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Abstract. We continue the recently initiated study of the computa-
tional aspects of weak saddles, an ordinal set-valued solution concept
proposed by Shapley. Brandt et al. gave a polynomial-time algorithm
for computing weak saddles in a subclass of matrix games, and showed
that certain problems associated with weak saddles of bimatrix games
are NP-complete. The important question of whether weak saddles can
be found efficiently was left open. We answer this question in the nega-
tive by showing that finding weak saddles of bimatrix games is NP-hard,
under polynomial-time Turing reductions. We moreover prove that rec-
ognizing weak saddles is coNP-complete, and that deciding whether a
given action is contained in some weak saddle is hard for parallel access
to NP and thus not even in NP unless the polynomial hierarchy col-
lapses. Our hardness results are finally shown to carry over to a natural
weakening of weak saddles.

1 Introduction

Saddle points, i.e., combinations of actions such that no player can gain by devi-
ating, are one of the earliest solutions suggested in game theory (see, e.g., [23]).
In two-player zero-sum games (henceforth matrix games), every saddle point
happens to coincide with an optimal outcome both players can guarantee in the
worst case and thus enjoys a very strong normative foundation. Unfortunately,
however, not every matrix game possesses a saddle point. In order to remedy this
situation, von Neumann [22] considered mixed, i.e., randomized, strategies and
proved that every matrix game contains a mixed saddle point (or equilibrium)
that moreover maintains the appealing normative properties of saddle points.
The existence result was later generalized to arbitrary general-sum games by
Nash [15], at the expense of its normative foundation. Since then, Nash equilib-
rium has commonly been criticized for its need for randomization, which may
be deemed unsuitable, impractical, or even infeasible (see, e.g., [13, 14, 5]).

In two papers from 1953, Lloyd Shapley showed that existence of saddle
points (and even uniqueness in the case of matrix games) can also be guaranteed
by moving to minimal sets of actions rather than randomizations over them [19,
20].1 Shapley defines a generalized saddle point (GSP) to be a tuple of subsets
of actions of each player, such that every action not contained in the GSP is
1 The main results of the 1953 reports later reappeared in revised form [21].
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dominated by some action in the GSP, given that the remaining players choose
actions from the GSP. A saddle is an inclusion-minimal GSP, i.e., a GSP that
contains no other GSP. Depending on the underlying notion of dominance, one
can define strict, weak, and very weak saddles. Shapley [21] showed that every
matrix game admits a unique strict saddle. Duggan and Le Breton [9] proved that
the same is true for the weak saddle in a certain subclass of symmetric matrix
games that we refer to as confrontation games. While Shapley was the first to
conceive weak GSPs, he was not the only one. Apparently unaware of Shapley’s
work, Samuelson [18] uses the very related concept of a consistent pair to point
out epistemic inconsistencies in the concept of iterated weak dominance. Also,
weakly admissible sets as defined by McKelvey and Ordeshook [14] in the context
of spatial voting games are identical to weak GSPs. Other common set-valued
concepts in game theory include rationalizability [3, 17] and CURB sets [1].

In this paper we continue the recently initiated study of the computational
aspects of Shapley’s saddles. Brandt et al. [5] gave polynomial-time algorithms
for computing strict saddles in general games and weak saddles in confrontation
games. Although it was shown that certain problems associated with weak sad-
dles in bimatrix games are NP-complete, the question of whether weak saddles
can be found efficiently was left open. We answer this question in the negative
by showing that finding weak saddles is NP-hard. Moreover, we prove that rec-
ognizing weak saddles is coNP-complete, and that deciding whether an action
is contained in a weak saddle of a bimatrix game is complete for parallel access
to NP and thus not even in NP unless the polynomial hierarchy collapses. We
finally demonstrate that our hardness results carry over to very weak saddles.

2 Related Work

In recent years, the computational complexity of game-theoretic solution con-
cepts has come under increasing scrutiny. One of the most prominent results in
this stream of research is that the problem of finding Nash equilibria in bimatrix
games is PPAD-complete [6, 8], and thus unlikely to admit a polynomial-time
algorithm. PPAD is a subclass of FNP, and it is obvious that Nash equilibria
can be recognized in polynomial time. Interestingly, our results imply that this
is not the case for weak saddles unless P=NP.

Weak saddles rely on the elementary concept of weak dominance, whose
computational aspects have been studied extensively in the form of iterated weak
dominance [11, 7]. In contrast to iterated dominance, saddles are based on a
notion of stability reminiscent of Nash equilibrium and its various refinements.
Weak saddles are also related to minimal covering sets, a concept that has been
proposed independently in social choice theory [10, 9] and whose computational
complexity has recently been analyzed [4, 2].

Brandt et al. [5] constructed a class of games that established a strong re-
lationship between weak saddles and inclusion-maximal cliques in undirected
graphs. Based on this construction and a reduction from the NP-complete prob-
lem CLIQUE, they showed that deciding whether there exists a weak saddle
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with a certain number of actions is NP-hard. This construction, however, did
not permit any statements about the more important problems of finding a
weak saddle, recognizing a weak saddle, or deciding whether a certain action is
contained in some weak saddle.

3 Preliminaries

An accepted way to model situations of strategic interactions is by means of a
normal-form game (see, e.g., [13]).

Definition 1 (Normal-Form Game). A (finite) game in normal-form is a
tuple Γ = (N, (Ai)i∈N , (pi)i∈N ) where N = {1, 2, . . . , n} is a set of players
and for each player i ∈ N , Ai is a nonempty finite set of actions available to
player i, and pi : (

∏
i∈N Ai)→ R is a function mapping each action profile (i.e.,

combination of actions) to a real-valued payoff for player i.

A subgame of a (normal-form) game Γ = (N, (Ai)i∈N , (pi)i∈N ) is a game
Γ ′ = (N, (A′i)i∈N , (p

′
i)i∈N ) where, for each i ∈ N , A′i is a nonempty subset of Ai

and p′i(a
′) = pi(a′) for all a′ ∈ A′1× . . .×A′n. Γ is then called a supergame of Γ ′.

In order to formally define Shapley’s weak saddles, we need some additional
notation. Let AN = (A1, . . . , An). For a tuple S = (S1, . . . , Sn), write S ⊆ AN
and say that S is a subset of AN if ∅ 6= Si ⊆ Ai for all i ∈ N . Further let
S−i = (S1, . . . , Si−1, Si+1, . . . , Sn). For a player i ∈ N and two actions ai, bi ∈ Ai
say that ai weakly dominates bi with respect to S−i, denoted ai >S−i bi, if
pi(ai, s−i) ≥ pi(bi, s−i) for all s−i ∈ S−i, with at least one strict inequality.

Definition 2 (Weak Saddle). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a game and
S = (S1, . . . , Sn) ⊆ AN . Then, S is a weak generalized saddle point (WGSP)
of Γ if for each player i ∈ N the following holds:

For every ai ∈ Ai \ Si there exists si ∈ Si such that si >S−i ai. (1)

A weak saddle is a WGSP that contains no other WGSP.

An example game with two weak saddles is given in Figure 1. The inter-
pretation of this definition is the following: Every player i has a distinguished
set Si of actions such that for every action ai that is not in the set Si, there is
some action in Si that weakly dominates ai, provided that the other players play
only actions from their distinguished sets. Condition (1) will be called external
stability in the following. A WGSP thus is a tuple S that is externally stable
for each player. Observe that the tuple AN of all actions is always a WGSP,
thereby guaranteeing existence of a weak saddle in every game. As the game in
Figure 1 illustrates, weak saddles do not have to be unique. It is also not very
hard to see that weak saddles are invariant under order-preserving transforma-
tions of the payoff functions and that every weak saddle contains a (mixed) Nash
equilibrium.
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Fig. 1. Example game with two weak saddles: ({a1}, {b1, b2}) and
({a1, a2}, {b2}).

In the remainder of the paper we will concentrate on two-player games.2 For
such games, we can simplify notation and write Γ = (A,B, p), where A is the set
of actions of player 1, B is the set of actions of player 2, and p : A×B → R×R
is the payoff function on the understanding that p(a, b) = (p1(a, b), p2(a, b)) for
all (a, b) ∈ A × B. A two-player game is often called a bimatrix game, as it
can conveniently be represented as a |A| × |B| bimatrix M , i.e., a matrix with
rows indexed by A, columns indexed by B and M(a, b) = p(a, b) for every action
profile (a, b) ∈ A × B. We will commonly refer to actions of players 1 and 2 by
the rows and columns of this matrix, respectively. When representing bimatrix
game graphically, we follow the convention to write player 1’s payoffs in the lower
left corner and player 2’s payoff in the upper right corner of the corresponding
matrix cell (see Figure 1 for an example).

For an action a and a weak saddle S = (S1, S2), we will sometimes slightly
abuse notation and write a ∈ S if a ∈ (S1 ∪ S2). In such cases, whether a is
a row or a column should be either clear from the context or irrelevant for the
argumentation. This partial identification of S and S1 ∪ S2 is also reflected in
referring to S as a “set” rather than a “pair” or “tuple.” When reasoning about
the structure of the saddles of game, the following definition will be useful

Definition 3. Let Γ = (A,B, p) be a game and x, y ∈ A ∪ B two actions. We
say that x compels y, denoted x  y, if every weak saddle containing x also
contains y.

Observe that  as a relation on (A ∪ B) × (A ∪ B) is transitive. We now
identify two sufficient conditions for x y to hold.

Fact 1. Let Γ = (A,B, p) be a two-player-game, b ∈ B an action of player 2,
and a ∈ A an action of player 1. Then b  a if one of the following two
conditions holds:3

(i) a is the unique action that maximizes p1(·, b), i.e., {a} = arg maxa′∈A p1(a′, b).
(ii) a maximizes p1(·, b) and all actions maximizing p1(·, b) yield identical pay-

offs for all opponent actions, i.e., a ∈ arg maxa′∈A p1(a′, b) and p1(a1, b
′) =

p1(a2, b
′) for all a1, a2 ∈ arg maxa′∈A p1(a′, b) and all b′ ∈ B.

2 Naturally, all hardness results carry over to the general n-player case by adding an
arbitrary number of “dummy” players that always receive the same payoff.

3 The statement remains true if the roles of the two players are reversed.
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Part (i) of the statement above can be generalized in the following way. An
action a is in the weak saddle if it is the unique best response to a subset of
saddle actions: if {b1, . . . , bt} ⊂ S and a >{b1,...,bt} a

′ for all a′ ∈ A \ {a}, then
a ∈ S. In this case, we write {b1, . . . , bt} a. Moreover, for two sets of actions
X and Y , we write X  Y if X  y for all y ∈ Y . For example, in the game in
Figure 1, b1  a1  b2, {b2, b3} a2 and {a1, a2} {b1, b3}.

We assume throughout the paper that games are given explicitly, i.e., as ta-
bles containing the payoffs for every possible action profile. We will be interested
in the following computational problems for a given game Γ :

– FindWeakSaddle: Find a weak saddle of Γ .
– IsWeakSaddle: Is a given collection (S1, . . . , Sn) of subsets of actions for

each player a weak saddle of Γ?
– UniqueWeakSaddle: Does Γ contain exactly one weak saddle?
– InWeakSaddle: Is a given action a contained in a weak saddle of Γ?
– InAllWeakSaddles: Is a given action a contained in every weak saddle

of Γ?
– NontrivialWeakSaddle: Does Γ contain a weak saddle that does not

consist of all actions?

We assume the reader to be familiar with the basic notions of complexity the-
ory, such as polynomial-time many-one reductions and Turing reductions, and
the related notions of hardness and completeness, and with standard complexity
classes such as P, NP, and coNP (see, e.g., [16]). We will further use the complex-
ity classes Σp

2 and Θp2 . Σp
2 = NPNP is the second level of the polynomial hierarchy

and consists of all problem that can be solved on a non-deterministic Turing ma-
chine with access to an NP oracle. Θp2 = PNP

|| consists of all problems that can
be solved on a deterministic Turing machine with parallel (non-adaptive) access
to an NP oracle.

4 Hardness Results for Weak Saddles

We will now derive various hardness results for weak saddles. We begin by pre-
senting a general construction that transforms a Boolean formula ϕ into a bima-
trix game Γϕ, such that the existence of certain weak saddles in Γϕ depends the
satisfiability of ϕ. This construction will be instrumental for each of the hardness
proofs given in the sequel.

4.1 A General Construction

Let ϕ = C1 ∧ . . .∧Cm be a Boolean formula in conjunctive normal form (CNF)
over a finite set V = {v1, . . . , vn} of variables. Denote by L =

⋃
v∈V {{v, v} : v ∈

V } the set of all literals, where a literal is either a variable or its negation. Each
clause Cj is a set of literals. An assignment α : L→ {0, 1} is a function mapping
each literal to either 1 (“true”) or 0 (“false”). Assignment α is valid if α(v) 6=
α(v) for all v ∈ V . For a valid assignment α, denote by Lα = {` ∈ L : α(`) = 1}

5



Draft – May 6, 2009

b∗ v1 v1 v2 v2 . . . vn vn

a∗
1

1
0

0
0

0
0

0
0

0
. . .

0
0

0
0

d∗
0

0
1

1
1

1
1

1
1

1
. . .

1
1

1
1

C1
1

0
0

0
0

1
0

1
0

0
. . .

0
1

0
1

C2
1

0
0

1
0

0
0

1
0

1
. . .

0
0

0
1

...
...

Cm
1

0
0

1
0

1
0

1
0

1
. . .

0
1

0
1

Fig. 2. Subgame of Γϕ for a formula ϕ = C1 ∧ · · · ∧ Cm with v1, v2 ∈ C1 and
v1, vn ∈ C2.

the set of literals that are set to true under α. We say that α satisfies a clause
Cj if Cj ∩ Lα 6= ∅. Finally, formula ϕ is satisfiable if there is an assignment
that satisfies each of its clauses. We assume without loss of generality that ϕ
does not contain trivial clauses, i.e., clauses that contain a literal ` as well as its
negation `. The game Γϕ = (A,B, p) is defined in three steps.

Step 1. Player 1 has actions {a∗, d∗}∪C, where C = {C1, . . . , Cm} is the set
of clauses of ϕ. Player 2 has actions B = {b∗}∪L, where L is the set of literals.4

Payoffs are given by

– p(a∗, b∗) = (1, 1),
– p(d∗, `) = (1, 1) for all ` ∈ L,
– p(Cj , b∗) = (0, 1) for all j ∈ [m],
– p(Cj , `) = (1, 0) if and only if ` /∈ Cj ,
– p(a, b) = (0, 0) otherwise.

An example of such a game is shown in Figure 2. Observe that (a∗, b∗) is a
weak saddle and thus no strict superset can be a weak saddle. Furthermore, row
d∗ dominates row Cj with respect to a set of columns {`1, . . . , `t} ⊆ L if and
only if `i ∈ Cj for some i ∈ [t].5 In particular, d∗ >Lα Cj if and only if α satisfies
Cj . Another noteworthy property of this game is the fact that no weak saddle
contains any of the rows Cj , because Cj  b∗  a∗ for each j ∈ [m].

The basic idea behind this construction is the following. We want to have an
“assignment saddle” Sα = (S1, S2) with d∗ ∈ S1 and S2 = Lα if and only if α is
satisfiable. For the direction from left to right, we have to ensure that Sα cannot

4 There shall be no confusion by identifying literals with corresponding actions of
player 2, which will henceforth be called “literal actions” (or “literal columns”).

5 For n ∈ N, we write [n] = {1, 2, . . . , n}.
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be a weak saddle if α does not satisfy ϕ or if α is not a valid assignment. This
is achieved by means of additional actions, for which the payoffs are defined in
such a way that every “wrong” (i.e., unsatisfying or invalid) assignment yields a
set containing both a∗ and b∗. Obviously, such a set can never be a weak saddle,
because it contains the weak saddle (a∗, b∗) as a proper subset. In fact, (a∗, b∗)
will be the unique weak saddle in cases where there is no satisfying assignment.

Step 2. We augment the action sets of both players. Player 1 has one addi-
tional row `′ for each literal ` ∈ L.6 Player 2 has one additional column yi for
each variable vi ∈ V . Payoffs for profiles involving new actions are defined as
follows:

– p(a∗, yi) = (1, 0) for all i ∈ [n],
– p(`′, `) = (2, 1) if `′ = `,
– p(`′, yi) = (0, 1) if `′ ∈ {vi, vi},
– p(a, b) = (0, 0) otherwise.

Observe that, by Fact 1 and the following discussion, `  `′, {`′, `′}  yi and
yi  a∗  b∗. This means that no assignment saddle can contain both ` as well
its negation `.

There only remains one subtlety to be dealt with. In the game defined so far,
there are weak saddles containing row d∗, whose existence is independent of the
satisfiability of ϕ, namely ({d∗, `′}, {`}) for each ` ∈ L. We destroy these saddles
using additional rows.

Step 3. We introduce new rows r1, r1, . . . , rn, rn, one for each literal, with
the property that ri  b∗, and that ri or ri can only be weakly dominated (by
vi and vi, respectively) if at least one literal column other than vi or vi is in the
saddle. For this, we define

– p(ri, b∗) = p(ri, b∗) = (0, 1) for all i ∈ [n],
– p(ri, vi) = r(ri, vi) = (2, 0),
– p(ri, `) = p(ri, `) = (−1, 0) if ` ∈ {vi+1, vi+1},
– p(a, b) = (0, 0) otherwise.

The game Γϕ now has action sets A = {a∗, d∗} ∪ C ∪ L ∪ {r1, . . . , rn} for
player 1 and B = {b∗} ∪ L ∪ {y1, . . . , yn} for player 2. The size of Γϕ thus is
clearly polynomial in the size of ϕ. A complete example of such a game is given
in Figure 4 in the appendix.

For an assignment α, define the assignment saddle Sα as Sα = ({d∗} ∪
Lα, Lα). It should be clear from the argumentation above that Sα is a weak
saddle of Γϕ if and only if α satisfies ϕ. To show that membership of a given
action in a weak saddle is NP-hard, it suffices to show that there are no other
weak saddles containing row d∗. We do so in the following section.

6 Action `′ of player 1 and action ` of player 2 refer to the same literal, but we name
them differently to avoid confusion.
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4.2 Membership is NP-hard

We show NP-hardness of the membership problem via a reduction from SAT.
Given a CNF formula ϕ, we show that the game Γϕ defined in Section 4.1 has a
weak saddle containing action d∗ if and only if ϕ is satisfiable. A detailed proof
of the following theorem is given in the appendix.

Theorem 1. InWeakSaddle is NP-hard.

4.3 Membership is coNP-hard

We have just seen that it is NP-hard to decide whether there exists a weak saddle
containing a given action. In order to show that this problem is also coNP-hard,
we first show the following: given a game and an action c, it is possible to augment
the game with additional actions such that every weak saddle of the augmented
game that contains c contains all actions of this game.

Lemma 1. Let Γ = (A,B, p) be a two-player game, c ∈ A ∪ B and action
of Γ . Then there exists a supergame Γ c = (A′, B′, p′) of Γ with the following
properties:

(i) If S is a weak saddle of Γ c containing c, then S = (A′, B′).
(ii) If S is a weak saddle of Γ that does not contain c, then S is a weak saddle

of Γ c.
(iii) The size of Γ c is polynomial in the size of Γ .

The game Γ c is sketched in Figure 3. Briefly, we add new actions such that
c  (A′ \ A)  (B′ \ {c})  A. A detailed proof of Lemma 1 can be found in
the appendix.

Theorem 2. InWeakSaddle is coNP-hard.

Proof. We give a reduction from UNSAT. For a given CNF formula ϕ, consider
the game Γ b

∗

ϕ obtained by augmenting the game Γϕ defined in Section 4.1 in such
a way that every weak saddle containing action b∗ in fact contains all actions. We
show that Γ b

∗

ϕ has a weak saddle containing b∗ if and only if ϕ is unsatisfiable.
For the direction from left to right, assume that there exists a weak saddle

S = (S1, S2) with b∗ ∈ S2. By Lemma 1, S is trivial, i.e., equals the set of all
actions. Furthermore, S must be the unique weak saddle of Γ b

∗

ϕ , because any
other weak saddle would violate minimality of S. In particular, Sα cannot be a
saddle for any assignment α, which by the discussion in Section 4.1 means that
ϕ is unsatisfiable.

For the direction from right to left, assume that ϕ is unsatisfiable. It is not
very hard to see that every weak saddle S = (S1, S2) contains at least one
column not corresponding to a literal, i.e., S2 * L (otherwise, S would be an
assignment saddle). However, since a∗  b∗ and b  a∗ for every non-literal
column b ∈ B \ L, we have that b∗ ∈ S2 for every weak saddle S. ut

The proof of Theorem 2 implies several other hardness results.
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Fig. 3. Construction used in the proof of Lemma 1. Payoffs are (0, 0) unless spec-
ified otherwise, k is chosen to maximize p1(·, c). Every weak saddle containing
column c then equals the set of all actions.

Corollary 1. The following holds:
– IsWeakSaddle is coNP-complete.
– InAllWeakSaddles is coNP-complete.
– UniqueWeakSaddle is coNP-hard.

Proof. Recall the definition of the game Γ b
∗

ϕ used in the proof of Theorem 2.
It is easily verified that the following statements are equivalent: formula ϕ is
unsatisfiable, Γ b

∗

ϕ has a trivial weak saddle, the unique weak saddle of Γ b
∗

ϕ is the
trivial one, and b∗ is contained in all weak saddles of Γ b

∗

ϕ .
Membership of InAllWeakSaddles in coNP holds because any externally

stable set that does not contain the action in question serves as a witness that
this actions is not contained in every weak saddle. For membership of IsWeak-
Saddle, consider a tuple S of actions that is not a weak saddle. Then either
S itself is not externally stable, or a proper subset of S is. For both cases there
exists a witness of polynomial size. ut

4.4 Finding a Saddle is NP-hard

A particularly interesting consequence of Theorem 2 concerns the existence of
a nontrivial weak saddle. As we will see, hardness of deciding the latter can be
used to obtain a result about the complexity of the search problem.

Corollary 2. NontrivialWeakSaddle is NP-complete.

Proof. For membership in NP, observe that proving the existence of a nontrivial
weak saddle is tantamount to finding a proper subset of the set of all actions that
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is externally stable. By definition, every such subset is guaranteed to contain a
weak saddle. Obviously, external stability can be checked in polynomial time.

Hardness is again straightforward from the proof of Theorem 2, since the
game Γ b

∗

ϕ has a nontrivial weak saddle if and only if formula ϕ is satisfiable. ut

Corollary 3. FindWeakSaddle is NP-hard under polynomial-time Turing re-
ductions.

Proof. Suppose there exists an algorithm that computes some weak saddle of
a game in time polynomial in the size of the game. Such an algorithm could
obviously be used to solve the NP-hard problem NontrivialWeakSaddle in
polynomial time. Just run the algorithm once. If it returns a nontrivial saddle,
the answer is “yes.” Otherwise the set of all actions must be the unique weak
saddle of the game, and the answer is “no.” ut

4.5 Membership is Θp
2-hard

Now that we have established that InWeakSaddle is both NP-hard and coNP-
hard, we will raise the lower bound to Θp2 . Wagner provided a sufficient condition
for Θp2-hardness that turned out to be very useful (see, e.g., [12]).

Lemma 2 (Wagner [24]). Let S be an NP-complete problem, and let T be
any set. Further let f be a polynomial-time computable function such that the
following holds for all k ≥ 1 and all strings x1, x2, . . . , x2k satisfying xj−1 ∈ S
whenever xj ∈ S for every j with 1 < j ≤ 2k:

‖{i : xi ∈ S}‖ is odd ⇐⇒ f(x1, x2, . . . , x2k) ∈ T . (2)

Then T is Θp2-hard.

The following statement is shown by applying Wagner’s Lemma to the NP-
complete problem S = SAT and to T = InWeakSaddle. The proof is given in
the appendix.

Theorem 3. InWeakSaddle is Θp2-hard.

We conclude this section by showing that Σp
2 is an upper bound for the

membership problem.

Proposition 1. InWeakSaddle is in Σp
2 .

Proof. Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a game, d∗ ∈
⋃
iAi a designated action.

First observe that we can verify in polynomial time whether a subset of AN is
externally stable. We can guess a weak saddle S containing d∗ ∈ S in nondeter-
ministic polynomial time and verify its minimality by checking that none of its
subsets are externally stable. This places InWeakSaddle in NPcoNP and thus
in Σp

2 . ut
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5 Very Weak Saddles

A natural weakening of weak dominance is very weak dominance, which does
not require a strict inequality in addition to the weak inequalities [13]. Thus,
in particular, two actions that always yield the same payoff may very weakly
dominate each other. Formally, for a player i ∈ N and two actions ai, bi ∈ Ai we
say that ai very weakly dominates bi with respect to S−i, denoted ai ≥S−i bi,
if pi(ai, s−i) ≥ pi(bi, s−i) for all s−i ∈ S−i. Based on this modified notion of
dominance, one can define the very weak analog of the weak saddle.

Definition 4 (Very Weak Saddle). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a game,
S = (S1, . . . , Sn) ⊆ AN . Then, S is a very weak generalized saddle point
(VWGSP) of Γ if for each player i ∈ N the following condition holds:

For every ai ∈ Ai \ Si there exists si ∈ Si such that si ≥S−i ai.

A very weak saddle is a VWGSP that contains no other VWGSP.

Computational problems for very weak saddles are defined analogously to
their counterparts for weak saddles. It turns out that most of our results for the
latter can be transferred to the former.

Theorem 4. The following holds:
– InVeryWeakSaddle is NP-hard.
– InVeryWeakSaddle is coNP-hard.
– IsVeryWeakSaddle is coNP-complete.
– InAllVeryWeakSaddles is coNP-complete.
– UniqueVeryWeakSaddle is coNP-hard.
– NontrivialVeryWeakSaddle is NP-complete
– FindVeryWeakSaddle is NP-hard.

It should be noted that the hardness results for very weak saddles do not
follow in an obvious way from the corresponding results for weak saddles, or
vice versa. While the proofs are based on the same general idea, and again on
one core construction, there are some significant technical differences. The proofs
of all results are given in the appendix.

6 Conclusion

In the early 1950s, Shapley proposed an ordinal set-valued solution concept
known as the weak saddle. We have shown that weak saddles are intractable
in bimatrix games. As it turned out, not only finding but also recognizing weak
saddles is computationally hard. This distinguishes weak saddles from Nash equi-
librium, iterated dominance, and any other game-theoretic solution concept we
are aware of. Three of the most challenging remaining problems are to study
the complexity of weak saddles in matrix games, to close the gap between Θp2
and Σp

2 for InWeakSaddle, and to completely characterize the complexity of
FindWeakSaddle.
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A Proofs for Weak Saddles

Theorem 1. InWeakSaddle is NP-hard.

Proof. We give a reduction from SAT. For a CNF formula ϕ, we show that the
game Γϕ, defined in Section 4.1, has a weak saddle that contains action d∗ if and
only if ϕ is satisfiable. The direction from left to right is straightforward. If α is
a satisfying assignment, then Sα is a weak saddle that contains d∗.

For the other direction, we will show that all weak saddles containing d∗ are
(essentially) assignment saddles. Let S = (S1, S2) be a weak saddle of Γϕ such
that d∗ ∈ S1. We can assume that S2 ⊆ L. If this was not the case, i.e., if there
wass a column c ∈ {b∗, y1, . . . , yn} with c ∈ S2, then c  a∗  b∗, and (a∗, b∗)
would be a smaller saddle contained in S, a contradiction. We will now show
that

(i) |S2| ≥ 2,
(ii) |{vi, vi} ∩ S2| ≤ 1 for all i ∈ [n], and

(iii) C ∩ S1 = ∅.

For (i), suppose that S2 = {`}, where ` = vi or ` = vi. Then, both ` and
ri have to be in S1, as they are maximal with respect to {`}. Together with
ri  b∗, this however contradicts the fact that b∗ /∈ S2.

For (ii), suppose that there exists i ∈ [n] with {vi, vi} ⊆ S2. Then at least
one of the rows vi or ri and at least one of the rows vi or ri is in the set S1.
Since ri  b∗ as well as ri  b∗, and since b∗ /∈ S2, we know that {vi, vi} ⊆ S1.
On the other hand, {vi, vi} yi, again contradicting S2 ⊆ L.

For (iii), merely observe that Ci  b∗ for all i ∈ [m].
From (iii) and the fact that S = (S1, S2) is a weak saddle, we know that for

each j ∈ [m], there exists a saddle row sj ∈ S1 with sj >S2 Cj . From (i) and (ii)
we further know that there are (at least) two distinct saddle columns `1, `2 ∈ L
with p1(Cj , `1) = p1(Cj , `2) = 1. By definition of p1, d∗ is the only row that can
weakly dominate Cj , and therefore sj = d∗ for all j ∈ [m].

The fact that d∗ >S2 Cj implies that there exists ` ∈ S2 with p1(d∗, `) >
p1(Cj , `). This can only be the case if p1(d∗, `) = 1 and p1(Cj , `) = 0, where
the latter equality means that ` ∈ Cj . Define an assignment α for ϕ such that
α(`) = 1 if and only if ` ∈ S2. Note that by (ii), α is well-defined. We now have
that for each clause Cj , there is a literal ` ∈ Cj with α(`) = 1, i.e., α satisfies ϕ.

ut
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Fig. 4. Game Γϕ used in the proof of Theorem 1. Payoffs equal (0, 0) unless
specified otherwise. Sα is a weak saddle of Γϕ if and only if ϕ is satisfiable, while
(a∗, b∗) always is a weak saddle. For improved readability, thick lines are used
to separate different types of actions.
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Lemma 1. For every two-player game Γ = (A,B, p) and every action c ∈ A∪B,
there exists a supergame Γ c = (A′, B′, p′) with the following properties:

(i) If S is a weak saddle of Γ c containing c, then S = (A′, B′).
(ii) If S is a weak saddle of Γ not containing c, then S is a weak saddle of Γ c.

(iii) The size of Γ c is polynomial in the size of Γ .

Proof. Let n = |A| and m = |B|. Without loss of generality, we may assume
that all payoffs in Γ are positive and that c is a column, i.e., p`(a, b) > 0 for all
(a, b) ∈ A × B, ` ∈ [2] and c ∈ B. Define λ to be greater than the maximum
payoff to player 1 in column c, e.g., λ = maxa∈A p1(a, c) + 1.

Let Γ c = (A′, B′, p′) be the supergame of Γ with n+m+1 additional rows and
n additional columns, given by A′ = A∪{a′1, . . . , a′n+m−1}, B′ = B∪{b′1, . . . , b′n},
and p′|A×B = p. Payoffs for action profiles not in A×B are shown in Figure 3.

For (i), let S = (S1, S2) be a weak saddle of Γ c with c ∈ S2. By definition
of λ, all new rows a′1, . . . , a

′
n+m−1 are maximal with respect to column c. Since

all these rows are identical for player 1, it follows that all of them have to be
included in the saddle, i.e., (A′ \A) ⊆ S1. The definition of u′ now ensures that
all columns other than c are in the saddle, again by maximality. Invoking the
argument a third time, we finally find that all rows in A are contained in S1,
because the ith row of A is maximal with respect to column b′i.

For (ii) observe that our assumption concerning the payoffs in Γ implies that
all additional actions are dominated by each of the original actions, as long as c
is not contained in the weak saddle.

Finally, (iii) follows directly from the definition of Γ c. ut

Theorem 3. InWeakSaddle is Θp2-hard.

Proof. We apply Wagner’s Lemma with the NP-complete problem S = SAT
and with T = InWeakSaddle. Fix an arbitrary k ≥ 1 and let ϕ1, . . . , ϕ2k be
2k boolean formulas such that satisfiability of ϕj implies satisfiability of ϕj−1,
for each j, 1 < j ≤ 2k.

We will now define a polynomial-time computable function f which maps
the given 2k boolean formulas to an instance of FindWeakSaddle such that
the requirements of (2) are satisfied. For odd i ∈ [2k], let Γi = (Ai, Bi, pi) be a
game as defined in the proof of Theorem 1. Recall that this game has a weak
saddle containing a certain action di if and only if ϕi is satisfiable. Analogously,
for even i ∈ [2k], let Γi = (Ai, Bi, pi) be a the game defined in the proof of
Theorem 2, which has a weak saddle containing a certain action di if and only if
ϕi is unsatisfiable. Without loss of generality, we may assume that all payoffs in
Γi are positive and bounded from above by some K ∈ N, and that the decision
action di of game Γi is a row, i.e., 0 < p`(a, b) < K for all (a, b) ∈ Ai×Bi, ` ∈ [2]
and di ∈ Ai for all i ∈ [2k].7

7 Adding a positive number to every payoff does not change the dominance relation
between the actions. As the minimum payoff in Γi is −1, adding a number greater
than 1 suffices. If di is a column, as in the proof of Theorem 2, we can simply
transpose the game by exchanging the two players.
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Now define a game Γ as the union of the games Γi, i ∈ [2k], with one
additional row ri and two additional columns c1i and c2i for each formula ϕi, as
well as a decision row d∗, i.e., Γ = (A,B, p) where A =

⋃2k
i=1Ai∪{r1, . . . , r2k}∪

{d∗} and B =
⋃2k
i=1Bi ∪

⋃2k
i=1{c1i , c2i }. Payoffs p(a, b) for a ∈

⋃
Ai and b ∈

⋃
Bi

are defined as in the games Γi. If a ∈ Ai, b ∈ Bj for i 6= j, let p(a, b) = (0, 0).
Furthermore, let p(ri, b) = (0, 1) for all i ∈ [2k] and b ∈

⋃
Bi. The definition of

p on profiles containing a new column c`i , i ∈ [2k], ` ∈ [2] is quite complicated,
and we recommend consulting Figure 5 for an overview. Player 2 has only two
distinct payoffs for these columns:

p2(a, c`i) =

{
K if a = di

0 otherwise.

Recall that all payoffs in the games Γi are bounded by K, such that the payoff
for player 2 in the case a = di is maximal in Γ .

The payoffs for player 1 are defined in order to connect the games Γ2i and
Γ2i+1, for each i. We need some notation. For i ∈ [2k], let i◦ be i+ 1 if i is even
and i− 1 if i is odd. Thus, each pair {i, i◦} is of the form {2j, 2j + 1} for some
j. For a ∈

⋃
Ai, define

p1(a, c`i) =


1 if ` = 1 and a ∈ Ai
2 if ` = 1 and a ∈ Ai◦
0 otherwise,

and

(p1(zj , c1i ), p1(zj , c2i )) =


(1, 1) if j = i

(0, 0) if j = i◦

(0, 1) otherwise.

Finally, let p1(d∗, c1i ) = 0 and p1(d∗, c2i ) = 1.
An example of the game Γ for the case k = 2 is depicted in Figure 5, where

we assume without loss of generality that di is the first row of Γi.
The following facts are readily appreciated.

Fact 2. If S is a weak saddle of Γi not containing di, then S is also a weak
saddle of Γ .

For a weak saddle S of Γ and i ∈ [2k], define Si = S ∩ (Ai, Bi) as the
intersection of S with Γi.

Fact 3. If S is a weak saddle of Γ , then Si is either a weak saddle of Γi or
empty.

For Fact 2 it suffices to check external stability. For Fact 3, observe that our
assumption that p`(a, b) > 0 implies that weak domination with respect to a
subset of Ai ∪Bi can only occur among actions belonging to Ai ∪Bi. Therefore,
if some action profile in Ai ×Bi is contained in a weak saddle, all actions of Γi
not contained in the saddle must be dominated by some saddle action of the
same subgame Γi.
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Fig. 5. Game Γ used in the proof of Theorem 3. Payoffs are (0, 0) unless specified
otherwise. Γ has a weak saddle containing row d∗ if and only if both Γ1 and Γ2

or both Γ3 and Γ4 have a weak saddle containing their respective decision rows
di.

In order to be able to apply Lemma 2, we now prove (2), which here amounts
to showing the following equivalence:

‖{i : ϕi ∈ SAT}‖ is odd ⇐⇒ Γ has has a weak saddle S with d∗ ∈ S (3)

For the direction from left to right, let Si be a weak saddle of Γi containing
di, and let Si◦ be a weak saddle of Γi◦ containing di◦ . The existence of these weak
saddles is guaranteed by construction of Γ and the fact that ϕi is satisfiable and
ϕi◦ is unsatisfiable. Now let S = Si ∪ Si◦ ∪ ({d∗, z1, . . . , z2k}, {c1i , c2i , c1i◦ , c2i◦}).
We claim that S is a weak saddle of Γ . The proof consists of two parts.

First, we have to show that S is externally stable, i.e., all actions not in the
saddle have to be weakly dominated by saddle actions. To see this, let a ∈ Aj
be a row that is not in S. If j /∈ {i, i◦}, then a is weakly dominated by every
saddle row because it yields payoff 0 to player 1 against any saddle columns. If,
on the other hand, j ∈ {i, i◦}, then a is weakly dominated by the same row that
weakly dominates it in the subgame Γj . The argument for non-saddle columns
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b ∈
⋃
iBi is analogous. Moreover, every column c`j with j /∈ {i, i◦} is weakly

dominated by each of the saddle columns c1i , c
2
i , c

1
i◦ , c

2
i◦ .

Second, we have to show that S is inclusion-minimal, i.e., that no proper
subset of S is a weak saddle of Γ . Assume for contradiction that such a subset
S′ ⊂ S exists. By Fact 3, we know that S′i = Si, as otherwise inclusion-minimality
of Si would be violated. In particular, di ∈ S′i, which implies that {c1i , c2i } ⊆ S′.
The same reasoning for i◦ shows that S′i◦ = Si◦ and {c1i◦ , c2i◦} ⊆ S′. Then, both zi
and zi◦ have to be in S′, because they are both uniquely maximal with respect to
{c1i , c2i , c1i◦ , c2i◦}. Furthermore, all rows zj with j /∈ {i, i◦}, as well as d∗, are in S′,
because they are all identical and maximal with respect to S′. Here, maximality
is due to the fact that they are the only rows that yield a positive payoff to
player 1 against both saddle columns c2i and c2i◦ . Thus S′ = S, meaning that S
is indeed inclusion-minimal.

For the direction from right to left, let S be a weak saddle of Γ with d∗ ∈ S.
From the definition of p2(d∗, ·), we infer that S ∩

⋃
iBi 6= ∅, which in turn

implies that there is at least one column c`i ∈ S. Otherwise, row d∗ would always
yield 0 against all saddle actions and thus would be weakly dominated by all
saddle rows in

⋃
iAi. Now observe that for any i ∈ [2k], c1i and c2i are identical

for player 2, which implies that every weak saddle of Γ contains either none or
both of them. We thus have that {c1i , c2i } ⊆ S. It then has to be the case that
zi ∈ S, because this row is maximal with respect to {c1i , c2i }. However, zi must
not weakly dominate d∗ with respect to S, because d∗ is itself a saddle action.
This means there has to be a saddle column c ∈ S with p1(zi, c) < p1(d∗, c). The
only column satisfying this property is c2i◦ , which means that both c2i◦ and, by
the same argument as above, c1i◦ are contained in S. Now that both c1i and c1i◦
are in S, at least one row from each of the games Γi and Γi◦ has to be a saddle
action, i.e., S ∩Ai 6= ∅ and S ∩Ai◦ 6= ∅. By Fact 3, we conclude that Si and Si◦
are weak saddles of Γi and Γi◦ , respectively.

It remains to be shown that di ∈ Si and di◦ ∈ Si◦ . If di /∈ Si, then by Fact 2
Si ⊂ S would be a weak saddle of Γ , contradicting inclusion-minimality of S.
The argument for Si◦ is analogous. It finally follows from the construction that
ϕi is satisfiable and ϕi◦ is unsatisfiable,8 which completes the proof of (3). By
Lemma 2, FindWeakSaddle is Θp2-hard. ut

B Proofs for Very Weak Saddles

As in the case of weak saddles, we begin by defining, for each Boolean formula
ϕ, a two-player game Γϕ that admits a certain type of very weak saddles if
and only if ϕ is satisfiable. Let ϕ = C1 ∧ . . . ∧ Cm be a 3-CNF formula9 over
8 Here we have assumed without loss of generality that i < i◦, i.e., i is even and
i◦ = i+ 1 is odd.

9 A formula in 3-CNF is a CNF formula where every clause consists of exactly three
literals. Recall that SAT is NP-complete even for this restricted class of formulas.
While the construction works for arbitrary CNF formulas, we employ 3-CNFs for
ease of notation.
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0

1
0
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0

1
0

1
. . .

[`1,1, `m,1]
0

1
. . .

0
1

...
...

Fig. 6. Game Γϕ for a formula ϕ with C1 = v1 ∨ v2 ∨ v3, C2 = v2 ∨ v4 ∨ v1 and
Cm = v1 ∨ v2 ∨ v4.

variables v1, . . . , vn, where Ci = {`i,1, `i,2, `i,3}. Call a pair {`i,j , `i′,j′} of variable
occurrences a conflicting pair if i 6= i′ and `i,j = `i′,j′ . Conflicting pairs are
denoted [`i,j , `i′,j′ ].

Define the bimatrix game Γϕ = (A,B, p) as follows. The set A of actions
of player 1 comprises the set C = {C1, . . . , Cm} of clauses of ϕ as well as one
additional action for each conflicting pair [`i,j , `i′,j′ ] of literals. The set B of
actions of player 2 equals the setO =

⋃m
j=1{`j,1, `j,2, `j,3} of all literal occurences.

Payoffs are given by

p(Ci, `j,k) =


(0, 1) if j = i,
(1, 0) if j = i+ 1 mod m,
(0, 0) otherwise, and

p([`i,j , `i′,j′ ], `p,q) =


(1, 0) if i = p and j = q,
(1, 0) if i′ = p and j′ = q,
(0, 0) otherwise.

An example of a game Γϕ is shown in Figure 6. In the following, we will
exploit three key properties of Γϕ.
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Let S = (S1, S2) be a very weak saddle of Γϕ. Then the following properties
hold:

(i) If Ci ∈ S1 for some i ∈ [m], then `i,j ∈ S2 for some j ∈ [3].
(ii) If `i,j ∈ S2 for some i ∈ [m] and j ∈ [3], then Ci+1 ∈ S1 or [`i,j , `i′,j′ ] ∈ S1

for some i′ ∈ [m] and j′ ∈ [3].
(iii) For two conflicting literals `i,j = `i′,j′ we have {`i,j , `i,j′} [`i,j , `i,j′ ].

The idea underlying this construction is formalized in the following lemma.

Lemma 3. The game Γϕ has a very weak saddle S = (S1, S2) with S1 = C if
and only if ϕ is satisfiable.

Proof. For the direction from left to right, consider a saddle S = (S1, S2) as
in the statement of the lemma. By (iii), S2 does not include any conflicting
literals and thus defines a valid assignment α for ϕ. Moreover, (i) ensures that
|{`i,1, `i,2, `i,3} ∩ S2| ≥ 1 for each i ∈ [m], meaning that α satisfies ϕ.

For the direction from right to left, let α be a satisfying assignment of ϕ and
f : [m] → [3] be a function such that α(`i,f(i)) = 1 for all i ∈ [m]. It is then
easily verified that S = (C, {`i,f(i) : i ∈ [m]} is a very weak saddle of Γϕ. ut

In the following we define two bimatrix games Γ ′ϕ and Γ+
ϕ that extend Γϕ

with new actions such that properties (i), (ii), and (iii) still hold for the extended
games. In particular, Lemma 3 still holds for Γ ′ϕ and Γ+

ϕ . The game Γ ′ϕ is then
used to prove the NP-hardness of InVeryWeakSaddle, while Γ+

ϕ is used in
the proofs of all other hardness results. Both extensions are independent of the
initial formula ϕ.

The game Γ ′ϕ is defined by adding a column d to Γϕ. Payoffs for new profiles
are defined as

p(Ci, d) = (0, 0) for all i ∈ [m],
p([`i,j , `i′,j′ ], d) = (1, 1) for each conflicting pair.

Lemma 4. Γ ′ϕ has a very weak saddle S = (S1, S2) with C1 ∈ S1 if and only if
ϕ is satisfiable.

Proof. By Lemma 3, there is a very weak saddle S with S1 = C in the game Γϕ
if and only if ϕ is satisfiable. Since p(Ci, d) = (0, 0) for all i ∈ [m], this property
still holds for Γ ′ϕ.

It remains to show that if (S1, S2) is a very weak saddle with C1 ∈ S1 in Γ ′ϕ,
then S1 = C. But this is true since property (ii) holds for Γ ′ϕ, [`i,j , `i′,j′ ]  
d for every [`i,j , `i′,j′ ], and ({[`i,j , `i′,j′ ]}, {d}) is a very weak saddle. Thus,
({[`i,j , `i′,j′ ]}, {d}) is the only very weak saddle containing [`i,j , `i′,j′ ]. ut

To show the remaining hardness results, we define the bimatrix Γ+
ϕ that is

another extension of the basic game Γϕ. In addition to the properties (i), (ii),
and (iii) we will have the following new property in Γ+

ϕ :
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(iv) For every action of the form [`i,j , `i,j′ ] it is true that [`i,j , `i,j′ ] a for every
action a of Γ+

ϕ .

Recall that Γϕ = (A,B, p) and label actions A = {a1, . . . , ar} such that
Ci = ai for all i ∈ [m] and let B = {b1, . . . , b3m}. To obtain Γ+

ϕ , we add s new
colums d1, . . . , ds and s new lines f1, . . . , fs to Γϕ where s = max(|A|, |B|) + 1.
Payoffs for new profiles are defined as

p(fi, dj) =

 (2, 0) if j = i
(0, 2) if j = i+ 1 mod s
(0, 0) otherwise

p(fi, bj) =
{

(0, 1) if i = j or i = j + 1
(0, 0) otherwise

p([`i,j , `i′,j′ ], d1) = (0, 1) for all conflincting pairs

p(Ci, d1) =
{

(1, 0) if 1 ≤ i ≤ 2
(0, 0) otherwise

p(ai, dj) =
{

(1, 0) if j > 1 and j ∈ {i, i+ 1}
(0, 0) if j > 1 and j 6∈ {i, i+ 1}

The game Γ+
ϕ is shown in Figure 7. Note that (i), (ii), and (iii) hold for the

Γ+
ϕ . This is the case since we have a >B fi for all a ∈ A, i ∈ [s] as well as
b >A di for b ∈ B and all i ∈ [s]. Therefore we can show the following lemma
analogously to Lemma 3.

Lemma 5. The game Γ+
ϕ has a very weak saddle S = (S1, S2) with S1 = C if

and only if ϕ is satisfiable.

To prove (iv), note that [`i,j , `i′,j′ ]  d1 for every conflicting pair [`i,j , `i′,j′ ].
Furthermore we have di  fi for every i ∈ [s] and fj  dj+1 for every j ∈ [s−1].
So it follows from the transitivity of that [`i,j , `i′,j′ ] dk and [`i,j , `i′,j′ ] fk
for every [`i,j , `i′,j′ ] ∈ A and all k ∈ [s]. Finally it follows directly from the
construction that {di, di+1}  ai and {fi, fi+1}  bi for all 1 ≤ i < s. Since
s > max(|A|, |B|) this shows (iv).

Lemma 6. The game Γ+
ϕ has a nontrivial very weak saddle if and only the

formula ϕ is satisfiable.

Proof. If ϕ is satisfiable, there is a nontrivial very weak saddle by Lemma 5.
Now assume that ϕ is unsatisfiable. From (iv) we know that there is no non-
trivial saddle (S1, S2) with [`i,j , `i′,j′ ] ∈ S1 for any conflicting pair [`i,j , `i′,j′ ].
By Lemma 5, there is no saddle (S1, S2) with S1 = C. And it follows from (ii)
and (iv) that there cannot be a very weak saddle (S1, S2) with S1 ⊂ C. It re-
mains to show that a nontrivial very weak saddle cannot contain any of the
new actions fi or dj . As mentioned above, di  fi and fj  dj+1. But by the
construction we also have fs  d1. Hence, we can conclude—analogously to the
proof of (iv)—that di  a and fi  a for every action a and, therefore, that di
and fi are not part of a nontrivial saddle for every i ∈ [s]. ut
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`1,1 . . . `m,3 d1 d2 d3 d4 . . . ds ds

C1
1

0
. . .

0

1

0

1

0

1
. . .

C2
0

1
. . .

0

1

0

1
. . .

C3 . . .
0

1

0

1
. . .

...
...

Cm . . .
1

0
. . .

{`i,j , `i′,j′}
0

1
. . .

1

0
. . .

...
...

{`p,q, `p′,q′} . . .
1

0
. . .

0

1

0

1

f1
1

0
. . .

0

2

2

0
. . .

f2
1

0
. . .

0

2

2

0
. . .

f3 . . .
0

2

2

0
. . .

f4 . . .
0

2
. . .

...
...

fs . . .
2

0
. . .

0

2

Fig. 7. The game Γ+
ϕ . Payoffs are (0, 0) unless specified otherwise.
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Theorem 4. The following holds:
(i) InVeryWeakSaddle is NP-hard.

(ii) InVeryWeakSaddle is coNP-hard.
(iii) IsVeryWeakSaddle is coNP-complete.
(iv) InAllVeryWeakSaddles is coNP-complete.
(v) UniqueVeryWeakSaddle is coNP-hard.

(vi) NontrivialVeryWeakSaddle is NP-complete
(vii) FindVeryWeakSaddle is NP-hard.

Proof. Let ϕ be a Boolean formula and let Γ+
ϕ be the game defined above.

(i) By a reduction from 3-SAT. See Lemma 4.
(ii) It follows directly from Lemma 5 and Lemma 6 that an action [`i,j , `i′,j′ ] is

in a very weak saddle (namely the trivial saddle) if and only if the formula
is unsatisfiable. (One can assume w.l.o.g. that ϕ has a pair of conflicting
literals.)

(iii) To see that IsVeryWeakSaddle is in coNP, note that a minor modification
of the coNP algorithm for IsWeakSaddle is a coNP algorithm for IsVery-
WeakSaddle. The problem is hard for coNP since the set of all actions of
Γ+
ϕ is a very weak saddle if and only if ϕ is unsatisfiable (Lemma 6).

(iv) The above discussion also shows that InAllVeryWeakSaddles is coNP-
complete.

(v) One can assume w.l.o.g. that ϕ has more than one satisfying assignment.
(Just add a new clause v̂1∨ v̂2∨ v̂3 with fresh variables.) Then it follows from
the proof of Lemma 5 that there are multiple very weak saddles S = (S1, S2)
with S1 = C, each one corresponding to a satisfying assignment. On the other
hand it follows from Lemma 6 that Γ+

ϕ has only the trivial saddle if ϕ is
unsatisfiable. That shows that UniqueVeryWeakSaddle is coNP-hard.

(vi) The proof of NP-membership of NontrivialVeryWeakSaddle is similar
to the proof of NP-membership of NontrivialWeakSaddle. The NP-
hardness of the problem follows directly from Lemma 6.

(vii) Analogous to the proof of the NP-hardness of FindWeakSaddle.
ut
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