
Causal Commutative Arrows

Hai (Paul) Liu, Paul Hudak

Yale University

Outline

◮ Arrows and FRP

• Introduction

• Arrow Laws and Properties

◮ Causal Commutative Arrows (CCA)

• Syntax, types and Semantics

• Implementation by Mealy Machine

◮ Optimization by Normalization

• Causal Commutative Normal Form (CCNF)

• Benchmarks

Contributions

◮ A minimal language that captures the essence of causal

computation.

◮ Two additional laws that lead to normal forms.

◮ Substantial performance gain via optimization by normalization.

Exponential Example

A math definition of the exponential function:

e(t) = 1 +
∫ t

0
e(t) · dt

Yampa program using the Arrow Syntax:

exp = proc () → do

rec let e = 1 + i

i ← integral −≺ e

returnA −≺ e

Functional Reactive Programming

Computations about time-varying quantities.

Signal α ≈ Time→ α

Yampa (Hudak, et. al. 2002) is a version of FRP using the Arrow

framework (Hughes, 2000). Arrows provide:

◮ Abstract computation over signals.

SF α β ≈ Signal α→ Signal β

◮ A minimum set of wiring combinators.

◮ Mathematics root in category theory.

What is Arrow

A generalization of Monads. In Haskell:

class Arrow a where

arr :: (b → c) → a b c

(>>>) :: a b c → a c d → a b d

first :: a b c → a (b,d) (c,d)

Support both sequential and parallel composition:

second :: (Arrow a) ⇒ a b c → a (d,b) (d,c)

second f = arr swap >>> first f >>> arr swap

where swap (a, b) = (b, a)

(***) :: (Arrow a) ⇒ a b c → a b’ c’ → a (b, b’) (c, c’)

f *** g = first f >>> second g

Arrows in Picture

(a) arr f (b) f >>> g (c) first f

(d) f *** g (e) loop f

To model recursion, Paterson (2001) introduced ArrowLoop:

class Arrow a ⇒ ArrowLoop a where

loop :: a (b,d) (c,d) → a b c

Arrows and FRP

Why do we need Arrows?

◮ Modular, both input and output are explicit.

◮ Eliminates a form of time and space leak (Liu and Hudak, 2007).

◮ Abstract, with properties enforced by arrow laws.

Why do we need abstraction?

◮ Think at the high level. Focus on the essence.

◮ Disciplines bring interesting properties and useful results.

Arrow Laws

left identity arr id≫ f = f

right identity f ≫ arr id = f

associativity (f ≫ g)≫ h = f ≫ (g≫ h)

composition arr (g · f) = arr f ≫ arr g

extension first (arr f) = arr(f × id)

functor first (f ≫ g) = first f ≫ first g

exchange first f ≫ arr (id× g) = arr (id× g)≫ first f

unit first f ≫ arr fst = arr fst≫ f

association first (first f)≫ arr assoc = arr assoc≫ first f

where assoc ((a, b), c) = (a, (b, c))

Arrow Loop Laws

left tightening loop (first h≫ f) = h≫ loop f

right tightening loop (f ≫ first h) = loop f ≫ h

sliding loop (f ≫ arr (id× k)) = loop (arr (id× k)≫ f)

vanishing loop (loop f) = loop (arr assoc−1
≫ f ≫ arr assoc)

superposing second (loop f) = loop (arr assoc≫ second f ≫ arr assoc−1)

extension loop (arr f) = arr(trace f)

where trace f b = let (c, d) = f (b, d) in c

Question

Are the arrow laws enough to capture the essence of FRP?

Or more specifically, the notion of causal computation as in

dataflow programming and stream processing?

(Causal: current output only depends on current and previous inputs.)

Question

Are the arrow laws enough to capture the essence of FRP?

Or more specifically, the notion of causal computation as in

dataflow programming and stream processing?

(Causal: current output only depends on current and previous inputs.)

No. They are too general, and we need a domain specific

solution.

Causal Commutative Arrows

Introduce one new operator init (a.k.a. delay):

class ArrowLoop a ⇒ ArrowInit a where

init :: b → a b b

two additional laws:

commutativity first f ≫ second g = second g≫ first f

product init i ⋆⋆⋆ init j = init (i, j)

and still remain abstract !

Exponential Example, Revisit

exp = fixA (integral >>> arr (+1))

fixA :: ArrowLoop a ⇒ a b b → a () b

fixA f = loop (second f >>> arr (λ((), y) → (y, y)))

integral :: ArrowInit a ⇒ a Double Double

integral = loop (arr (λ(v, i) → i + dt ∗ v) >>>

init 0 >>> arr (λi → (i, i)))

CCA, a Domain Specific Language

◮ Extend simply typed λ-calculus with tuples and arrows.

◮ Instead of type classes, use to represent the arrow type.

Type t ::= R | α | t1 × t2 | t1 → t2 | t1 t2

Exp e ::= ⊥ | n | x | (e1, e2) | fst e | snd e | λx.e | e1 e2 |

arr | ≫ | first | loop | init

Env Γ ::= x1 : α1, . . . , xn : αn

CCA Types

(x : α) ∈ Γ

Γ ⊢ x : α

Γ, x : α ⊢ e : β

Γ ⊢ λx.e : α→ β

Γ ⊢ e1 : α→ β

Γ ⊢ e2 : α

Γ ⊢ e1 e2 : β

Γ ⊢ e1 : α

Γ ⊢ e2 : β

Γ ⊢ (e1, e2) : α× β

Γ ⊢ e : α× β

Γ ⊢ fst e : α

Γ ⊢ e : α× β

Γ ⊢ snd e : β

arr : (α→ β)→ (α β)

(≫) : (α β)→ (β θ)→ (α θ)

first : (α β)→ (α× θ β× θ)

loop : (α× θ β× θ)→ (α β)

init : α→ (α α)

⊥ : α

CCA Utility Functions

id : α→ α

id = λx.x

assoc : (α× β)× θ → α× (β× θ)

assoc = λz.(fst (fst z), (snd (fst z), snd z))

assoc−1 : α× (β× θ)→ (α× β)× θ

assoc−1 = λz.((fst z, fst (snd z)), snd (snd z))

juggle : (α× β)× θ → (α× θ)× β

juggle = assoc−1 · (id× swap) · assoc

transpose : (α× β)× (θ× η)→ (α× θ)× (β× η)

transpose = assoc · (juggle× id) · assoc−1

shuffle : α× ((β× δ)× (θ× η))→ (α× (β× θ))× (δ× η)

shuffle = assoc−1 · (id× transpose)

shuffle−1 : (α× (β× θ))× (δ× η)→ α× ((β× δ)× (θ × η))

shuffle−1 = (id× transpose) · assoc

(·) : (β→ θ)→ (α→ β)→ (α→ θ)

(·) = λ f .λg.λx. f (g x)

(×) : (α→ β)→ (θ → γ)→ (α× θ → β× γ)

(×) : λ f .λg.λz.(f (fst z), g (snd z))

dup : α→ α× α

dup = λx.(x, x)

swap : α× β→ β× α

swap = λz.(snd z, fst z)

second : (α β)→ (θ × α θ× β)

second = λ f .arr swap≫ first f ≫ arr swap

(⋆⋆⋆) : (α β)→ (θ γ)→ (α× θ β× γ)

(⋆⋆⋆) = λ f .λg.first f ≫ second g

CCA Semantics

Interpretation of the arrow type:

α β ⇋
φ
ψ α→ (β× (α β))

Denotational Semantics

[[−]] : Exp→ α β

[[arr f]] = ψ(h [[f]]) h f x = let y = f x in (y, ψ(h f))

[[first f]] = ψ(h [[f]]) h f (x, z) = let (y, f ′) = φ(f) x in ((y, z), ψ(h f ′))

[[f ≫ g]] = ψ(h [[f]] [[g]]) h f g x = let {(y, f ′) = φ(f) x; (z, g′) = φ(g) y} in (z, ψ(h f ′ g′))

[[loop f]] = ψ(h [[f]]) h f x = let ((y, z), f ′) = φ(f) (x, z) in (y, ψ(h f ′))

[[init i]] = ψ(h [[i]]) h i x = (i, ψ(h x))

([[−]] for λ expressions is omitted)

CCA and Mealy Machines

Mealy Machine (Mealy, 1955): (A, B, S, φ, s0)

Inputs A, Outputs B, States S, and φ : S→ (B× S)A

A CCA term s0 : α β is a Mealy machine that maps input stream

<a0, a1, · · · , ak, · · ·> to output stream <b0, b1, · · · , bk, · · ·>

s0−−→
a0 |b0 s1−−→

a1 |b1 · · · −−→ak |bk sk−−→
ak+1 |bk+1 · · ·

single-step transition:

si−−→
ai |bi si+1 === (bi, si+1) = φ(si) ai

CCA and Mealy Machines

Functions as Mealy machine states:

α β ⇋
φ
ψ α→ (β× (α β))

In Haskell, we borrow list type to represent streams:

run :: (α β)→ [α]→ [β]

run f (x : xs) = let (y, f ′) = φ(f) x in y : run f ′ xs

Causal Commutative Normal Form (CCNF)

For all ⊢ e : α β, there exists a normal form enorm, which is either a

pure arrow arr f , or loopB i (arr g), such that ⊢ enorm : α β and

[[e]] = [[enorm]].

loopB i f = loop (f ≫ second (second (init i)))

Exponential Example Normalized

(f) Original (g) Normalized

CCNF is a single loop containing one pure arrow and one initiated state.

Benchmarks (Speed Ratio, Greater is Better)

1. GHC 2. arrowp 3. CCNF

exp 1.0 2.2 10.1

sine 1.0 2.9 12.6

oscSine 1.0 1.6 2.7

50’s sci-fi 1.0 1.12 5.1

robotSim 1.0 1.4 3.8

◮ Same CCA source programs written in Arrow syntax.

◮ Same Haskell implementation of the CCA semantics.

◮ Only difference:

1. Translated to arrow combinators by GHC’s built-in arrow compiler.

2. Translated to arrow combinators by Paterson’s arrowp preprocessor.

3. normalized combinator program.

One-step Reduction 7→

Intuition: extend Arrow Loop laws to loopB.

loop loop f 7→ loopB ⊥ (arr assoc−1
≫ first f ≫ arr assoc)

init init i 7→ loopB i (arr (swap · juggle · swap))

composition arr f ≫ arr g 7→ arr (g · f)

extension first (arr f) 7→ arr (f × id)

left tightening h≫ loopB i f 7→ loopB i (first h≫ f)

right tightening loopB i f ≫ arr g 7→ loopB i (f ≫ first (arr g))

vanishing loopB i (loopB j f) 7→ loopB (i, j) (arr shuffle≫ f ≫ arr shuffle−1)

superposing first (loopB i f) 7→ loopB i (arr juggle≫ first f ≫ arr juggle)

Normalization Procedure 7→n

e 7→n e
∃i, f s.t. e = arr f or e = loopB i (arr f)

e1 7→n e′1 e2 7→n e′2 e′1 ≫ e′2 7→ e e 7→n e′

e1 ≫ e2 7→n e′

f 7→n f ′ first f ′ 7→ e e 7→n e′

first f 7→n e′

f 7→n f ′ loopB i f ′ 7→ e e 7→n e′

loopB i f 7→n e′

init i 7→ e e 7→n e′

init i 7→n e′

loop f 7→ e e 7→n e′

loop f 7→n e′

◮ Always terminating.

◮ Preserving type and semantics due to arrow laws.

◮ Determinstic.

Normalization Explained

◮ Based on arrow laws, but directed.

◮ The two new laws, commutativity and product, are essential.

◮ Best illustrated by pictures...

Re-order Parallel pure and stateful arrows

Related law: exchange (a special case for commutativity).

Re-order sequential pure and stateful arrows

Related laws: tightening, sliding, and definition of second.

Change sequential to parallel

Related laws: product, tightening, sliding, and definition of second.

Move sequential into loop

Related law: tightening.

Move parallel into loop

Related laws: superposing, and definition of second.

Fuse nested loops

Related laws: commutativity, product, tightening, and vanishing.

Conclusion

◮ CCA is a minimal language for FRP and dataflow languages.

◮ Arrow laws for CCA lead to the discovery of a normal form.

◮ CCNF is an effective optimization for CCA programs.

Conclusion

◮ CCA is a minimal language for FRP and dataflow languages.

◮ Arrow laws for CCA lead to the discovery of a normal form.

◮ CCNF is an effective optimization for CCA programs.

Abstraction, Absraction, and Abstraction!

Thank You!

