Analyzing Sorting Algorithms in Resource Aware
ML

Jan Hoffmann

Ludwig-Maximilians-Universitdt Miinchen
jan.hoffmann@ifi.lmu.de

Abstract. Software development sometimes requires to statically pre-
dict the quantity of resources—such as memory and time—that is needed
to execute a program. The difficulties of manual resource analysis led to
extensive research on automatic methods for quantitative resource anal-
ysis.

Recently we developed an automatic amortized analysis to compute poly-
nomial resource bounds for first-order functional programs at compile
time. Its basis is a type system that augments types with resource anno-
tations. The analysis system is integrated in the programming language
Resource Aware ML. Our experiments with a prototype implementation
show that the analysis efficiently computes precise time and heap-space
bounds for many example programs.

In this paper I demonstrate how a user can employ Resource Aware ML
to analyze the worst-case time behavior of the sorting algorithms quick
sort, insertion sort and merge sort. To illustrate pros and cons, I com-
pare our automatic analysis to a manual analysis of the algorithms in a
standard textbook. The paper is divided into three sections. Section 1
motivates the research on static resource analysis. Section 2 briefly in-
troduces Resource Aware ML. Finally, Section 3 contains the actual case
study on sorting algorithms.

Key words: Quantitative Analysis, Functional Programming, Resource
Consumption, Amortized Analysis

1 Static Resource Analysis

The determination of the quantitative resource behavior of an algorithm is a
classic problem of computer science. It is often referred to as the analysis of
algorithms and elaborately discussed in many textbooks such as The Art of
Computer Programming [1]. Quantities that are subject to the analyses include
execution time and memory usage but also particular properties such as the
amount of data passed through a channel.

Quantitative analysis of algorithms is a non-trivial problem. Often, software
engineers are not only interested in the asymptotic behavior of an algorithm but
rather in an exact determination of the resource costs of a concrete implementa-
tion. In fact, this aspect is present in The Art of Computer Programming where
Knuth implements algorithms in an assembly language for the MIX architecture

2 Jan Hoffmann

to determine their exact use of clock cycles and memory cells. Such concrete
bounds can be employed in various ways in software development.

Most notably, they can be used to determine the hardware requirements of
embedded systems and to ensure the safety of hard real-time systems. In the
former, one wants to use hardware that is just good enough to accomplish a task
in order to produce a large number of units at lowest possible cost. In the latter,
one needs to guarantee specific worst-case running times to ensure the safety of
the system.

Even for basic programs, a manual analysis of the specific (non-asymptotic)
costs is very cumbersome. Not everyone commands the mathematical ease of
Knuth and even he would run out of steam if he had to do these calculations over
and over again while going through the debugging loops of program development.
In short, derivation of precise bounds by hand appears to be unfeasible in practice
in all but the simplest cases.

As a result, automatic methods for static resource analysis are highly desir-
able and have been the subject of extensive research. Of course, one can not
expect the full automation of a manual analysis that involves creativity and so-
phisticated mathematics. But in most resource analyses the greater part of the
complexity arises from the glut of detail and the program size rather than from
conceptual difficulty.

The state of the art in resource analysis research relies on various techniques
of program analysis. The field of worst-case execution time (WCET) is mainly
focused on the analysis of code with given inputs and deals especially with archi-
tectural features such as caches and instruction pipelines [2]. Complementary,
there are methods to derive bounds on the number of loop iterations and re-
cursive calls. For instance, the COSTA project has made recent progress in the
automation of the classic approach of deriving and solving recurrence relations
that describe the program behavior [3]. Another approach is to cleverly annotate
programs with counters and use automatic invariant discovery between their val-
ues using off-the-shelf program analysis tools which are based on abstract inter-
pretation [4]. The technique we developed is called automatic amortized resource
analysis. It is described more detailed in the following sections.

2 Resource Aware ML

Recently, we developed the functional programming language Resource Aware
ML (RAML) [5-7]. It implements a new type-based resource analysis system
that automatically computes polynomial bounds on the (worst-case) resource
behavior of (first-order) programs. The analysis works without any program
annotations and is fully automatic if a maximal degree of the polynomials is
given. Our system is parametric in the resource and can compute bounds for
every quantity that can be associated with an atomic step of the computation.
This includes clock cycles, heap space, and stack space.

The technique we use is an automation of the potential method of amortized
analysis which was initially introduced by Sleator and Tarjan [8] to manually

Analyzing Sorting Algorithms in Resource Aware ML 3

analyze the efficiency of data structures. The automation of amortized analysis
was pioneered by Hofmann and Jost [9] to infer linear bounds on the heap-
space consumption of functional programs by integrating it into a type system.
This linear system has been successfully used to compute memory and clock-
cycle bounds for 32 MHz Renesas M32C/85U embedded micro-controllers using
HUME, a functional language for real-time embedded systems [10].

Since the problem of deciding whether a given program admits a polynomial
resource bound is undecidable in general there exist programs with polynomial
bounds for which our analysis unsuccessfully terminates. However, an experi-
mental evaluation showed that our method can compute time and space bounds
for many interesting programs that appear in practice.

Compared to other approaches our system seems to better deal with recur-
sion and nested inductive data structures. It is for example the only one that can
fully automatically analyze functions such as quick sort. A prototype implemen-
tation along with the examples is available online®. It is easy to use, adequately
documented, and can be run directly in a web browser.

3 Case Study: Sorting Algorithms in RAML

A classic way to demonstrate quantitative resource analysis is to analyze the run-
time behavior of sorting algorithms. In the book The Art of Computer Program-
ming [1], Knuth manually determines worst-case bounds for many well-known
sorting algorithms that are implemented in an assembly language for the MIX
architecture. Among the analyzed algorithms are quick sort, which uses at most
2n2 +37n+ 3 MIX cycles, insertion sort, at most 9(’;) +7n—6=4.5n2+2.5n—6
MIX cycles, and merge sort, roughly 10n logn +4.92n MIX cycles? (n is the size
of the input).

As a result of a careful and elaborate analysis, the bounds are tight in the
sense that they exactly match the actual worst-case behavior of the functions.

To give you an impression of such an analysis, I included Knuths implemen-
tation of insertion sort below.

START ENT1 2-N 1 S1. Loop on j. j <2.
2H LDA INPUT+N,1 N-1 S2. Set up i, K, R.
ENT2 N-1,1 N-1 i+ j-1.
3H CMPA INPUT,2 B+N-1-A S3. Compare K : K;.
JGE ©&F B+N-1-A To S5 if K > K;.
4H LDX INPUT,2 B S4. Move R;, decrease i.
STX INPUT+1,2 B Ri+1 <Ri.
DEC2 1 B i« i-1.
J2P 3B B To S4 if i > 0.
5H STA INPUT+1,2 N-1 S5. R into Riy1.
INC1 1 N-1
JINP 2B N-1 2 < j <N

! http://raml.tes.ifi.lmu.de
2 The actual worst-case bound is more complicated and presented in a form that is
only meaningful in combination with the source code.

4 Jan Hoffmann

The locations INPUT+1 through INPUT+N are the array to be sorted. The first
column contains the MIX program and the third column contains comments.
Please refer to The Art of Computer Programming [1] for a detailed description
of the program and the MIX architecture.

In the second column you find the number of times each instruction is exe-
cuted, where N is the size of the input, A is the number of times ¢ decreases to
zero in step S4, and B is the number of moves. The running time of the program
on the MIX machine is 9B + 10N — 3A — 9 units. A thorough analysis shows
that A=N —1and B = N22_N in the worst-case.

In the remainder of this section we implement the three sorting algorithms in
RAML to automatically determine a bound on the number of evaluation steps
they use. We then compare our automatic analysis with the manual analysis of
Knuth.

Insertion Sort Below is the implementation of insertion sort in RAML. The
same implementation may also be given in a textbook.

insert(x,1) = match 1 with | nil — [x]
| (y::ys) — if y < x then y::insert(x,ys) else x::y::ys;

isort 1 = match 1 with | nil — nil
| (x::xs) — insert (x,isort xs);

If we instantiate our analysis system with the evaluation-step metric then the
prototype implementation automatically computes the following output.

insert: (int,L(int)) — L(int)
(x,0) — 5.0, (x,1) — 12.0

The number of evaluation steps consumed by insert is at most:
12.0%n + 5.0
where
n is the length of the second component of the input

isort: L(int) — L(int)
0 — 3.0, 1 — 12.0, 2 — 12.0

The number of evaluation steps consumed by isort is at most:
6.0*n"2 + 6.0*n + 3.0
where
n is the length of the input

For each function there is a line that states a usual ML-like type which states
the shape of the arguments and the result. Below that type you find a mapping
from type annotations to rational numbers which are computed by our analysis
system (see [5] for details). This mapping is then transformed into a user-friendly
presentation of the bound.

Analyzing Sorting Algorithms in Resource Aware ML 5

Quick Sort Quick sort can also be implemented in RAML in the usual way.

append(l,ys) = match 1 with | nil — ys | (x::xs) — x::append(xs,ys);

split(p,1) = match 1 with | nil — (nil,nil)
| (x::x8) — let (1s,rs) = split (p,xs) in
if x > p then (1s,x::rs) else (x::1ls,rs);

gsort 1 = match 1 with | nil — nil
| (x::xs) — let (1s,rs) = split (x,xs) in
append(gsort ls, x::(gsort rs));

With the evaluation-step metric, the analysis automatically infers that gsort
uses at most 12n2 + 14n + 3 evaluation steps if n is the length of the input list.
As the computed bounds indicate, insertion sort indeed admits a better worst-
case behavior than quick sort. The reason is that there is an (expansive) call of
append at each recursive call of gsort. Below is a tail-recursive version of quick
sort that does not use append.

g_aux(l,acc) = match 1 with | nil — acc
| (x::xs) — let (1s,rs) = split (x,xs) in
let acc’ = x::q_aux(rs,acc) in q_aux(ls,acc’);

gsort2 1 = q_aux(1,[1);

The computed bound for gsort2 is 8n? + 18n + 7 (n is the length of the input).
It improves the bound of gsort in the quadratic part. The reduced potential in
the second position of the type annotation of the argument corresponds directly
to the costs for the calls of append. However, insertion sort has still a slightly
better bound.

Merge Sort The last function we implement is merge sort.

msplit 1 = match 1 with | nil — (nil,nil)
| (x1::xs) — match xs with | nil — ([x1],nil)
| (x2::xs’) — let (11,12) = msplit xs’ in
(x1::11,x2::12);

merge (11,12) = match 11 with | nil — 12
| (x::xs) — match 12 with | nil — (x::xs)
| (y::ys) — if x<y then x::merge(xs,y::ys)

else y::merge(x::xs,ys);

msort 1 = match 1 with | nil — nil

| (x1::xs) — match xs with | nil — 1
| (x2::xs’) — let (11,12) = msplit 1 in

merge (msort 11, msort 12);

The evaluation-step bound for msort is 36.66n2 —29.33n+3 where n is the length
of the input. Our system can only compute polynomial bounds. Thus it can not
express an asymptotically tight O(nlogn) bound for msort.

6 Jan Hoffmann

250000 : : :
6XA2 + 6x + 3
measured worst-case steps x
200000 + B
150000 + B
100000 =
50000 | -
0 | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Fig. 1. The computed evaluation-step bound (blue line) compared to the actual worst-
case number of evaluation steps for sample inputs of various sizes (red crosses) used
by isort.

RAML vs. Knuth 1. Speed. Our prototype runs less then a second on a
Macbook Pro with a 2.16 GHz Core 2 Duo to compute the bounds for all the
above functions. Even though Knuth is known for his high productivity, such a
performance seems to be hardly manually achievable. 2. Quality. For sorting
algorithms it is easy to identify inputs for which the worst-case run time behavior
emerges. So we measured the actual worst-case behavior of the algorithms for
several input sizes and compared it to the inferred bounds. Figure 1 shows the
results of these experiments for isort. The measured worst-case behavior of the
function matches exactly our computed bound. In fact, RAML computes tight
evaluation-step bounds for isort, gsort, and gsort2. An automatic analysis can
of course not always achieve the same accuracy as a careful manual analysis. In
the case of RAML, we can only deal with polynomial bounds. Since the actual
worst-case behavior of merge sort is O(nlogn), the inferred quadratic bound
is loose. 3. Scalability. There is still a large number of polynomially bounded
programs that cannot be analyzed in our system. An example is the sorting
algorithm bubble sort. However, our experiments with the prototype indicate
that the analysis scales well for larger programs such as the multiplication of
a list of matrices with fitting (but arbitrary many) dimensions. It takes only
a few seconds on standard desktop computers to analyze functional programs
with several hundred lines of code. On the other hand, a manual analysis is
nearly impossible for large programs that are written in a high-level language.
4. Practicability. First, a manual analysis of assembly code is tedious and

Analyzing Sorting Algorithms in Resource Aware ML 7

error-prone. Secondly, it is time intensive and expensive. Thirdly, it has to be
repeated after every change in the program which can lead to subtle errors due
to false assumptions about the nature of the change. In contrast, the RAML
analysis is proved to be sound and available at the touch of a button every time
the program has changed.

References

10.

. Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd ed.): Fundamen-

tal Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA (1997)

Wilhelm, R., et al.: The Worst-Case Execution-Time Problem — Overview of
Methods and Survey of Tools. ACM Trans. Embedded Comput. Syst. 7(3) (2008)
Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: 16th Euro. Symp. on Prog. (ESOP’07). (2007) 157-172
Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: 36th ACM Symp. on Prin-
ciples of Prog. Langs. (POPL’09). (2009) 127-139

Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: 38th Symp. on Principles of Prog. Langs. (POPL’11). (2011)

Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polymorphic Re-
cursion and Partial Big-Step Operational Semantics. In: 8th Asian Symp. on Prog.
Langs. (APLAS’10). (2010)

Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Po-
tential. In: 19th Euro. Symp. on Prog. (ESOP’10). (2010) 287-306

Tarjan, R.E.: Amortized Computational Complexity. SIAM J. Algebraic Discrete
Methods 6(2) (1985) 306-318

Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order Func-
tional Programs. In: 30th ACM Symp. on Principles of Prog. Langs. (POPL’03).
(2003) 185-197

Jost, S., Loidl, H.W., Hammond, K., Scaife, N., Hofmann, M.: Carbon Credits for
Resource-Bounded Computations using Amortised Analysis. In: 16th Symp. on
Form. Meth. (FM’09). (2009) 354-369

