real-time cam-
era feeds is di�cult, since it is impractical to enumerate all
possible scene sequences as the input for evaluation. Fur-
ther, any single camera feed only captures a single scenario,
and does not necessarily represent the general case. There-
fore, we turn to standard datasets used to train and test
image classi�cation algorithms. In such datasets, images
are crowdsourced and well calibrated, which eliminates the
spatio-temporal correlation between them. In light of this,
they present less favorable (i.e., more challenge) scenarios
for Potluck than datasets collected from real applications.
Experiment results from these data sets are then indicative of
the worst-case performance for Potluck, and we can expect
better performance for real applications.

We use two commonly used image classi�cation datasets,
CIFAR-10 [28] and MNIST [31], which serves as a controlled,
generic scenario. We also capture several video feeds in real
life to emulate real application scenarios. The comparison
between the results from these datasets cross-validates our
belief that the performance of Potluck in practice will be
better than reported in this section.
The CIFAR-10 dataset consists of 60,000 32⇥32 color im-

ages categorized into 10 classes, 6,000 each. There are 50,000
training images and 10,000 test images.We use images within
the same class to mimic deduplication opportunities where
similar objects appeared in di�erent backgrounds.
The MNIST dataset is a database of handwritten digits,

consisting of a training set of 60,000 examples and a test set
of 10,000 examples. The digits have been size-normalized
and centered in a �xed-size image.

We found that experiment results from the two datasets
were similar, and therefore we mostly present results based
on CIFAR-10, as it covers a wider range of image scenes.
Experiment environment. All experiments in this section
are run a Google Nexus 5 (with a quad-core 2.26 GHz Qual-
comm Snapdragon as the CPU and an Adreno 330 graphics
processor) as our mobile device, running Android Marsh-
mallow OS with API version 23. Later in the section we also
use a PC (with a quad-core 2.3 GHz Intel Core i7 CPU and
NVIDIA GeForce GT 750M GPU) to compare the processing
times. The PC is around an order of magnitude faster than
the phone.
Metrics. We evaluate Potluck in terms of accuracy, process-
ing time, and missed opportunity.
The �rst two characterize the performance bene�t and

tradeo� of capturing the input similarity to reduce dupli-
cate computation. The third one is analogous to the notion
of recall commonly used to characterize machine learning
algorithms. Roughly speaking, recall measures the portion
of test data recognized based on the training data. In our
case, we �rst characterize the optimal case for deduplication
under each speci�c experiment setting, which de�nes the
upperbound performance of our system, and then quantify
missed opportunity by the gap between the performance of
Potluck and the particular optimal case.
Since the input is the main determining factor for the

performance of our system, our results are interpreted with
respect to the input data setting of each experiment.

5.2 Input and key management

Key generation.We randomly select a set of 600⇥400 im-
ages from our dataset, and measure the time taken to gen-
erate a feature vector following di�erent feature extraction
methods. Around 500 features are detected in each image.
Table 1 shows that generating SIFT and SURF features as
the key takes orders of magnitude longer than the others
but captures more information about the raw image. They
are suited to recognition tasks. Harris and FAST features are
based on edge detection and a good �t for object detection
workloads. Detection is the �rst step of recognition, and the
latter requires much more detailed information. Downsamp
refers to down-sampling the raw image to fewer dimensions,
which is then vectorized to be fed into deep neural networks.
Since key generation is the �rst step to use Potluck, there
is clearly a tradeo� between the processing time and the
level of feature expressiveness required for a speci�c app.
For our later experiments, we use Downsamp for the deep
learning based image recognition app and FAST for motion
estimation within the AR applications.
Threshold tuning. The similarity threshold determines the
amount of deduplication we can achieve as well as the ac-
curacy of the lookup result. The threshold is loosened or
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Table 1. Key generation time
Feature Size (KB) Time (ms) Usage
SIFT 124 1568 Recognition
SURF 32 446 Recognition
Harris 35 91 Detection
FAST 28 4.6 Detection

Downsamp 1 5.8 Deep learning
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Figure 6. The accuracy of the similarity threshold.

tightened depending on the cached entries. We perform two
experiments to evaluate the tuning algorithm.
First, we investigate how many entries should be cached

before we start calibrating the threshold and thus enabling
the deduplication service. We consider a threshold “accu-
rate” if the results from the cache query are similar to the
ground truth. We randomly pick a variable number of im-
ages from the training set of CIFAR-10, put the recognition
results into the cache, and calculate the initial value of the
threshold. Then, we take 400 images from the test set and ob-
tain the recognition results by both running the recognition
algorithm and retrieving the nearest match from the cache
results. These steps are repeated 10 times and we collect the
average and variance information.

Figure 6 shows the normalized recognition accuracy of the
threshold vs the number of cache entries used for initializ-
ing the threshold. Since the recognition accuracy without
leveraging deduplication is not 100% anyway, we use that as
a baseline to normalize the accuracy of our system. In other
words, the y-axis shows the accuracy with Potluck divided
by the baseline accuracy value. The line shows the average
value, while the errorbars show the maxima and minima.

The accuracy stabilizes quickly as more cache entries are
available. With at least 32 entries (over 1 second for a normal
30 fps video feed), the accuracy exceeds 95% with less than
5% error. The time overhead for computing a new threshold
turns out to be less than 1 ms and negligible.
Second, we analyze how quickly the threshold is tight-

ened. Recall that we loosen the threshold slowly and con-
servatively to minimize the possibility of false positives, but
try to tighten it quickly. This is also because the threshold
is loosened more frequently, invoked by each natural put()
operation. In contrast, it is only tightened after a random
dropout mechanism (Section 3.4), which happens rarely. In
this experiment, we start with a certain threshold (normal-
ized to 1), and then count howmany cache entries are needed
to adjust the threshold to 0.
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Figure 7. Threshold changes with lookup operations.

Figure 7 illustrates that, when the decrease factor (the pa-
rameter k de�ned in Alg. 1) is over 1/4 and the dropout prob-
ability 0.1 (the respective default value used), within around
20 cache operations (including lookup() and put()), the
threshold shrinks by a factor of 20. With only 30 operations
on average, we could further shrink it by a factor of 100. In
other words, when switching to a new scene, for a 30 fps
camera, the threshold could be adjusted accordingly within
seconds, which is an acceptable latency for most use cases.

5.3 Cache entry replacement strategy
To evaluate our cache replacement strategy, we consider
two cache hit patterns, uniform distribution and exponential
distribution, and compare our importance-based strategy
with two commonly used cache replacement strategies, least
recently used (LRU) and random discard.

The number of cache hits, or the occurrences of reusable
results can be modeled by a uniform distribution or an ex-
ponential distribution. Uniform distribution is often seen
for single-app or in-app deduplication, as it is common to
obtain input frames at �xed intervals and each component
in the processing pipeline is invoked once per new input.
Exponential distribution �ts the multi-application scenario
as the relative application popularity can be modeled by an
exponential distribution [17].
For this experiment, we �rst de�ne 100 di�erent work-

loads, each of which takes a di�erent amount of computation
time ranging from 1 ms to 10 s. Then we create two request
arrival sequences with 10,000 requests each, generated from
these 100 workloads. Within the two request sequences, the
number of occurrence of each workload is uniformly and
exponentially distributed respectively. Next, we vary the
proportion of working sets cached from 10 to 90 (meaning
caching 10% - 90% of all workloads). Under each value, we
submit the request sequence to the cache and measure the
portion of the total computation time required due to cache
misses, using the three di�erent cache replacement algo-
rithms.
Figure 8 shows that our algorithm consistently outper-

forms LRU by a large margin. For both request patterns,
using the importance metric to retain entry caches can save
an additional 40% of the computation while caching less
than 20% of the previous results. The fraction of computa-
tion time drops further to below 5%, when the proportion
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Figure 8. Comparison of cache entry replacement strategies
given di�erent access patterns.

Table 2. Lookup latency
# of entry key size (bytes) LSH (µs) enum (µs)

100 100 3.2 50
1000 100 3.6 170
10000 100 4.4 2210
100000 100 6.7 21340
100000 1000 7.5 205070
100000 5000 8.1 –

cached grows to over 40% and 60% of the active working
set respectively for the exponential and uniform workload
distributions. The non-uniform distribution in the request
pattermwill propagate to the importance values, skewing the
distribution of the latter. These results suggest that our algo-
rithm successfully retains the results from the computation-
intensive workloads.
5.4 System overhead

Cache lookup and insertion overhead. The cache lookup
overhead depends on the organization, the current cache size,
and the key length. The computation complexity of a key
matching operation is determined by the key length. We
submit 100 requests to the cache and measure the average
completion time.

Table 2 compares the lookup time using Locality Sensitive
Hash (LSH) and by naively enumerating through all keys.
LSH based lookup is very e�cient, takes less than 10µs , and
scales well with an increasing cache size. Without a carefully
designed key structure, the best one could do is to resort to
naive enumeration. It incurs an acceptable latency when the
total size of the keys is no larger than 10 MB, but cannot
scale well to hundreds of MB.

The insertion overhead is at micro-second level even for a
500 MB cache (about the upper limit, since using more space
is not practical for mobile devices), which is negligible.
IPC latency.We sequentially submit 500 requests and divide
the total response time by 500. The average end-to-end la-
tency using the Binder and AIDLmechanism is about 0.36 ms
per request.
Space overhead. Android sets a per-device limit for the
maximum heap space an app could use, ranging from 16 MB

to 512 MB. This simply prevents applications from exhaust-
ing the memory, and our service operates within the limit.
Our key structure is also e�cient regarding space usage.

Consider a raw image of 400⇥400 pixels, about 500 KB in size.
Its SIFT or SURF feature vectors are only 48 KB and 24 KB
in size when 400 features points are extracted. Other feature
vectors (such as FAST features) are oftenmore compact. Even
if all these vectors are used simultaneously, their combined
size is still an order of magnitude smaller than that of the
raw image.

Further, as we mentioned previously, even though we use
multiple key indices, the corresponding “values” are only
memory addresses, not the actual recognition results. This
way, the recognition results are not stored redundantly.
Generalization to other hardwaremodels.The overhead
numbers listed above further imply that the bene�t of Potluck
is not device or CPU dependent, but bound by the input.
The read/write speed for memory and �ash storage access
varies little across phone models, while the latency due to the
lookup/pipeline overhead is at least 3 orders of magnitude
lower than running the same computation on a high-end
GPU-equipped device. In fact, we will show later (Section 5.6)
that an old phone running deduplication could outperform
a powerful PC.

5.5 Single-application performance

We next evaluate the end-to-end performance of Potluck
for applications individually. We run both the deep learning
application and the AR application that loads and renders 3D
models based on the current location and device orientation.
Performance and accuracy tradeo�. We randomly select
100, 500, and 5000 images along with their (ground-truth)
recognition labels from the CIFAR-10 training set and 500
images from the MNIST dataset as the pre-stored entries,
and then select 100 images from the test set as the inputs to
the cache lookups. Figure 9 shows the processing time saved
and the accuracy respectively as the threshold changes. The
actual threshold values produced by our tuning algorithm
stay within the shaded region in either �gure.
The performance of Potluck is measured by dividing the

accuracy and time saving by the respective optimal values.
The optimal accuracy is de�ned as the accuracy when using
the pre-trained AlexNet deep neural network to recognize
the test images. The optimal time saving is 100% assuming
all lookups result in cache hits (with the right results).

We make several observations from the �gures. First, our
threshold tuning algorithm results in a reasonable tradeo� by
saving up to 80% of total the computation time at the expense
of less than 10% accuracy drop. Second, when there is a larger
number of stored results, the accuracy starts to drop slightly
earlier. This makes sense because more cached results can
increase the noise and the chance of mis-classi�cation (i.e.,
false positives for key matches). Third, not surprisingly, the
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Figure 9. Time saving and accuracy vs the extent of dedupli-
cation opportunities. “C” and “M” correspond to the CIFAR-
10 and MNIST datasets respectively

total time saving increases signi�cantly with the number of
stored entries, as there is a higher probability of cache hits.
Lastly, the two di�erent datasets shows consistent trends for
the tradeo� between the accuracy and total time saved. This
suggests the generic behavior of the system under various
scenarios.
Note that we cannot assess the “accuracy” easily for AR

applications, since the rendered scenes are evaluated with a
number of visual quality metrics, such as the image resolu-
tion, and there is no absolute notion of “accurate”.
Mobile processing vs o�loading to aPC.To further gauge
the bene�t of Potluck, we compare the application process-
ing time on the mobile device and on the PC mentioned
earlier. The latter is a proxy for o�oading computation to a
power server but without incurring network transfer latency.

For the deep learning based image recognition application,
the experiment setting is the same as for the previous experi-
ment, except that we run our threshold tuning algorithm live
to automatically adjust the threshold, instead of �xing its
value. Figure 10(a) shows the normalized average completion
time for each image with optimal deduplication, with and
without Potluck on the mobile device, and on the PC. The
performance of Potluck is within 5 ms of the optimal case.
It reduces the completion time of the native application on
the mobile by a factor of 24.8, and even reduces the native
execution time on the powerful laptop PC by a factor of 4.2.
For the 3D graphic rendering part of the AR application,

our target results are three 2D scenes with depth information,
each containing virtual 3D objects of di�erent rendering com-
plexity. Normally, a 3D object is rendered and then projected
onto the display. With Potluck, the processing �ow is simpli-
�ed to looking up rendered 2D images with the most similar
orientation, estimating the transform matrix, and warping
the original 2D image to �t the current orientation [36]. The
3D orientation and location of the device are used as the key
for the cache lookups in Potluck.

Since we only care about the transform matrices between
scenes, and not the actual scenes in the video, for this exper-
iment we generate a video feed of three virtual 3D models

viewed from di�erent angles and sample non-consecutive
frames to synthesize the workload to emulate a real scenario.

Figure 10(b) compares the per-frame rendering time needed
by Potluck with the times for native rendering on the mobile,
on the PC, and the optimal deduplication case. The perfor-
mance of Potluck is within 9.2% of the optimal deduplication
performance. It reduces the running time of the native appli-
cation on the mobile device by a factor of 7, and only takes
47% longer than rendering on the PC.

5.6 Multi-application performance

Finally, we run the three applications together, two AR ap-
plications and an image recognition app as described at the
beginning of the section. Note that the applications are not
required to run simultaneously in the foreground in the clas-
sical sense of concurrency. Rather, we emulate a scenario
where the invocations of these applications are interleaved
in similar spatio-temporal contexts. We record several 30-
second video segments from the real world at 60 fps, extract
200 frames, evenly spaced, from each video sequence, as our
input sequences, and evaluate the performance gain from
Potluck.
Figure 10(c) shows the normalized completion time of

the three applications respectively. Potluck reduces the per-
frame completion time by 2.5 to 10 times, and almost achieves
the same performance as optimally reusing previous results.
For the deep learning and the location based AR applications,
running deduplication on the mobile device is even faster
than running the whole workload on the PC.
The last set of bars in the �gure represents an emulated

version of FlashBack [14]. This is a system to achieve fast
graphics rendering for virtual reality applications, by precom-
puting all possible input combinations and simply looking
up the corresponding results during the actual run. This is
the closest to reusing previous results for AR applications,
even though the input handling is di�erent. Assuming the
same result from the input handling techniques in FlashBack
and Potluck, the bene�t of FlashBack only extends to in-app
result reuse for only the rendering portion of our AR appli-
cations. In view of our benchmark applications, therefore,
the emulated FlashBack can bene�t the location-base AR
application similar to Potluck does, bene�t the rendering
portion of the second AR application, but does nothing for
the deep learning application.

We also evaluated Potluck on the MNIST dataset. The im-
ages in this set show higher semantic correlation than those
in CIFAR-10. While Potluck delivered a similar time saving
for the location-based AR workload as shown in Figure 10(c),
it reduced the processing time of the image recognition ap-
plication by a factor of 16 compared to native computation
on the phone. This highlights the bene�t of Potluck when
the input data exhibit stronger correlation, as Potluck is able
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Figure 10. Time saving and accuracy vs the extent of deduplication opportunities.
to eliminate more potentially duplicated processing. Fur-
ther, these results again suggest that Potluck could bring
signi�cant performance gain in a broad range of scenarios.

6 Related Work
To the best of our knowledge, no existing work has explored
cross-application approximate deduplication in mobile sce-
narios. Further, Potluck provides a more generic mechanism
for deduplication even within the same (type) of applications.
We discuss a few approaches closest to ours.
Application-speci�c solutions. Star�sh [33], Flashback [14],
andMCDNN represent recent e�orts accelerating computation-
intensive mobile applications. Star�sh extends common
computer vision (CV) libraries [6] with a centralized mech-
anism, including a cache to store previous function call ar-
guments and results. However, it does not readily work for
newer DNN-based applications [13, 49], and its memoization
requires precise matching between the inputs. FlashBack
is a pre-rendering system speci�cally designed for virtual
reality (VR) applications. It utilizes nearest neighbour match-
ing to select pre-rendered frames and adjust them for new
frames. However, the design assumes �xed environment and
known data pattern, which is not the case for non-VR appli-
cations, as the scenes for AR applications are unbounded and
constantly changing.MCDNN accelerates the execution of
deep neural networks on mobile devices. One particular op-
timization is to share the execution (results) of the common
layers of the neural networks from di�erent applications.
But, the sharing is synchronous and does not involve ex-
plicit caching. If the exact same input is passed to the neural
network twice, the whole computation will be performed
twice.
In contrast, Potluck is more �exible in several ways. It

targets cross-application deduplication, does not require ap-
plications to run concurrently to share results, and makes
little assumptions of the speci�cs of the sharing applications
or the shared input data. The input similarity is determined
semantically, rather than based on the raw binary represen-
tation.
Deduplication vs frame sampling. Though not designed
for the same settings, several previous e�orts related to video
analytics [51] or continuous vision [15] considered some

form of frame sampling to reduce the computation complex-
ity. These systems selectively process “the most interesting”
input frames and skip the rest. They include algorithms to
identify the frames of interest for further processing.
Potluck can be viewed as a di�erent take on frame sam-

pling. Our service computes the full results for selected input
images and �nd a nearest match for the rest. One important
di�erence is that Potluck makes no assumptions about the se-
quence of input images and is more �exible for applications
launched in an ad hoc fashion.
Computation reuse in clusters. In distributed clusters,
Di�erential data�ow reuses results between iterations within
the same program [37], while DryadInc [41], SEeSAW [26]
and Nectar [20] leverage cross-job (not application) compu-
tation reuse with a centralized cache service and a program
rewriter that replaces redundant computation with the cor-
responding cached results. These solutions do not readily
apply to a mobile setting, since the resource constraints are
completely di�erent, and there is no distributed �lesystem
as a basic structure to synchronize data globally. UNIC [46]
is a recent work speci�cally designed for deduplication se-
curity, which is orthogonal to our design. The techniques
proposed by UNIC can be incorporated into Potluck for bet-
ter program-level integrity and secrecy.
Approximate caching. There is a loose analogue between
deduplicating computation in Potluck and deduplicating stor-
age in approximate caching (such as Doppelg’́anger [39])
and the compression of image sets [50] or nearly identical
videos [48]. All cases are motivated by the similarity between
input images, and various feature extractionmechanisms can
be used to quantify the similarity for further compression.
However, Potluck further reasons about the computation re-
sulted from the input similarity, whereas the other schemes
aim to reduce the space usage of the input.

7 Conclusion
In this paper, we argue for an unorthodox approach to op-
timize the performance of computation-intensive mobile
applications via cross-application approximate deduplica-
tion. This is based on the observation that many emerging
applications, such as computer vision and augmented reality
applications take similar scenes as the input and sometimes
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invoke the same processing functions. Therefore, there are
ample opportunities for reusing previously computed results.
We build Potluck, a background service that conceptu-

ally acts as a middleware to support multiple applications.
Potluck converts the input image to a feature vector, which,
along with the function invoked, then serves as a key to
the previously computed result. The design further includes
mechanisms to dynamically tune the input similarity thresh-
old and manage cache entries based on their potential for
reuse. Evaluation shows that we can speed up the processing
signi�cantly via deduplication.

Looking ahead, we believe there is scope to explore further
deduplication opportunties. In this paper we have mainly
focused on image-based applications, since they tend to be
among the most computationally intensive. However, the
design and implementation presented are general and can
apply to other types of input data. We can also apply the
deduplication concept across devices. Further, the applica-
tions could exploit optimization opportunities by adding
post-lookup logic to perform incremental computation.
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