Causal Commutative Arrows

Hai (Paul) Liu, Paul Hudak

Yale University

Outline

- Arrows and FRP
- Introduction
- Arrow Laws and Properties
- Causal Commutative Arrows (CCA)
- Syntax, types and Semantics
- Implementation by Mealy Machine
- Optimization by Normalization
- Causal Commutative Normal Form (CCNF)
- Benchmarks

Contributions

- A minimal language that captures the essence of causal computation.
- Two additional laws that lead to normal forms.
- Substantial performance gain via optimization by normalization.

Exponential Example

A math definition of the exponential function:

$$
e(t)=1+\int_{0}^{t} e(t) \cdot d t
$$

Yampa program using the Arrow Syntax:

```
exp = proc () }->\mathrm{ do
    rec let e = 1 + i
        i}\leftarrow\mathrm{ integral }\prec
    returnA \prece
```


Functional Reactive Programming

Computations about time-varying quantities.

$$
\text { Signal } \alpha \approx \text { Time } \rightarrow \alpha
$$

Yampa (Hudak, et. al. 2002) is a version of FRP using the Arrow framework (Hughes, 2000). Arrows provide:

- Abstract computation over signals.

$$
\text { SF } \alpha \beta \approx \text { Signal } \alpha \rightarrow \text { Signal } \beta
$$

- A minimum set of wiring combinators.
- Mathematics root in category theory.

What is Arrow

A generalization of Monads. In Haskell:

```
class Arrow a where
    arr :: (b }->\mathrm{ c) }->\textrm{a b c
    (<>>) :: a b c }->\mathrm{ a c d }->\mathrm{ a b d
    first :: a b c -> a (b,d) (c,d)
```

Support both sequential and parallel composition:

```
second :: (Arrow a) = a b c }->\textrm{a}(\textrm{d},\textrm{b})(\textrm{d},\textrm{c}
second f = arr swap >>> first f >>> arr swap
    where swap (a, b) = (b, a)
```



```
f***g = first f >>> second g
```


Arrows in Picture

To model recursion, Paterson (2001) introduced ArrowLoop:

$$
\begin{gathered}
\text { class Arrow } \mathrm{a} \Rightarrow \text { ArrowLoop a where } \\
\text { loop }:: \mathrm{a}(\mathrm{~b}, \mathrm{~d})(\mathrm{c}, \mathrm{~d}) \rightarrow \mathrm{a} \mathrm{~b} \mathrm{c}
\end{gathered}
$$

Arrows and FRP

Why do we need Arrows?

- Modular, both input and output are explicit.
- Eliminates a form of time and space leak (Liu and Hudak, 2007).
- Abstract, with properties enforced by arrow laws.

Why do we need abstraction?

- Think at the high level. Focus on the essence.
- Disciplines bring interesting properties and useful results.

Arrow Laws

```
left identity
right identity
associativity
composition
extension
functor
exchange
unit
    arr id >>f = f
    f>> arr id = f
(f>>g)>>h=f>>(g>>h)
    arr (g.f)}=\operatorname{arr}f>>>\operatorname{arr}
    first (arr f) = arr (f\timesid)
first (f>>g)= first f> first g
    first f>> arr (id }\timesg)=\operatorname{arr}(id\timesg)>>>first 
    first f > arr fst = arr fst >>f
association first (firstf) >> arr assoc = arr assoc > firstf
    where assoc ((a,b),c)=(a,(b,c))
```


Arrow Loop Laws

left tightening	loop $($ first $h \gg f)$	$=h \ggg$ loop f
right tightening	loop $(f \ggg$ first $h)$	$=$ loop $f \ggg h$
sliding	loop $(f>$ arr $($ id $\times k))$	$=$ loop $($ arr $($ id $\times k) \ggg f)$
vanishing	loop $($ loop $f)$	$=$ loop $($ arr assoc $-1 \gg f$ arr assoc $)$
superposing	second $($ loop $f)$	$=$ loop (arr assoc \ggg second $f>$ arr assoc $\left.{ }^{-1}\right)$
extension	loop $($ arr $f)$	$=\operatorname{arr}($ trace $f)$
	where trace $f b$	$=\operatorname{let}(c, d)=f(b, d)$ in c

Question

Are the arrow laws enough to capture the essence of FRP? Or more specifically, the notion of causal computation as in dataflow programming and stream processing?
(Causal: current output only depends on current and previous inputs.)

Question

Are the arrow laws enough to capture the essence of FRP? Or more specifically, the notion of causal computation as in dataflow programming and stream processing?
(Causal: current output only depends on current and previous inputs.)
No. They are too general, and we need a domain specific solution.

Causal Commutative Arrows

Introduce one new operator init (a.k.a. delay):

```
class ArrowLoop a }=>\mathrm{ ArrowInit a where
    init :: b }->\mathrm{ a b b
```

two additional laws:

$$
\begin{array}{lrl}
\text { commutativity } & \text { first } f \ggg \text { second } g & =\text { second } g \ggg \text { first } f \\
\text { product } & \text { init } i \star \star \star \text { init } j & =\text { init }(i, j)
\end{array}
$$

and still remain abstract!

Exponential Example, Revisit


```
exp = fixA (integral >>> arr (+1))
fixA :: ArrowLoop a }=>\textrm{a b b }->\textrm{a () b
fixA f = loop (second f >>> arr ( }\lambda((),y)->(y,y))
integral :: ArrowInit a }=>\mathrm{ a Double Double
integral = loop (arr ( }\lambda(\textrm{v},\textrm{i})->\textrm{i}+\textrm{dt * v})>>
    init 0>>> arr ( }\mp@subsup{\lambda}{i}{}->(i, i))
```


CCA, a Domain Specific Language

- Extend simply typed λ-calculus with tuples and arrows.
- Instead of type classes, use \rightsquigarrow to represent the arrow type.

Type	::=	$\mathbb{R}\|\alpha\| t_{1} \times t_{2}\left\|t_{1} \rightarrow t_{2}\right\| t_{1} \rightsquigarrow t_{2}$	
Exp	:	$\perp\|n\| x\left\|\left(e_{1}, e_{2}\right)\right\|$ fst $e \mid$ snd $e \mid \lambda x$.e $\left\|e_{1} e_{2}\right\|$	
		arr $\|\gg\|$ first \|loop	init
Env	$\Gamma \quad::=$	$x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}$	

CCA Types

$$
\begin{aligned}
& \begin{array}{lll}
(x: \alpha) \in \Gamma \\
\Gamma \vdash x: \alpha
\end{array} \frac{\Gamma, x: \alpha \vdash e: \beta}{\Gamma \vdash \lambda x . e: \alpha \rightarrow \beta} \quad \frac{\Gamma \vdash e_{1}: \alpha \rightarrow \beta}{\Gamma \vdash e_{2}: \alpha} \begin{array}{l}
\Gamma \vdash e_{1} e_{2}: \beta
\end{array} \\
& \Gamma \vdash e_{1}: \alpha \\
& \frac{\Gamma \vdash e_{2}: \beta}{\Gamma \vdash\left(e_{1}, e_{2}\right): \alpha \times \beta} \quad \frac{\Gamma \vdash e: \alpha \times \beta}{\Gamma \vdash f \text { st } e: \alpha} \quad \frac{\Gamma \vdash e: \alpha \times \beta}{\Gamma \vdash \text { snd } e: \beta} \\
& \begin{array}{rllll}
\text { arr } & : & (\alpha \longrightarrow \beta) \rightarrow(\alpha \rightsquigarrow \beta) & \text { loop } & : \quad(\alpha \times \theta \rightsquigarrow \beta \times \theta) \rightarrow(\alpha \rightsquigarrow \beta) \\
(\ggg) & : & (\alpha \rightsquigarrow \beta) \rightarrow(\beta \rightsquigarrow \theta) \rightarrow(\alpha \rightsquigarrow \theta) & \text { init } & : \alpha \rightarrow(\alpha \rightsquigarrow \alpha) \\
\text { first } & : & (\alpha \rightsquigarrow \beta) \rightarrow(\alpha \times \theta \rightsquigarrow \beta \times \theta) & \perp & : \\
& & & &
\end{array}
\end{aligned}
$$

CCA Utility Functions

$$
\begin{aligned}
& \text { id : } \quad \alpha \rightarrow \alpha \\
& \text { id }=\lambda x . x \\
& \text { assoc : }(\alpha \times \beta) \times \theta \rightarrow \alpha \times(\beta \times \theta) \\
& \text { assoc }=\lambda z .(f s t(f s t z),(\text { snd }(f s t z), \text { snd } z)) \\
& \text { assoc }^{-1}: \quad \alpha \times(\beta \times \theta) \rightarrow(\alpha \times \beta) \times \theta \\
& \text { assoc } \left.^{-1}=\lambda z .\left(\left(f_{s t} z, f_{s t}(\text { snd } z)\right) \text {, snd (snd } z\right)\right) \\
& \text { juggle : }(\alpha \times \beta) \times \theta \rightarrow(\alpha \times \theta) \times \beta \\
& \text { juggle }=\text { assoc }^{-1} \cdot(\text { id } \times \text { swap }) \cdot a s s o c \\
& \text { transpose : }(\alpha \times \beta) \times(\theta \times \eta) \rightarrow(\alpha \times \theta) \times(\beta \times \eta) \\
& \text { transpose }=\text { assoc } \cdot(\text { juggle } \times i d) \cdot a s s o c=1 \\
& \text { shuffle : } \quad \alpha \times((\beta \times \delta) \times(\theta \times \eta)) \rightarrow(\alpha \times(\beta \times \theta)) \times(\delta \times \eta) \\
& \text { shuffle }=\text { assoc }^{-1} \cdot(i d \times \text { transpose }) \\
& \text { shuffle }{ }^{-1} \quad: \quad(\alpha \times(\beta \times \theta)) \times(\delta \times \eta) \rightarrow \alpha \times((\beta \times \delta) \times(\theta \times \eta)) \\
& \text { shuffle }{ }^{-1}=(\text { id } \times \text { transpose }) \cdot a s s o c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (.) : } \quad(\beta \rightarrow \theta) \rightarrow(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \theta) \\
& \text { (.) }=\lambda f \cdot \lambda g . \lambda x \cdot f(g x) \\
& (\times) \quad: \quad(\alpha \rightarrow \beta) \rightarrow(\theta \rightarrow \gamma) \rightarrow(\alpha \times \theta \rightarrow \beta \times \gamma) \\
& (\times): \quad \lambda f . \lambda g . \lambda z .(f(f \text { st } z), g(\text { snd } z)) \\
& \text { dup : } \quad \alpha \rightarrow \alpha \times \alpha \\
& d u p=\lambda x .(x, x) \\
& \text { swap : } \quad \alpha \times \beta \rightarrow \beta \times \alpha \\
& \text { swap }=\lambda z .(\text { snd } z, f s t z) \\
& \text { second : }(\alpha \rightsquigarrow \beta) \rightarrow(\theta \times \alpha \rightsquigarrow \theta \times \beta) \\
& \text { second }=\lambda \text { f.arr swap } \ggg \text { first } f \ggg \text { arr swap } \\
& (\star \nless) \quad: \quad(\alpha \rightsquigarrow \beta) \rightarrow(\theta \rightsquigarrow \gamma) \rightarrow(\alpha \times \theta \rightsquigarrow \beta \times \gamma) \\
& \text { (夫丈大) }=\lambda f . \lambda g \text { first } f \ggg \text { second } g
\end{aligned}
$$

CCA Semantics

Interpretation of the arrow type:

$$
\alpha \rightsquigarrow \beta \stackrel{\phi}{\psi} \alpha \rightarrow(\beta \times(\alpha \rightsquigarrow \beta))
$$

Denotational Semantics

$$
\llbracket-\rrbracket: \operatorname{Exp} \rightarrow \alpha \rightsquigarrow \beta
$$

$$
\begin{aligned}
\llbracket \text { arr } f \rrbracket & =\psi(h \llbracket f \rrbracket) & h f x & =\operatorname{let} y=f x \operatorname{in}(y, \psi(h f)) \\
\llbracket \text { first } f \rrbracket & =\psi(h \llbracket f \rrbracket) & h f(x, z) & =\operatorname{let}\left(y, f^{\prime}\right)=\phi(f) x \operatorname{in}\left((y, z), \psi\left(h f^{\prime}\right)\right) \\
\llbracket f \ggg g \rrbracket & =\psi(h \llbracket f \rrbracket \llbracket g \rrbracket) & h f g x & =\operatorname{let}\left\{\left(y, f^{\prime}\right)=\phi(f) x ;\left(z, g^{\prime}\right)=\phi(g) y\right\} \text { in }\left(z, \psi\left(h f^{\prime} g^{\prime}\right)\right) \\
\llbracket \text { loop } f \rrbracket & =\psi(h \llbracket f \rrbracket) & h f x & =\operatorname{let}\left((y, z), f^{\prime}\right)=\phi(f)(x, z) \operatorname{in}\left(y, \psi\left(h f^{\prime}\right)\right) \\
\llbracket \text { init } i \rrbracket & =\psi(h \llbracket i \rrbracket) & h i x & =(i, \psi(h x))
\end{aligned}
$$

($\llbracket-\rrbracket$ for λ expressions is omitted)

CCA and Mealy Machines

Mealy Machine (Mealy, 1955): $\left(A, B, S, \phi, s_{0}\right)$
Inputs A, Outputs B, States S, and $\phi: S \rightarrow(B \times S)^{A}$
A CCA term $s_{0}: \alpha \rightsquigarrow \beta$ is a Mealy machine that maps input stream $<a_{0}, a_{1}, \cdots, a_{k}, \cdots>$ to output stream $\left\langle b_{0}, b_{1}, \cdots, b_{k}, \cdots>\right.$

$$
s_{0} \xrightarrow{a_{0} \mid b_{0}} s_{1} \xrightarrow{a_{1} \mid b_{1}} \ldots \xrightarrow{a_{k} \mid b_{k}} s_{k} \xrightarrow{a_{k+1} \mid b_{k+1}} \ldots
$$

single-step transition:

$$
s_{i} \stackrel{a_{i} \mid b_{i}, s_{i+1}}{=}\left(b_{i}, s_{i+1}\right)=\phi\left(s_{i}\right) a_{i}
$$

CCA and Mealy Machines

Functions as Mealy machine states:

$$
\alpha \rightsquigarrow \beta \frac{中}{\psi} \alpha \rightarrow(\beta \times(\alpha \rightsquigarrow \beta))
$$

In Haskell, we borrow list type to represent streams:

$$
\begin{aligned}
& \operatorname{run}::(\alpha \rightsquigarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{run} f(x: x s)=\operatorname{let}\left(y, f^{\prime}\right)=\phi(f) x \text { in } y: \operatorname{run} f^{\prime} x s
\end{aligned}
$$

Causal Commutative Normal Form (CCNF)

For all $\vdash e: \alpha \rightsquigarrow \beta$, there exists a normal form $e_{n o r m}$, which is either a pure arrow arr f, or loopB $i($ arr $g)$, such that $\vdash e_{\text {norm }}: \alpha \rightsquigarrow \beta$ and $\llbracket e \rrbracket=\llbracket e_{\text {norm }} \rrbracket$.

$$
\text { loopB i } f=\operatorname{loop}(f \ggg \text { second }(\text { second }(\text { init } i)))
$$

Exponential Example Normalized

(f) Original

(g) Normalized

CCNF is a single loop containing one pure arrow and one initiated state.

Benchmarks (Speed Ratio, Greater is Better)

	1. GHC	2. arrowp	3. CCNF
\exp	1.0	2.2	10.1
sine	1.0	2.9	12.6
oscSine	1.0	1.6	2.7
50's sci-fi	1.0	1.12	5.1
robotSim	1.0	1.4	3.8

- Same CCA source programs written in Arrow syntax.
- Same Haskell implementation of the CCA semantics.
- Only difference:

1. Translated to arrow combinators by GHC's built-in arrow compiler.
2. Translated to arrow combinators by Paterson's arrowp preprocessor.
3. normalized combinator program.

One-step Reduction \mapsto

Intuition: extend Arrow Loop laws to loopB.

```
loop
init
    loop f \mapsto loopB \perp( (arr assoc}\mp@subsup{}{}{-1}>>>\mathrm{ first f > arr assoc)
    init i \mapsto loopBi(arr (swap}\cdotjuggle.swap))
composition
    arr f>>arr g \mapsto arr (g.f)
extension
left tightening
    first (arr f) \mapsto arr (f\timesid)
lentintening h>loopB if \mapsto loopB i (firsth > f)
right tightening loopB if > arr g \mapsto loopBi(f>> first (arr g))
vanishing loopBi(loopBjf) \mapsto loopB (i,j)(arr shuffle > f > arr shuffle }\mp@subsup{}{}{-1}\mathrm{ )
superposing first(loopB if) \mapsto loopB i(arr juggle > first f > arr juggle)
```


Normalization Procedure \mapsto_{n}

$$
\begin{gathered}
\frac{e \mapsto_{n} e}{} \quad \exists i, f \text { s.t. } e=\operatorname{arr} f \text { or } e=\operatorname{loopB} i(\operatorname{arr} f) \\
\frac{e_{1} \mapsto_{n} e_{1}^{\prime} \quad e_{2} \mapsto_{n} e_{2}^{\prime} \quad e_{1}^{\prime} \ggg e_{2}^{\prime} \mapsto e \quad e \mapsto_{n} e^{\prime}}{e_{1} \ggg e_{2} \mapsto_{n} e^{\prime}} \\
\frac{f \mapsto_{n} f^{\prime} \quad \text { first } f^{\prime} \mapsto e \quad e \mapsto_{n} e^{\prime}}{\text { first } f \mapsto_{n} e^{\prime}} \quad \frac{f \mapsto_{n} f^{\prime} \quad \operatorname{loopB} i f^{\prime} \mapsto e \quad e \mapsto_{n} e^{\prime}}{\operatorname{loopB} i f \mapsto_{n} e^{\prime}} \\
\frac{\text { init } i \mapsto e \quad e \mapsto_{n} e^{\prime}}{\text { init } i \mapsto_{n} e^{\prime}} \\
\frac{\operatorname{loop} f \mapsto e \quad e \mapsto_{n} e^{\prime}}{\operatorname{loop} f \mapsto_{n} e^{\prime}}
\end{gathered}
$$

- Always terminating.
- Preserving type and semantics due to arrow laws.
- Determinstic.

Normalization Explained

- Based on arrow laws, but directed.
- The two new laws, commutativity and product, are essential.
- Best illustrated by pictures...

Re-order Parallel pure and stateful arrows

Related law: exchange (a special case for commutativity).

Re-order sequential pure and stateful arrows

Related laws: tightening, sliding, and definition of second.

Change sequential to parallel

Related laws: product, tightening, sliding, and definition of second.

Move sequential into loop

Related law: tightening.

Move parallel into loop

Related laws: superposing, and definition of second.

Fuse nested loops

Related laws: commutativity, product, tightening, and vanishing.

Conclusion

- CCA is a minimal language for FRP and dataflow languages.
- Arrow laws for CCA lead to the discovery of a normal form.
- CCNF is an effective optimization for CCA programs.

Conclusion

- CCA is a minimal language for FRP and dataflow languages.
- Arrow laws for CCA lead to the discovery of a normal form.
- CCNF is an effective optimization for CCA programs.

Abstraction, Absraction, and Abstraction!

Thank You!

